Abstract
Earth’s surface is composed of a staggering diversity of particulate–fluid mixtures: dry to wet, dilute to dense, colloidal to granular and attractive to repulsive particles. This material variety is matched by the range of relevant stresses and strain rates, from laminar to turbulent flows and steady to intermittent forcing, leading to anything from rapid and catastrophic landslides to the slow relaxation of soil and rocks over geologic timescales. From a physics point of view, virtually all Earth and planetary landscapes are composed of soft matter, in the sense that they are both deformable and sensitive to collective effects. Geophysical materials, however, often involve compositions and flow geometries that have not yet been examined in physics. In this Review, we explore how a soft-matter physics perspective has helped to illuminate, and even predict, the rich dynamics of earth materials and their associated landscapes. We also highlight phenomena of geophysical flows that challenge, and will hopefully inspire, work on more fundamental aspects of soft matter.
Key points
-
Earth and planetary landscapes are created by the erosion and deposition of particulate material; this discipline is called geomorphology.
-
Soil, rocks and ice relax over geologic timescales, but may also fluidize under shear or lubrication; thus, glassy dynamics, rigidity transitions and rheology are central concepts.
-
Progress in soft-matter physics can be extended to improve the understanding of geophysical flows that shape landscapes.
-
Landscapes present a wider range of material heterogeneity, system geometry and excitations than have been examined in physics experiments, presenting new challenges and opportunities.
-
Soft-matter physics and geomorphology are long-lost relatives, and we outline promising avenues for reunification and collaboration.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, 1941).
Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 225, 49–63 (1954). Pioneering experimental paper on the rheology of granular suspensions and their connection to geophysical flows.
Seminara, G. Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42, 43–66 (2010).
Charru, F., Andreotti, B. & Claudin, P. Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469–493 (2013).
Huppert, H. E. & Sparks, R. S. J. Extreme natural hazards: population growth, globalization and environmental change. Philos. Trans. R. Soc. A 364, 1875–1888 (2006).
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
Canals, M. et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar. Geol. 213, 9–72 (2004).
Rebesco, M. & Camerlenghi, A. (eds) Contourites Vol. 60 (Elsevier, 2008).
Greeley, R. Introduction to Planetary Geomorphology (Cambridge Univ. Press, 2013).
Grotzinger, J. P., Hayes, A. G., Lamb, M. P. & McLennan, S. M. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J., Simon-Miller, A. A., Harder, J. W. & Bullock, M. A.) 439–472 (Univ. Arizona Press, 2013).
[no authors listed] The science of scenery. Nature 121, 309–311 (1928).
Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, 2010).
Dietrich, W. E. et al. in Prediction in Geomorphology Vol. 135 (eds Wilcock, P. R. & Iverson, R. M.) 103–132 (American Geophysical Union, 2013).
Houssais, M. & Jerolmack, D. J. Toward a unifying constitutive relation for sediment transport across environments. Geomorphology 277, 251–264 (2017).
Kang, D. H., Yun, T. S., Lau, Y. M. & Wang, Y. H. DEM simulation on soil creep and associated evolution of pore characteristics. Comput. Geotech. 39, 98–106 (2012).
Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Rheology of sediment transported by a laminar flow. Phys. Rev. E 94, 062609 (2016).
Vasisht, V. V., Dutta, S. K., Del Gado, E. & Blair, D. L. Rate dependence of elementary rearrangements and spatiotemporal correlations in the 3D flow of soft solids. Phys. Rev. Lett. 120, 018001 (2018).
Ghosh, A. et al. Direct observation of percolation in the yielding transition of colloidal glasses. Phys. Rev. Lett. 118, 148001 (2017).
Courtland, R. E. & Weeks, E. R. Direct visualization of ageing in colloidal glasses. J. Phys. Condens. Matter 15, S359–S365 (2002).
Bonn, D., Tanase, S., Abou, B., Tanaka, H. & Meunier, J. Laponite: aging and shear rejuvenation of a colloidal glass. Phys. Rev. Lett. 89, 015701 (2002).
Hartley, R. R. & Behringer, R. P. Logarithmic rate dependence of force networks in sheared granular materials. Nature 421, 928–931 (2003).
Charru, F., Mouilleron, H. & Eiff, O. Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 55–80 (2004).
Turowski, J. M., Badoux, A. & Rickenmann, D. Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett. 38, L04401 (2011).
Masteller, C. C. & Finnegan, N. J. Interplay between grain protrusion and sediment entrainment in an experimental flume. J. Geophys. Res. Earth Surf. 122, 274–289 (2017).
Bililign, E. S., Kollmer, J. E. & Daniels, K. E. Protocol dependence and state variables in the force-moment ensemble. Phys. Rev. Lett. 122, 038001 (2019).
Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).
Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260–264 (2007).
Frey, P. & Church, M. Bedload: a granular phenomenon. Earth Surf. Process. Landf. 36, 58–69 (2011).
Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8, 265–288 (2017).
Ferdowsi, B., Ortiz, C. P. & Jerolmack, D. J. Glassy dynamics of landscape evolution. Proc. Natl Acad. Sci. USA 115, 4827–4832 (2018).
Frenkel, D. Soft condensed matter. Phys. A 313, 1–31 (2002). Review article drawing on a statistical physics approach, with examples from colloidal physics.
Nagel, S. R. Experimental soft-matter science. Rev. Mod. Phys. 89, 025002 (2017). Survey of current open questions, drawn up during a workshop targeting the frontiers of the field.
Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D 50, 053001 (2017).
Novák-Szabó, T. et al. Universal characteristics of particle shape evolution by bed-load chipping. Sci. Adv. 4, eaao4946 (2018).
Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
Daniels, K. E. & Hayman, N. W. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113, B11411 (2008).
Hayman, N. W., Ducloué, L., Foco, K. L. & Daniels, K. E. Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168, 2239–2257 (2011).
van der Elst, N. J., Brodsky, E. E., Le Bas, P.-Y. & Johnson, P. A. Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. Solid Earth 117, B09314 (2012).
Ferdowsi, B. et al. Acoustically induced slip in sheared granular layers: application to dynamic earthquake triggering. Geophys. Res. Lett. 42, 9750–9757 (2015).
Parker, G., Garcia, M., Fukushima, Y. & Yu, W. Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 25, 123–147 (1987).
Martin, R. L. & Kok, J. F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Sci. Adv. 3, e1602569 (2017).
Iverson, R. M., Reid, M. E. & LaHusen, R. G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 25, 85–138 (1997).
Iverson, R. M. & Denlinger, R. P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. Solid Earth 106, 537–552 (2001).
Furbish, D. J., Haff, P. K., Roseberry, J. C. & Schmeeckle, M. W. A probabilistic description of the bed load sediment flux: 1. Theory. J. Geophys. Res. Earth Surf. 117, F03031 (2012). Formulation of a formal statistical mechanics framework for sediment transport.
Furbish, D. J., Fathel, S. L., Schmeeckle, M. W., Jerolmack, D. J. & Schumer, R. The elements and richness of particle diffusion during sediment transport at small timescales. Earth Surf. Process. Landf. 42, 214–237 (2017).
Einstein, H. A. The Bed-Load Function for Sediment Transportation in Open Channel Flows Vol. 1026 (US Dept. Agric., 1950).
Dodds, P. S. & Rothman, D. H. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci. 28, 571–610 (2000).
Schumer, R., Meerschaert, M. M. & Baeumer, B. Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophys. Res. Earth Surf. 114, F00A07 (2009).
Ancey, C., Bohorquez, P. & Heyman, J. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport. J. Geophys. Res. Earth Surf. 120, 2529–2551 (2015).
Rodríguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-organization (Cambridge Univ. Press, 2001).
Murray, A. B. et al. Geomorphology, complexity, and the emerging science of the Earth’s surface. Geomorphology 103, 496–505 (2009).
Devauchelle, O., Petroff, A. P., Seybold, H. F. & Rothman, D. H. Ramification of stream networks. Proc. Natl Acad. Sci. USA 109, 20832–20836 (2012).
Goehring, L. Pattern formation in the geosciences. Philos. Trans. R. Soc. A 371, 20120352 (2013). Lead article for a special issue that summarizes the principles of non-equilibrium pattern formation, with many illustrative examples provided.
Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth Sci. Rev. 97, 1–43 (2009).
Malverti, L., Lajeunesse, E. & Métivier, F. Small is beautiful: upscaling from microscale laminar to natural turbulent rivers. J. Geophys. Res. Earth Surf. 113, F04004 (2008).
Chen, D. T., Wen, Q., Janmey, P. A., Crocker, J. C. & Yodh, A. G. Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 1, 301–322 (2010).
Falk, M. L. & Langer, J. S. Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353–373 (2011). Review of the concepts and applicability of shear transformation zones.
Denn, M. M. & Morris, J. F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5, 203–228 (2014).
Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017). A review of nonlinear behaviours spanning colloids, gels, emulsions, and suspensions.
Guazzelli, É. & Pouliquen, O. Rheology of dense granular suspensions. J. Fluid Mech. 852, P1 (2018).
Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).
Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010). A summary of the idealized framework by which disordered materials gain rigidity.
Gray, J. M. N. T. Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50, 407–433 (2018).
Amon, A. et al. Preface: focus on imaging methods in granular physics. Rev. Sci. Instrum. 88, 051701 (2017).
de Gennes, P.-G. Soft matter. Rev. Mod. Phys. 64, 645 (1992).
MiDi, G. On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004). Introduces and justifies μ(I) rheology for describing dense granular flows.
Boyer, F., Guazzelli, É. & Pouliquen, O. Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011).
Pähtz, T. & Durán, O. Fluid forces or impacts: what governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid? Phys. Rev. Fluids 2, 074303 (2017).
Dufek, J. The fluid mechanics of pyroclastic density currents. Annu. Rev. Fluid Mech. 48, 459–485 (2016).
Bishop, A. W., Alpan, I., Blight, G. & Donald, I. in Research Conference on Shear Strength of Cohesive Soils (Am. Soc. Civ. Eng., 1960).
Culling, W. Soil creep and the development of hillside slopes. J. Geol. 71, 127–161 (1963).
Garlanger, J. E. The consolidation of soils exhibiting creep under constant effective stress. Géotechnique 22, 71–78 (1972).
Roering, J. J. Soil creep and convex-upward velocity profiles: theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes. Earth Surf. Process. Landf. 29, 1597–1612 (2004).
Okura, Y., Kitahara, H., Ochiai, H., Sammori, T. & Kawanami, A. Landslide fluidization process by flume experiments. Eng. Geol. 66, 65–78 (2002).
Iverson, R. M. et al. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 412, 197–208 (2015).
Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. Earth Surf. 115, F03005 (2010).
Kuenen, P. H. & Migliorini, C. I. Turbidity currents as a cause of graded bedding. J. Geol. 58, 91–127 (1950).
Meiburg, E. & Kneller, B. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135–156 (2010).
You, Y., Flemings, P. & Mohrig, D. Dynamics of dilative slope failure. Geology 40, 663–666 (2012).
Colombo, J. & Del Gado, E. Stress localization, stiffening, and yielding in a model colloidal gel. J. Rheol. 58, 1089–1116 (2014).
Winterwerp, J. C. On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res 22, 1339–1360 (2002).
McAnally, W. H. et al. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior. J. Hydraul. Eng. 133, 9–22 (2007).
Coussot, P. & Piau, J. M. On the behavior of fine mud suspensions. Rheol. Acta 33, 175–184 (1994).
Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
Fink, J. H. & Fletcher, R. C. Ropy pahoehoe: surface folding of a viscous fluid. J. Volcanol. Geotherm. Res. 4, 151–170 (1978).
Griffiths, R. W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 32, 477–518 (2000).
Howard, A. D., Morton, J. B., Gad-El-Hak, M. & Pierce, D. B. Sand transport model of barchan dune equilibrium. Sedimentology 25, 307–338 (1978).
Ayrton, H. The origin and growth of ripple-mark. Proc. R. Soc. Lond. 74, 565–566 (1905).
Einstein, A. Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften 14, 223–224 (1926).
Raudkivi, A. J. Loose Boundary Hydraulics (CRC, 1998).
Lajeunesse, E., Malverti, L. & Charru, F. Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. Earth Surf. 115, F04001 (2010).
Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527 (2015).
Maurin, R., Chauchat, J. & Frey, P. Dense granular flow rheology in turbulent bedload transport. J. Fluid Mech. 804, 490–512 (2016).
Allen, B. & Kudrolli, A. Granular bed consolidation, creep, and armoring under subcritical fluid flow. Phys. Rev. Fluids 3, 074305 (2018).
Capart, H. & Fraccarollo, L. Transport layer structure in intense bed-load. Geophys. Res. Lett. 38, L20402 (2011).
Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, É. Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594–615 (2013).
Laughton, A. S. & Roberts, D. G. Morphology of the continental margin. Philos. Trans. R. Soc. A 290, 75–85 (1978).
Byrne, P. K. et al. A sagging-spreading continuum of large volcano structure. Geology 41, 339–342 (2013).
Goldsby, D. & Kohlstedt, D. Superplastic deformation of ice: experimental observations. J. Geophys. Res. Solid Earth 106, 11017–11030 (2001).
Ishihara, K. Liquefaction and flow failure during earthquakes. Géotechnique 43, 351–451 (1993).
Breard, E. C. et al. Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nat. Geosci. 9, 767–771 (2016).
Guazzelli, É. & Morris, J. F. A Physical Introduction to Suspension Dynamics Vol. 45 (Cambridge Univ. Press, 2011).
Ortiz, C. P., Riehn, R. & Daniels, K. E. Flow-driven formation of solid-like microsphere heaps. Soft Matter 9, 543–549 (2013).
Brzinski, T. III & Durian, D. Observation of two branches in the hindered settling function at low Reynolds number. Phys. Rev. Fluids 3, 124303 (2018).
Sutherland, B. R., Barrett, K. J. & Gingras, M. K. Clay settling in fresh and salt water. Environ. Fluid Mech. 15, 147–160 (2015).
Clarke, G. K. Fast glacier flow: Ice streams, surging, and tidewater glaciers. J. Geophys. Res. Solid Earth 92, 8835–8841 (1987).
Bagnold, R. A. The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. 249, 235–297 (1956).
Hunt, M., Zenit, R., Campbell, C. & Brennen, C. Revisiting the 1954 suspension experiments of RA Bagnold. J. Fluid Mech. 452, 1–24 (2002).
Takahashi, T. Debris flow. Annu. Rev. Fluid Mech. 13, 57–77 (1981).
Barker, T., Schaeffer, D. G., Bohórquez, P. & Gray, J. M. N. T. Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow. J. Fluid Mech. 779, 794–818 (2015).
Schaeffer, D. G. & Pitman, E. B. Ill-posedness in three-dimensional plastic flow. Commun. Pure Appl. Math. 41, 879–890 (1988).
Barker, T., Schaeffer, D. G., Shearer, M. & Gray, J. M. N. T. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology. Proc. R. Soc. A 473, 20160846 (2017).
Ancey, C. Role of lubricated contacts in concentrated polydisperse suspensions. J. Rheol. 45, 1421–1439 (2001).
Turnbull, B., Bowman, E. T. & McElwaine, J. N. Debris flows: experiments and modelling. C. R. Phys. 16, 86–96 (2015).
Reddy, K., Forterre, Y. & Pouliquen, O. Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301 (2011).
Bandi, M., Rivera, M., Krzakala, F. & Ecke, R. Fragility and hysteretic creep in frictional granular jamming. Phys. Rev. E 87, 042205 (2013).
Amon, A., Bertoni, R. & Crassous, J. Experimental investigation of plastic deformations before a granular avalanche. Phys. Rev. E 87, 012204 (2013). Illuminates the structure and dynamics of athermal creep in a granular pile.
Pons, A., Darnige, T., Crassous, J., Clément, E. & Amon, A. Spatial repartition of local plastic processes in different creep regimes in a granular material. EPL 113, 28001 (2016).
Pouliquen, O. & Forterre, Y. A non-local rheology for dense granular flows. Philos. Trans. R. Soc. A 367, 5091–5107 (2009).
Kamrin, K. & Koval, G. Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012).
Bouzid, M. et al. Non-local rheology in dense granular flows – revisiting the concept of fluidity. Eur. Phys. J. E 38, 125 (2015).
Tang, Z., Brzinski, T., Shearer, M. & Daniels, K. E. Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matter 14, 3040–3048 (2018).
Cheng, X. et al. Three-dimensional shear in granular flow. Phys. Rev. Lett. 96, 038001 (2006).
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. Annular shear of cohesionless granular materials: From the inertial to quasistatic regime. Phys. Rev. E 79, 021306 (2009).
Nichol, K., Zanin, A., Bastien, R., Wandersman, E. & van Hecke, M. Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104, 078302 (2010).
Terzaghi, K. Theoretical Soil Mechanics (Wiley, 1943).
Schofield, A. & Wroth, P. Critical State Soil Mechanics Vol. 310 (McGraw-Hill, 1968).
Gan, J., Fredlund, D. & Rahardjo, H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test. Can. Geotech. J. 25, 500–510 (1988).
Savage, W. Z. & Chleborad, A. F. A model for creeping flow in landslides. Environ. Eng. Geosci. 19, 333–338 (1982).
Zieher, T. et al. Sensitivity analysis and calibration of a dynamic physically based slope stability model. Nat. Hazards Earth Syst. Sci. 17, 971–992 (2017).
Wyart, M. On the rigidity of amorphous solids. Ann. Phys. 30, 1–96 (2005).
Basu, A. et al. Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matter 10, 3027–3035 (2014).
Hsu, C.-P., Ramakrishna, S. N., Zanini, M., Spencer, N. D. & Isa, L. Roughness-dependent tribology effects on discontinuous shear thickening. Proc. Natl Acad. Sci. USA 115, 5117–5122 (2018).
James, N. M., Hsu, C.-P., Spencer, N. D., Jaeger, H. M. & Isa, L. Tuning interparticle hydrogen bonding in shear-jamming suspensions: kinetic effects and consequences for tribology and rheology. J. Phys. Chem. Lett. 10, 1663–1668 (2019).
Silbert, L. E. Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918–2924 (2010).
Henkes, S., van Hecke, M. & van Saarloos, W. Critical jamming of frictional grains in the generalized isostaticity picture. EPL 90, 14003 (2010).
Schroeter, M. A local view on the role of friction and shape. EPJ Web Conf. 140, 01008 (2017).
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011). Introduced the idea that rigidity can develop through a history of shear, rather than just the packing density.
Srivastava, I., Silbert, L. E., Grest, G. S. & Lechman, J. B. Flow-arrest transitions in frictional granular matter. Phys. Rev. Lett. 122, 048003 (2019).
Rondon, L., Pouliquen, O. & Aussillous, P. Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011).
Mohrig, D., Ellis, C., Parker, G., Whipple, K. X. & Hondzo, M. Hydroplaning of subaqueous debris flows. Geol. Soc. Am. Bull. 110, 387–394 (1998).
Reichhardt, C. & Reichhardt, C. O. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80, 026501 (2016).
Aussillous, P., Zou, Z., Guazzelli, É., Yan, L. & Wyart, M. Scale-free channeling patterns near the onset of erosion of sheared granular beds. Proc. Natl Acad. Sci. USA 113, 11788–11793 (2016).
Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).
Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y. Revealing the frictional transition in shear-thickening suspensions. Proc. Natl Acad. Sci. USA 114, 5147–5152 (2017).
Morris, J. F. Lubricated-to-frictional shear thickening scenario in dense suspensions. Phys. Rev. Fluids 3, 110508 (2018).
Cheng, X., McCoy, J. H., Israelachvili, J. N. & Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 1276–1279 (2011).
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA 112, 15326–15330 (2015).
Lin, N. Y. et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115, 228304 (2015).
Fall, A., Lemaître, A. & Ovarlez, G. Discontinuous shear thickening in cornstarch suspensions. EPJ Web Conf. 140, 09001 (2017).
Caglioti, E., Loreto, V., Herrmann, H. J. & Nicodemi, M. A “tetris-like” model for the compaction of dry granular media. Phys. Rev. Lett. 79, 1575–1578 (1997).
Lespiat, R., Cohen-Addad, S. & Hoehler, R. Jamming and flow of random-close-packed spherical bubbles: an analogy with granular materials. Phys. Rev. Lett. 106, 148302 (2011).
Peyneau, P.-E. & Roux, J.-N. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008).
Gravish, N., Franklin, S., Hu, D. & Goldman, D. Entangled granular media. Phys. Rev. Lett. 108, 208001 (2012).
Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2003).
Bi, D., Henkes, S., Daniels, K. & Chakraborty, B. The statistical physics of athermal materials. Annu. Rev. Condens. Matter Phys. 6, 63–83 (2015).
Iikawa, N., Bandi, M. & Katsuragi, H. Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116, 128001 (2016).
Nasuno, S., Kudrolli, A., Bak, A. & Gollub, J. P. Time-resolved studies of stick-slip friction in sheared granular layers. Phys. Rev. E 58, 2161–2171 (1998).
DeGiuli, E. & Wyart, M. Friction law and hysteresis in granular materials. Proc. Natl Acad. Sci. USA 114, 9284–9289 (2017).
Keim, N. C., Paulsen, J., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2018).
Davis, D., Suppe, J. & Dahlen, F. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Solid Earth 88, 1153–1172 (1983).
Phillips, C. B. & Jerolmack, D. J. Self-organization of river channels as a critical filter on climate signals. Science 352, 694–697 (2016).
Hersen, P., Douady, S. & Andreotti, B. Relevant length scale of barchan dunes. Phys. Rev. Lett. 89, 264301 (2002).
Andreotti, B., Claudin, P. & Pouliquen, O. Measurements of the aeolian sand transport saturation length. Geomorphology 123, 343–348 (2010).
Reffet, E., Courrech du Pont, S., Hersen, P. & Douady, S. Formation and stability of transverse and longitudinal sand dunes. Geology 38, 491–494 (2010).
Hersen, P. et al. Corridors of barchan dunes: stability and size selection. Phys. Rev. E 69, 011304 (2004).
Schwämmle, V. & Herrmann, H. J. A model of barchan dunes including lateral shear stress. Eur. Phys. J. E 16, 57–65 (2005).
Ping, L., Narteau, C., Dong, Z., Zhang, Z. & Du Pont, S. C. Emergence of oblique dunes in a landscape-scale experiment. Nat. Geosci. 7, 99–103 (2014).
Zhang, D., Narteau, C. & Rozier, O. Morphodynamics of barchan and transverse dunes using a cellular automaton model. J. Geophys. Res. Earth Surf. 115, F03041 (2010).
Durán, O. & Herrmann, H. J. Vegetation against dune mobility. Phys. Rev. Lett. 97, 188001 (2006).
Reitz, M. D., Jerolmack, D. J., Ewing, R. C. & Martin, R. L. Barchan-parabolic dune pattern transition from vegetation stability threshold. Geophys. Res. Lett. 37, L19402 (2010).
Seizilles, G., Devauchelle, O., Lajeunesse, E. & Métivier, F. Width of laminar laboratory rivers. Phys. Rev. E 87, 052204 (2013).
Reitz, M. D. et al. Diffusive evolution of experimental braided rivers. Phys. Rev. E 89, 052809 (2014).
Métivier, F., Lajeunesse, E. & Devauchelle, O. Laboratory rivers: Lacey’s law, threshold theory, and channel stability. Earth Surf. Dyn. 5, 187–198 (2017).
Dunne, K. B. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583–594 (2018).
Reitz, M. D. & Jerolmack, D. J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. J. Geophys. Res. Earth Surf. 117, F02021 (2012).
Delorme, P., Devauchelle, O., Barrier, L. & Métivier, F. Growth and shape of a laboratory alluvial fan. Phys. Rev. E 98, 012907 (2018).
Parker, G. et al. Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraul. Eng. 124, 996–1004 (1998).
Miller, K. L., Reitz, M. D. & Jerolmack, D. J. Generalized sorting profile of alluvial fans. Geophys. Res. Lett. 41, 7191–7199 (2014).
Berhanu, M., Petroff, A., Devauchelle, O., Kudrolli, A. & Rothman, D. H. Shape and dynamics of seepage erosion in a horizontal granular bed. Phys. Rev. E 86, 041304 (2012).
Devauchelle, O. et al. Laplacian networks: growth, local symmetry, and shape optimization. Phys. Rev. E 95, 033113 (2017).
Allen, B. & Kudrolli, A. Depth resolved granular transport driven by shearing fluid flow. Phys. Rev. Fluids 2, 024304 (2017).
Durán, O., Andreotti, B. & Claudin, P. Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24, 103306 (2012).
Phillips, C. B. & Jerolmack, D. J. Dynamics and mechanics of bed-load tracer particles. Earth Surf. Dyn. 2, 513–530 (2014).
Shields, A. Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. Thesis, Technical Univ. Berlin (1936).
Clark, A. H., Shattuck, M. D., Ouellette, N. T. & O’Hern, C. S. Role of grain dynamics in determining the onset of sediment transport. Phys. Rev. Fluids 2, 034305 (2017).
Lee, D. B. & Jerolmack, D. Determining the scales of collective entrainment in collision-driven bed load. Earth Surf. Dyn. 6, 1089–1099 (2018).
Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8, 1363 (2017).
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 1757–1760 (2001).
Crassous, J., Metayer, J.-F., Richard, P. & Laroche, C. Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theory Exp. 2008, P03009 (2008).
Ben-Dror, E. & Goren, L. Controls over sediment flux along soil-mantled hillslopes: Insights from granular dynamics simulations. J. Geophys. Res. Earth Surf. 123, 924–944 (2018).
Lucas, A., Mangeney, A. & Ampuero, J. P. Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat. Commun. 5, 3417 (2014).
Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M. & Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 9, 1569 (2019).
Melosh, H. The physics of very large landslides. Acta Mechanica 64, 89–99 (1986).
Brodsky, E. E. & van der Elst, N. J. The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 42, 317–339 (2014).
Roering, J. J., Stimely, L. L., Mackey, B. H. & Schmidt, D. A. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophys. Res. Lett. 36, L19402 (2009).
Di Maio, C., Scaringi, G., Vassallo, R., Rizzo, E. & Perrone, A. in Landslides and Engineered Slopes. Experience, Theory and Practice Ch. 85 (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 813–820 (CRC, 2016).
Lollino, P., Giordan, D. & Allasia, P. Assessment of the behavior of an active earth-slide by means of calibration between numerical analysis and field monitoring. Bull. Eng. Geol. Environ. 76, 421–435 (2017).
Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).
Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G. & Evans, S. Earthquake-induced-landslides: distribution, motion and mechanisms. Soils Found. 36, 53–64 (1996).
Iverson, R. M. & George, D. L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A 470, 20130819 (2014).
Dansereau, V., Démery, V., Berthier, E., Weiss, J. & Ponson, L. Collective damage growth controls fault orientation in quasibrittle compressive failure. Phys. Rev. Lett. 122, 085501 (2019).
Mohrig, D., Elverhøi, A. & Parker, G. Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Mar. Geol. 154, 117–129 (1999).
Ilstad, T., Elverhøi, A., Issler, D. & Marr, J. G. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar. Geol. 213, 415–438 (2004).
Roering, J. J. How well can hillslope evolution models explain topography? Simulating soil transport and production with high-resolution topographic data. Geol. Soc. Am. Bull. 120, 1248–1262 (2008).
Agoritsas, E., Bertin, E., Martens, K. & Barrat, J.-L. On the relevance of disorder in athermal amorphous materials under shear. Eur. Phys. J. E 38, 71 (2015).
Johnson, P. A., Savage, H., Knuth, M., Gomberg, J. & Marone, C. Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008).
Griffa, M. et al. Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering. EPL 96, 14001 (2011).
Johnson, P. et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material. Geophys. Res. Lett. 40, 5627–5631 (2013).
Brzinski, T. A. III & Daniels, K. E. Sounds of failure: passive acoustic measurements of excited vibrational modes. Phys. Rev. Lett. 120, 218003 (2018).
Bérut, A., Pouliquen, O. & Forterre, Y. Avalanches of Brownian granular suspensions. Preprint at arXiv https://arxiv.org/abs/1908.10762 (2019). Shows how thermal fluctuations influence creep and fluidization.
Jerolmack, D. J. & Paola, C. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 37, L19401 (2010).
Allain, C., Cloitre, M. & Wafra, M. Aggregation and sedimentation in colloidal suspensions. Phys. Rev. Lett. 74, 1478–1481 (1995).
Barden, L., McGown, A. & Collins, K. The collapse mechanism in partly saturated soil. Eng. Geol. 7, 49–60 (1973).
Delage, P. & Lefebvre, G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 21, 21–35 (1984).
Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).
Deegan, R. D. Pattern formation in drying drops. Phys. Rev. E 61, 475–485 (2000).
Goehring, L., Conroy, R., Akhter, A., Clegg, W. J. & Routh, A. F. Evolution of mud-crack patterns during repeated drying cycles. Soft Matter 6, 3562–3567 (2010).
Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
Berthier, L., Flenner, E. & Szamel, G. How active forces influence nonequilibrium glass transitions. New J. Phys. 19, 125006 (2017).
Junot, G., Briand, G., Ledesma-Alonso, R. & Dauchot, O. Active versus passive hard disks against a membrane: mechanical pressure and instability. Phys. Rev. Lett. 119, 028002 (2017).
Saintillan, D. Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563–592 (2018).
Singh, J., Patteson, A. E., Purohit, P. K. & Arratia, P. E. Sedimentation and diffusion of passive particles in suspensions of swimming Escherichia coli. Preprint at arXiv https://arxiv.org/abs/1710.04068 (2017).
Butler, D. R. Zoogeomorphology: Animals as Geomorphic Agents (Cambridge Univ. Press, 1995).
Hassan, M. A. et al. Salmon-driven bed load transport and bed morphology in mountain streams. Geophys. Res. Lett. 35, L04405 (2008).
Wilkinson, M. T., Richards, P. J. & Humphreys, G. S. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci. Rev. 97, 257–272 (2009).
Reinhardt, L., Jerolmack, D., Cardinale, B. J., Vanacker, V. & Wright, J. Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf. Process. Landf. 35, 78–101 (2010).
Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).
Kolb, E., Hartmann, C. & Genet, P. Radial force development during root growth measured by photoelasticity. Plant Soil 360, 19–35 (2012).
Wendell, D. M., Luginbuhl, K., Guerrero, J. & Hosoi, A. E. Experimental investigation of plant root growth through granular substrates. Exp. Mech. 52, 945–949 (2012).
Diambra, A., Ibraim, E., Muir Wood, D. & Russell, A. Fibre reinforced sands: Experiments and modelling. Geotext. Geomembr. 28, 238–250 (2010).
Dos Santos, A. S., Consoli, N. & Baudet, B. The mechanics of fibre-reinforced sand. Géotechnique 60, 791–799 (2010).
Major, J. J. & Pierson, T. C. Debris flow rheology: experimental analysis of fine-grained slurries. Water Resour. Res. 28, 841–857 (1992).
Coussot, P. & Meunier, M. Recognition, classification and mechanical description of debris flows. Earth Sci. Rev. 40, 209–227 (1996).
Scotto di Santolo, A., Pellegrino, A. M. & Evangelista, A. Experimental study on the rheological behaviour of debris flow. Nat. Hazards Earth Syst. Sci. 10, 2507–2514 (2010).
Bardou, E., Boivin, P. & Pfeifer, H.-R. Properties of debris flow deposits and source materials compared: implications for debris flow characterization. Sedimentology 54, 469–480 (2007).
Parsons, J. D., Whipple, K. X. & Simoni, A. Experimental study of the grain-flow, fluid-mud transition in debris flows. J. Geol. 109, 427–447 (2001).
Leonardi, A. et al. Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92, 052204 (2015).
Jeong, S. W., Locat, J., Leroueil, S. & Malet, J.-P. Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Can. Geotech. J. 47, 1085–1100 (2010).
Dagois-Bohy, S., Hormozi, S., Guazzelli, É. & Pouliquen, O. Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776, R2 (2015).
Wang, M. & Brady, J. F. Constant stress and pressure rheology of colloidal suspensions. Phys. Rev. Lett. 115, 158301 (2015).
Berger, N., Azéma, E., Douce, J.-F. & Radjai, F. Scaling behaviour of cohesive granular flows. EPL 112, 64004 (2016).
Roy, S., Luding, S. & Weinhart, T. A general(ized) local rheology for wet granular materials. New J. Phys. 19, 043014 (2017).
Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91, 032203 (2015).
Pednekar, S., Chun, J. & Morris, J. F. Bidisperse and polydisperse suspension rheology at large solid fraction. J. Rheol. 62, 513–526 (2018).
Koos, E. & Willenbacher, N. Capillary forces in suspension rheology. Science 331, 897–900 (2011).
Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).
Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.-C. & Dennin, M. Quantifying flow and stress in ice mélange, the world’s largest granular material. Proc. Natl Acad. Sci. USA 115, 5105–5110 (2018).
Lin, J. & Wyart, M. Microscopic processes controlling the Herschel–Bulkley exponent. Phys. Rev. E 97, 012603 (2018).
Hassan, M. A. & Roy, A. G. in Tools in Fluvial Geomorphology Ch. 14 (eds Kondolf, G. M. & Piégay, H.) 306–323 (Wiley, 2016).
Underwood, E. Geomorphology: how to build a smarter rock. Science 338, 1412–1413 (2012).
Geay, T. et al. Passive acoustic monitoring of bed load discharge in a large gravel bed river. J. Geophys. Res. Earth Surf. 122, 528–545 (2017).
Church, M., Biron, P. & Roy, A. Gravel Bed Rivers: Processes, Tools, Environments (Wiley, 2012).
Horel, J. et al. Mesowest: Cooperative mesonets in the western United States. Bull. Am. Meteorol. Soc. 83, 211–226 (2002).
Lins, H. F. USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey fact sheet 2012-3047 (USGS, 2012).
de Arruda Moreira, G. et al. Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula. Atmos. Res. 213, 185–195 (2018).
Perillo, M. M., Minton, B., Buttles, J. & Mohrig, D. Acoustic imaging of experimental subaqueous sediment-laden flows and their deposits. J. Sediment. Res. 85, 1–5 (2015).
Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).
Krishnan, S. et al. in Proc. 2nd Int. Conf. Comput. Geospat. Res. Appl. 7 (ACM, 2011).
John, M. D., Campbell, K. J. & Devine, C. A. in Offshore Technol. Conf. (OTC, 2018).
Yufei, G. & Bing, H. Deformation mechanism and trend research on a creep landslide in Sichuan Province of China. Electron. J. Geotech. Eng. 17, 3415–3428 (2012).
Lin, C.-P., Tang, S.-H., Lin, W.-C. & Chung, C.-C. Quantification of cable deformation with time domain reflectometry — implications to landslide monitoring. J. Geotech. Geoenviron. Eng. 135, 143–152 (2009).
Wang, G. GPS landslide monitoring: single base vs. network solutions – a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J. Geod. Sci. 1, 191–203 (2011).
Zaugg, E. C., Bradley, J. P., Lee, H. & Cao, N. in 2016 IEEE Radar Conf. Proc. (IEEE, 2016).
Tordesillas, A., Zhou, Z. & Batterham, R. A data-driven complex systems approach to early prediction of landslides. Mech. Res. Commun. 92, 137–141 (2018).
Burtin, A., Hovius, N. & Turowski, J. M. Seismic monitoring of torrential and fluvial processes. Earth Surf. Dyn. 4, 285–307 (2016).
Roth, D. L. et al. Bed load sediment transport inferred from seismic signals near a river. J. Geophys. Res. Earth Surf. 121, 725–747 (2016).
Mainsant, G. et al. Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J. Geophys. Res. Earth Surf. 117, F01030 (2012).
Bertello, L., Berti, M., Castellaro, S. & Squarzoni, G. Dynamics of an active earthflow inferred from surface-wave monitoring. J. Geophys. Res. Earth Surf. 123, 1811–1834 (2018).
Garcimartin, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).
Sequeiros, O. E. et al. Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed. J. Hydraul. Eng. 136, 412–433 (2010).
Majmudar, T. S. & Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005).
Acknowledgements
The idea for this manuscript originated at the Physics of Dense Suspensions program at the Kavli Institute for Theoretical Physics, supported by the National Science Foundation (PHY-1748958). The authors are grateful to all participants of that workshop, especially the organizers: Bulbul Chakraborty, Emanuela Del Gado and Jeff Morris. D.J.J. was sponsored by the Army Research Office (W911-NF-16-1-0290), the National Science Foundation (NRI INT 1734355) and the US National Institute of Environmental Health Sciences (P42ES02372). K.E.D. is grateful for support from the National Science Foundation (DMR-1206808 and DMR-1608097), the International Fine Particle Research Institute and the James S. McDonnell Foundation. The authors thank their research groups and also Doug Durian and Paulo Arratia for discussions that contributed to ideas presented here, and Andrew Gunn for creating Fig. 2.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reviewer information
Nature Reviews Physics thanks E. Brodsky, A. Kudrolli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Glossary
- Upscaling
-
The application of models derived from small scale dynamics, transferred to larger scales.
- Yield stress
-
The amount of load a material can accommodate without bulk flow arising.
- Colloids
-
Materials composed of one type of microscopic particle dispersed within a second substance, which doesn’t easily phase-separate once mixed.
- Glassy dynamics
-
Extremely slow dynamics (creep) observed in disordered materials in the vicinity of yielding.
- Jamming
-
The development of a finite yield stress in an idealized, disordered material; the transition from a flowing to a rigid state.
- Rigidity
-
Ability to support a finite stress without inducing bulk flow.
- Disordered materials
-
Solid materials in a non-crystalline state.
- Rheology
-
The science relating how external forces cause material deformation, including the rate-dependence of these effects.
- Creep
-
Small deformation or motion of the particles within a solid, occurring below yield.
- Thermal effects
-
Effects arising when the thermal fluctuations on the constituent particles in the material are of non-negligible magnitude; this corresponds to low Péclet number.
- Colloidal gel
-
Colloidal system consisting of attractive or cohesive particles dispersed in a liquid, at a volume fraction that is above the rigidity transition.
- Cohesion
-
Component of shear strength that is independent of inter-particle friction (geotechnical) or the finite force required to separate two particles in contact (physics); our usage is compatible with both.
- Shear localization
-
Deformation of a material is accommodated within a small region; one example is shear banding associated with a region 5–10 particles across, and another is shear transformation zones defined below.
- Mohr–Coulomb failure
-
A solid mechanical failure criterion that determines the shear and normal stresses required to cause fracture in a frictional material.
- Fragile
-
A metastable state in which very small perturbations can lead to structural rearrangements and/or flow.
- Shear transformation zones
-
(Also known as STZs). Small regions within an amorphous solid which undergo localized, plastic deformation due to an applied load.
- Depinning
-
The phenomenon in which an interface within a rough potential-energy landscape becomes unstable and slips.
- Excluded volume
-
Volume that a particle cannot occupy because another particle is already at that location.
- Plastic
-
Refers to rearrangements of particles that occur during creep or yield, and are irreversible.
Rights and permissions
About this article
Cite this article
Jerolmack, D.J., Daniels, K.E. Viewing Earth’s surface as a soft-matter landscape. Nat Rev Phys 1, 716–730 (2019). https://doi.org/10.1038/s42254-019-0111-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0111-x
This article is cited by
-
Origins of complexity in the rheology of Soft Earth suspensions
Nature Communications (2024)
-
From creep to flow: Granular materials under cyclic shear
Nature Communications (2024)
-
Hybrid microstructure of smectite clay gels revealed using neutron and synchrotron X-ray scattering
Communications Materials (2023)
-
Scaling and intermittency in turbulent flows of elastoviscoplastic fluids
Nature Physics (2023)
-
Effect of adhesive interaction on strain stiffening and dissipation in granular gels undergoing yielding
Communications Physics (2022)