Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viewing Earth’s surface as a soft-matter landscape

Abstract

Earth’s surface is composed of a staggering diversity of particulate–fluid mixtures: dry to wet, dilute to dense, colloidal to granular and attractive to repulsive particles. This material variety is matched by the range of relevant stresses and strain rates, from laminar to turbulent flows and steady to intermittent forcing, leading to anything from rapid and catastrophic landslides to the slow relaxation of soil and rocks over geologic timescales. From a physics point of view, virtually all Earth and planetary landscapes are composed of soft matter, in the sense that they are both deformable and sensitive to collective effects. Geophysical materials, however, often involve compositions and flow geometries that have not yet been examined in physics. In this Review, we explore how a soft-matter physics perspective has helped to illuminate, and even predict, the rich dynamics of earth materials and their associated landscapes. We also highlight phenomena of geophysical flows that challenge, and will hopefully inspire, work on more fundamental aspects of soft matter.

Key points

  • Earth and planetary landscapes are created by the erosion and deposition of particulate material; this discipline is called geomorphology.

  • Soil, rocks and ice relax over geologic timescales, but may also fluidize under shear or lubrication; thus, glassy dynamics, rigidity transitions and rheology are central concepts.

  • Progress in soft-matter physics can be extended to improve the understanding of geophysical flows that shape landscapes.

  • Landscapes present a wider range of material heterogeneity, system geometry and excitations than have been examined in physics experiments, presenting new challenges and opportunities.

  • Soft-matter physics and geomorphology are long-lost relatives, and we outline promising avenues for reunification and collaboration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram of particulate geophysical flows, parameterized by dimensionless shear rate I and solid volume fraction ϕ.
Fig. 2: Interfacial and bulk dynamics of geophysical flows illustrated on a prototypical soil-covered hillslope.
Fig. 3: Example landscape patterns and particle–fluid interactions of associated flows.
Fig. 4: The landscape of valid states (geological landscapes).

Similar content being viewed by others

References

  1. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, 1941).

  2. Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 225, 49–63 (1954). Pioneering experimental paper on the rheology of granular suspensions and their connection to geophysical flows.

    ADS  Google Scholar 

  3. Seminara, G. Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42, 43–66 (2010).

    MATH  ADS  Google Scholar 

  4. Charru, F., Andreotti, B. & Claudin, P. Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469–493 (2013).

    MathSciNet  MATH  ADS  Google Scholar 

  5. Huppert, H. E. & Sparks, R. S. J. Extreme natural hazards: population growth, globalization and environmental change. Philos. Trans. R. Soc. A 364, 1875–1888 (2006).

    ADS  Google Scholar 

  6. Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    ADS  Google Scholar 

  7. Canals, M. et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar. Geol. 213, 9–72 (2004).

    ADS  Google Scholar 

  8. Rebesco, M. & Camerlenghi, A. (eds) Contourites Vol. 60 (Elsevier, 2008).

  9. Greeley, R. Introduction to Planetary Geomorphology (Cambridge Univ. Press, 2013).

  10. Grotzinger, J. P., Hayes, A. G., Lamb, M. P. & McLennan, S. M. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J., Simon-Miller, A. A., Harder, J. W. & Bullock, M. A.) 439–472 (Univ. Arizona Press, 2013).

  11. [no authors listed] The science of scenery. Nature 121, 309–311 (1928).

  12. Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, 2010).

  13. Dietrich, W. E. et al. in Prediction in Geomorphology Vol. 135 (eds Wilcock, P. R. & Iverson, R. M.) 103–132 (American Geophysical Union, 2013).

  14. Houssais, M. & Jerolmack, D. J. Toward a unifying constitutive relation for sediment transport across environments. Geomorphology 277, 251–264 (2017).

    ADS  Google Scholar 

  15. Kang, D. H., Yun, T. S., Lau, Y. M. & Wang, Y. H. DEM simulation on soil creep and associated evolution of pore characteristics. Comput. Geotech. 39, 98–106 (2012).

    Google Scholar 

  16. Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Rheology of sediment transported by a laminar flow. Phys. Rev. E 94, 062609 (2016).

    ADS  Google Scholar 

  17. Vasisht, V. V., Dutta, S. K., Del Gado, E. & Blair, D. L. Rate dependence of elementary rearrangements and spatiotemporal correlations in the 3D flow of soft solids. Phys. Rev. Lett. 120, 018001 (2018).

    ADS  Google Scholar 

  18. Ghosh, A. et al. Direct observation of percolation in the yielding transition of colloidal glasses. Phys. Rev. Lett. 118, 148001 (2017).

    ADS  Google Scholar 

  19. Courtland, R. E. & Weeks, E. R. Direct visualization of ageing in colloidal glasses. J. Phys. Condens. Matter 15, S359–S365 (2002).

    Google Scholar 

  20. Bonn, D., Tanase, S., Abou, B., Tanaka, H. & Meunier, J. Laponite: aging and shear rejuvenation of a colloidal glass. Phys. Rev. Lett. 89, 015701 (2002).

    ADS  Google Scholar 

  21. Hartley, R. R. & Behringer, R. P. Logarithmic rate dependence of force networks in sheared granular materials. Nature 421, 928–931 (2003).

    ADS  Google Scholar 

  22. Charru, F., Mouilleron, H. & Eiff, O. Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 55–80 (2004).

    MATH  ADS  Google Scholar 

  23. Turowski, J. M., Badoux, A. & Rickenmann, D. Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett. 38, L04401 (2011).

    ADS  Google Scholar 

  24. Masteller, C. C. & Finnegan, N. J. Interplay between grain protrusion and sediment entrainment in an experimental flume. J. Geophys. Res. Earth Surf. 122, 274–289 (2017).

    ADS  Google Scholar 

  25. Bililign, E. S., Kollmer, J. E. & Daniels, K. E. Protocol dependence and state variables in the force-moment ensemble. Phys. Rev. Lett. 122, 038001 (2019).

    ADS  Google Scholar 

  26. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    ADS  Google Scholar 

  27. Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260–264 (2007).

    Google Scholar 

  28. Frey, P. & Church, M. Bedload: a granular phenomenon. Earth Surf. Process. Landf. 36, 58–69 (2011).

    ADS  Google Scholar 

  29. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8, 265–288 (2017).

    ADS  Google Scholar 

  30. Ferdowsi, B., Ortiz, C. P. & Jerolmack, D. J. Glassy dynamics of landscape evolution. Proc. Natl Acad. Sci. USA 115, 4827–4832 (2018).

    ADS  Google Scholar 

  31. Frenkel, D. Soft condensed matter. Phys. A 313, 1–31 (2002). Review article drawing on a statistical physics approach, with examples from colloidal physics.

    MATH  Google Scholar 

  32. Nagel, S. R. Experimental soft-matter science. Rev. Mod. Phys. 89, 025002 (2017). Survey of current open questions, drawn up during a workshop targeting the frontiers of the field.

    MathSciNet  ADS  Google Scholar 

  33. Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D 50, 053001 (2017).

    ADS  Google Scholar 

  34. Novák-Szabó, T. et al. Universal characteristics of particle shape evolution by bed-load chipping. Sci. Adv. 4, eaao4946 (2018).

    ADS  Google Scholar 

  35. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    ADS  Google Scholar 

  36. Daniels, K. E. & Hayman, N. W. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113, B11411 (2008).

    ADS  Google Scholar 

  37. Hayman, N. W., Ducloué, L., Foco, K. L. & Daniels, K. E. Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168, 2239–2257 (2011).

    ADS  Google Scholar 

  38. van der Elst, N. J., Brodsky, E. E., Le Bas, P.-Y. & Johnson, P. A. Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. Solid Earth 117, B09314 (2012).

    ADS  Google Scholar 

  39. Ferdowsi, B. et al. Acoustically induced slip in sheared granular layers: application to dynamic earthquake triggering. Geophys. Res. Lett. 42, 9750–9757 (2015).

    ADS  Google Scholar 

  40. Parker, G., Garcia, M., Fukushima, Y. & Yu, W. Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 25, 123–147 (1987).

    Google Scholar 

  41. Martin, R. L. & Kok, J. F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Sci. Adv. 3, e1602569 (2017).

    ADS  Google Scholar 

  42. Iverson, R. M., Reid, M. E. & LaHusen, R. G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 25, 85–138 (1997).

    ADS  Google Scholar 

  43. Iverson, R. M. & Denlinger, R. P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. Solid Earth 106, 537–552 (2001).

    Google Scholar 

  44. Furbish, D. J., Haff, P. K., Roseberry, J. C. & Schmeeckle, M. W. A probabilistic description of the bed load sediment flux: 1. Theory. J. Geophys. Res. Earth Surf. 117, F03031 (2012). Formulation of a formal statistical mechanics framework for sediment transport.

    ADS  Google Scholar 

  45. Furbish, D. J., Fathel, S. L., Schmeeckle, M. W., Jerolmack, D. J. & Schumer, R. The elements and richness of particle diffusion during sediment transport at small timescales. Earth Surf. Process. Landf. 42, 214–237 (2017).

    ADS  Google Scholar 

  46. Einstein, H. A. The Bed-Load Function for Sediment Transportation in Open Channel Flows Vol. 1026 (US Dept. Agric., 1950).

  47. Dodds, P. S. & Rothman, D. H. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci. 28, 571–610 (2000).

    ADS  Google Scholar 

  48. Schumer, R., Meerschaert, M. M. & Baeumer, B. Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophys. Res. Earth Surf. 114, F00A07 (2009).

    ADS  Google Scholar 

  49. Ancey, C., Bohorquez, P. & Heyman, J. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport. J. Geophys. Res. Earth Surf. 120, 2529–2551 (2015).

    ADS  Google Scholar 

  50. Rodríguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-organization (Cambridge Univ. Press, 2001).

  51. Murray, A. B. et al. Geomorphology, complexity, and the emerging science of the Earth’s surface. Geomorphology 103, 496–505 (2009).

    ADS  Google Scholar 

  52. Devauchelle, O., Petroff, A. P., Seybold, H. F. & Rothman, D. H. Ramification of stream networks. Proc. Natl Acad. Sci. USA 109, 20832–20836 (2012).

    ADS  Google Scholar 

  53. Goehring, L. Pattern formation in the geosciences. Philos. Trans. R. Soc. A 371, 20120352 (2013). Lead article for a special issue that summarizes the principles of non-equilibrium pattern formation, with many illustrative examples provided.

    ADS  Google Scholar 

  54. Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth Sci. Rev. 97, 1–43 (2009).

    ADS  Google Scholar 

  55. Malverti, L., Lajeunesse, E. & Métivier, F. Small is beautiful: upscaling from microscale laminar to natural turbulent rivers. J. Geophys. Res. Earth Surf. 113, F04004 (2008).

    ADS  Google Scholar 

  56. Chen, D. T., Wen, Q., Janmey, P. A., Crocker, J. C. & Yodh, A. G. Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 1, 301–322 (2010).

    ADS  Google Scholar 

  57. Falk, M. L. & Langer, J. S. Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353–373 (2011). Review of the concepts and applicability of shear transformation zones.

    ADS  Google Scholar 

  58. Denn, M. M. & Morris, J. F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5, 203–228 (2014).

    Google Scholar 

  59. Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017). A review of nonlinear behaviours spanning colloids, gels, emulsions, and suspensions.

    ADS  Google Scholar 

  60. Guazzelli, É. & Pouliquen, O. Rheology of dense granular suspensions. J. Fluid Mech. 852, P1 (2018).

  61. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).

    ADS  Google Scholar 

  62. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010). A summary of the idealized framework by which disordered materials gain rigidity.

    ADS  Google Scholar 

  63. Gray, J. M. N. T. Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50, 407–433 (2018).

    MathSciNet  MATH  ADS  Google Scholar 

  64. Amon, A. et al. Preface: focus on imaging methods in granular physics. Rev. Sci. Instrum. 88, 051701 (2017).

    ADS  Google Scholar 

  65. de Gennes, P.-G. Soft matter. Rev. Mod. Phys. 64, 645 (1992).

    ADS  Google Scholar 

  66. MiDi, G. On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004). Introduces and justifies μ(I) rheology for describing dense granular flows.

    Google Scholar 

  67. Boyer, F., Guazzelli, É. & Pouliquen, O. Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011).

    ADS  Google Scholar 

  68. Pähtz, T. & Durán, O. Fluid forces or impacts: what governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid? Phys. Rev. Fluids 2, 074303 (2017).

    ADS  Google Scholar 

  69. Dufek, J. The fluid mechanics of pyroclastic density currents. Annu. Rev. Fluid Mech. 48, 459–485 (2016).

    MathSciNet  MATH  ADS  Google Scholar 

  70. Bishop, A. W., Alpan, I., Blight, G. & Donald, I. in Research Conference on Shear Strength of Cohesive Soils (Am. Soc. Civ. Eng., 1960).

  71. Culling, W. Soil creep and the development of hillside slopes. J. Geol. 71, 127–161 (1963).

    ADS  Google Scholar 

  72. Garlanger, J. E. The consolidation of soils exhibiting creep under constant effective stress. Géotechnique 22, 71–78 (1972).

    Google Scholar 

  73. Roering, J. J. Soil creep and convex-upward velocity profiles: theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes. Earth Surf. Process. Landf. 29, 1597–1612 (2004).

    ADS  Google Scholar 

  74. Okura, Y., Kitahara, H., Ochiai, H., Sammori, T. & Kawanami, A. Landslide fluidization process by flume experiments. Eng. Geol. 66, 65–78 (2002).

    Google Scholar 

  75. Iverson, R. M. et al. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 412, 197–208 (2015).

    ADS  Google Scholar 

  76. Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. Earth Surf. 115, F03005 (2010).

    ADS  Google Scholar 

  77. Kuenen, P. H. & Migliorini, C. I. Turbidity currents as a cause of graded bedding. J. Geol. 58, 91–127 (1950).

    ADS  Google Scholar 

  78. Meiburg, E. & Kneller, B. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135–156 (2010).

    MATH  ADS  Google Scholar 

  79. You, Y., Flemings, P. & Mohrig, D. Dynamics of dilative slope failure. Geology 40, 663–666 (2012).

    ADS  Google Scholar 

  80. Colombo, J. & Del Gado, E. Stress localization, stiffening, and yielding in a model colloidal gel. J. Rheol. 58, 1089–1116 (2014).

    ADS  Google Scholar 

  81. Winterwerp, J. C. On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res 22, 1339–1360 (2002).

    ADS  Google Scholar 

  82. McAnally, W. H. et al. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior. J. Hydraul. Eng. 133, 9–22 (2007).

    Google Scholar 

  83. Coussot, P. & Piau, J. M. On the behavior of fine mud suspensions. Rheol. Acta 33, 175–184 (1994).

    Google Scholar 

  84. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    MATH  ADS  Google Scholar 

  85. Fink, J. H. & Fletcher, R. C. Ropy pahoehoe: surface folding of a viscous fluid. J. Volcanol. Geotherm. Res. 4, 151–170 (1978).

    ADS  Google Scholar 

  86. Griffiths, R. W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 32, 477–518 (2000).

    MathSciNet  MATH  ADS  Google Scholar 

  87. Howard, A. D., Morton, J. B., Gad-El-Hak, M. & Pierce, D. B. Sand transport model of barchan dune equilibrium. Sedimentology 25, 307–338 (1978).

    ADS  Google Scholar 

  88. Ayrton, H. The origin and growth of ripple-mark. Proc. R. Soc. Lond. 74, 565–566 (1905).

    Google Scholar 

  89. Einstein, A. Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften 14, 223–224 (1926).

    ADS  Google Scholar 

  90. Raudkivi, A. J. Loose Boundary Hydraulics (CRC, 1998).

  91. Lajeunesse, E., Malverti, L. & Charru, F. Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. Earth Surf. 115, F04001 (2010).

    ADS  Google Scholar 

  92. Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527 (2015).

    ADS  Google Scholar 

  93. Maurin, R., Chauchat, J. & Frey, P. Dense granular flow rheology in turbulent bedload transport. J. Fluid Mech. 804, 490–512 (2016).

    MathSciNet  ADS  Google Scholar 

  94. Allen, B. & Kudrolli, A. Granular bed consolidation, creep, and armoring under subcritical fluid flow. Phys. Rev. Fluids 3, 074305 (2018).

    ADS  Google Scholar 

  95. Capart, H. & Fraccarollo, L. Transport layer structure in intense bed-load. Geophys. Res. Lett. 38, L20402 (2011).

    ADS  Google Scholar 

  96. Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, É. Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594–615 (2013).

    MATH  ADS  Google Scholar 

  97. Laughton, A. S. & Roberts, D. G. Morphology of the continental margin. Philos. Trans. R. Soc. A 290, 75–85 (1978).

    ADS  Google Scholar 

  98. Byrne, P. K. et al. A sagging-spreading continuum of large volcano structure. Geology 41, 339–342 (2013).

    ADS  Google Scholar 

  99. Goldsby, D. & Kohlstedt, D. Superplastic deformation of ice: experimental observations. J. Geophys. Res. Solid Earth 106, 11017–11030 (2001).

    Google Scholar 

  100. Ishihara, K. Liquefaction and flow failure during earthquakes. Géotechnique 43, 351–451 (1993).

    Google Scholar 

  101. Breard, E. C. et al. Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nat. Geosci. 9, 767–771 (2016).

    ADS  Google Scholar 

  102. Guazzelli, É. & Morris, J. F. A Physical Introduction to Suspension Dynamics Vol. 45 (Cambridge Univ. Press, 2011).

  103. Ortiz, C. P., Riehn, R. & Daniels, K. E. Flow-driven formation of solid-like microsphere heaps. Soft Matter 9, 543–549 (2013).

    ADS  Google Scholar 

  104. Brzinski, T. III & Durian, D. Observation of two branches in the hindered settling function at low Reynolds number. Phys. Rev. Fluids 3, 124303 (2018).

    ADS  Google Scholar 

  105. Sutherland, B. R., Barrett, K. J. & Gingras, M. K. Clay settling in fresh and salt water. Environ. Fluid Mech. 15, 147–160 (2015).

    Google Scholar 

  106. Clarke, G. K. Fast glacier flow: Ice streams, surging, and tidewater glaciers. J. Geophys. Res. Solid Earth 92, 8835–8841 (1987).

    Google Scholar 

  107. Bagnold, R. A. The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. 249, 235–297 (1956).

    MathSciNet  ADS  Google Scholar 

  108. Hunt, M., Zenit, R., Campbell, C. & Brennen, C. Revisiting the 1954 suspension experiments of RA Bagnold. J. Fluid Mech. 452, 1–24 (2002).

    MATH  ADS  Google Scholar 

  109. Takahashi, T. Debris flow. Annu. Rev. Fluid Mech. 13, 57–77 (1981).

    ADS  Google Scholar 

  110. Barker, T., Schaeffer, D. G., Bohórquez, P. & Gray, J. M. N. T. Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow. J. Fluid Mech. 779, 794–818 (2015).

    MathSciNet  MATH  ADS  Google Scholar 

  111. Schaeffer, D. G. & Pitman, E. B. Ill-posedness in three-dimensional plastic flow. Commun. Pure Appl. Math. 41, 879–890 (1988).

    MathSciNet  MATH  Google Scholar 

  112. Barker, T., Schaeffer, D. G., Shearer, M. & Gray, J. M. N. T. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology. Proc. R. Soc. A 473, 20160846 (2017).

    MathSciNet  MATH  ADS  Google Scholar 

  113. Ancey, C. Role of lubricated contacts in concentrated polydisperse suspensions. J. Rheol. 45, 1421–1439 (2001).

    ADS  Google Scholar 

  114. Turnbull, B., Bowman, E. T. & McElwaine, J. N. Debris flows: experiments and modelling. C. R. Phys. 16, 86–96 (2015).

    ADS  Google Scholar 

  115. Reddy, K., Forterre, Y. & Pouliquen, O. Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301 (2011).

    ADS  Google Scholar 

  116. Bandi, M., Rivera, M., Krzakala, F. & Ecke, R. Fragility and hysteretic creep in frictional granular jamming. Phys. Rev. E 87, 042205 (2013).

    ADS  Google Scholar 

  117. Amon, A., Bertoni, R. & Crassous, J. Experimental investigation of plastic deformations before a granular avalanche. Phys. Rev. E 87, 012204 (2013). Illuminates the structure and dynamics of athermal creep in a granular pile.

    ADS  Google Scholar 

  118. Pons, A., Darnige, T., Crassous, J., Clément, E. & Amon, A. Spatial repartition of local plastic processes in different creep regimes in a granular material. EPL 113, 28001 (2016).

    ADS  Google Scholar 

  119. Pouliquen, O. & Forterre, Y. A non-local rheology for dense granular flows. Philos. Trans. R. Soc. A 367, 5091–5107 (2009).

    MATH  ADS  Google Scholar 

  120. Kamrin, K. & Koval, G. Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012).

    ADS  Google Scholar 

  121. Bouzid, M. et al. Non-local rheology in dense granular flows – revisiting the concept of fluidity. Eur. Phys. J. E 38, 125 (2015).

    Google Scholar 

  122. Tang, Z., Brzinski, T., Shearer, M. & Daniels, K. E. Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matter 14, 3040–3048 (2018).

    ADS  Google Scholar 

  123. Cheng, X. et al. Three-dimensional shear in granular flow. Phys. Rev. Lett. 96, 038001 (2006).

    ADS  Google Scholar 

  124. Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. Annular shear of cohesionless granular materials: From the inertial to quasistatic regime. Phys. Rev. E 79, 021306 (2009).

    ADS  Google Scholar 

  125. Nichol, K., Zanin, A., Bastien, R., Wandersman, E. & van Hecke, M. Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104, 078302 (2010).

    ADS  Google Scholar 

  126. Terzaghi, K. Theoretical Soil Mechanics (Wiley, 1943).

  127. Schofield, A. & Wroth, P. Critical State Soil Mechanics Vol. 310 (McGraw-Hill, 1968).

  128. Gan, J., Fredlund, D. & Rahardjo, H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test. Can. Geotech. J. 25, 500–510 (1988).

    Google Scholar 

  129. Savage, W. Z. & Chleborad, A. F. A model for creeping flow in landslides. Environ. Eng. Geosci. 19, 333–338 (1982).

    Google Scholar 

  130. Zieher, T. et al. Sensitivity analysis and calibration of a dynamic physically based slope stability model. Nat. Hazards Earth Syst. Sci. 17, 971–992 (2017).

    ADS  Google Scholar 

  131. Wyart, M. On the rigidity of amorphous solids. Ann. Phys. 30, 1–96 (2005).

    Google Scholar 

  132. Basu, A. et al. Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matter 10, 3027–3035 (2014).

    ADS  Google Scholar 

  133. Hsu, C.-P., Ramakrishna, S. N., Zanini, M., Spencer, N. D. & Isa, L. Roughness-dependent tribology effects on discontinuous shear thickening. Proc. Natl Acad. Sci. USA 115, 5117–5122 (2018).

    ADS  Google Scholar 

  134. James, N. M., Hsu, C.-P., Spencer, N. D., Jaeger, H. M. & Isa, L. Tuning interparticle hydrogen bonding in shear-jamming suspensions: kinetic effects and consequences for tribology and rheology. J. Phys. Chem. Lett. 10, 1663–1668 (2019).

    Google Scholar 

  135. Silbert, L. E. Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918–2924 (2010).

    ADS  Google Scholar 

  136. Henkes, S., van Hecke, M. & van Saarloos, W. Critical jamming of frictional grains in the generalized isostaticity picture. EPL 90, 14003 (2010).

    ADS  Google Scholar 

  137. Schroeter, M. A local view on the role of friction and shape. EPJ Web Conf. 140, 01008 (2017).

    Google Scholar 

  138. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011). Introduced the idea that rigidity can develop through a history of shear, rather than just the packing density.

    ADS  Google Scholar 

  139. Srivastava, I., Silbert, L. E., Grest, G. S. & Lechman, J. B. Flow-arrest transitions in frictional granular matter. Phys. Rev. Lett. 122, 048003 (2019).

    ADS  Google Scholar 

  140. Rondon, L., Pouliquen, O. & Aussillous, P. Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011).

    ADS  Google Scholar 

  141. Mohrig, D., Ellis, C., Parker, G., Whipple, K. X. & Hondzo, M. Hydroplaning of subaqueous debris flows. Geol. Soc. Am. Bull. 110, 387–394 (1998).

    ADS  Google Scholar 

  142. Reichhardt, C. & Reichhardt, C. O. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80, 026501 (2016).

    ADS  Google Scholar 

  143. Aussillous, P., Zou, Z., Guazzelli, É., Yan, L. & Wyart, M. Scale-free channeling patterns near the onset of erosion of sheared granular beds. Proc. Natl Acad. Sci. USA 113, 11788–11793 (2016).

    ADS  Google Scholar 

  144. Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).

    ADS  Google Scholar 

  145. Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y. Revealing the frictional transition in shear-thickening suspensions. Proc. Natl Acad. Sci. USA 114, 5147–5152 (2017).

    ADS  Google Scholar 

  146. Morris, J. F. Lubricated-to-frictional shear thickening scenario in dense suspensions. Phys. Rev. Fluids 3, 110508 (2018).

    ADS  Google Scholar 

  147. Cheng, X., McCoy, J. H., Israelachvili, J. N. & Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 1276–1279 (2011).

    ADS  Google Scholar 

  148. Mari, R., Seto, R., Morris, J. F. & Denn, M. M. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA 112, 15326–15330 (2015).

    ADS  Google Scholar 

  149. Lin, N. Y. et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115, 228304 (2015).

    ADS  Google Scholar 

  150. Fall, A., Lemaître, A. & Ovarlez, G. Discontinuous shear thickening in cornstarch suspensions. EPJ Web Conf. 140, 09001 (2017).

    Google Scholar 

  151. Caglioti, E., Loreto, V., Herrmann, H. J. & Nicodemi, M. A “tetris-like” model for the compaction of dry granular media. Phys. Rev. Lett. 79, 1575–1578 (1997).

    ADS  Google Scholar 

  152. Lespiat, R., Cohen-Addad, S. & Hoehler, R. Jamming and flow of random-close-packed spherical bubbles: an analogy with granular materials. Phys. Rev. Lett. 106, 148302 (2011).

    ADS  Google Scholar 

  153. Peyneau, P.-E. & Roux, J.-N. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008).

    ADS  Google Scholar 

  154. Gravish, N., Franklin, S., Hu, D. & Goldman, D. Entangled granular media. Phys. Rev. Lett. 108, 208001 (2012).

    ADS  Google Scholar 

  155. Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2003).

  156. Bi, D., Henkes, S., Daniels, K. & Chakraborty, B. The statistical physics of athermal materials. Annu. Rev. Condens. Matter Phys. 6, 63–83 (2015).

    ADS  Google Scholar 

  157. Iikawa, N., Bandi, M. & Katsuragi, H. Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116, 128001 (2016).

    ADS  Google Scholar 

  158. Nasuno, S., Kudrolli, A., Bak, A. & Gollub, J. P. Time-resolved studies of stick-slip friction in sheared granular layers. Phys. Rev. E 58, 2161–2171 (1998).

    ADS  Google Scholar 

  159. DeGiuli, E. & Wyart, M. Friction law and hysteresis in granular materials. Proc. Natl Acad. Sci. USA 114, 9284–9289 (2017).

    MathSciNet  MATH  ADS  Google Scholar 

  160. Keim, N. C., Paulsen, J., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2018).

    ADS  Google Scholar 

  161. Davis, D., Suppe, J. & Dahlen, F. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Solid Earth 88, 1153–1172 (1983).

    Google Scholar 

  162. Phillips, C. B. & Jerolmack, D. J. Self-organization of river channels as a critical filter on climate signals. Science 352, 694–697 (2016).

    ADS  Google Scholar 

  163. Hersen, P., Douady, S. & Andreotti, B. Relevant length scale of barchan dunes. Phys. Rev. Lett. 89, 264301 (2002).

    ADS  Google Scholar 

  164. Andreotti, B., Claudin, P. & Pouliquen, O. Measurements of the aeolian sand transport saturation length. Geomorphology 123, 343–348 (2010).

    ADS  Google Scholar 

  165. Reffet, E., Courrech du Pont, S., Hersen, P. & Douady, S. Formation and stability of transverse and longitudinal sand dunes. Geology 38, 491–494 (2010).

    ADS  Google Scholar 

  166. Hersen, P. et al. Corridors of barchan dunes: stability and size selection. Phys. Rev. E 69, 011304 (2004).

    ADS  Google Scholar 

  167. Schwämmle, V. & Herrmann, H. J. A model of barchan dunes including lateral shear stress. Eur. Phys. J. E 16, 57–65 (2005).

    Google Scholar 

  168. Ping, L., Narteau, C., Dong, Z., Zhang, Z. & Du Pont, S. C. Emergence of oblique dunes in a landscape-scale experiment. Nat. Geosci. 7, 99–103 (2014).

    ADS  Google Scholar 

  169. Zhang, D., Narteau, C. & Rozier, O. Morphodynamics of barchan and transverse dunes using a cellular automaton model. J. Geophys. Res. Earth Surf. 115, F03041 (2010).

    ADS  Google Scholar 

  170. Durán, O. & Herrmann, H. J. Vegetation against dune mobility. Phys. Rev. Lett. 97, 188001 (2006).

    ADS  Google Scholar 

  171. Reitz, M. D., Jerolmack, D. J., Ewing, R. C. & Martin, R. L. Barchan-parabolic dune pattern transition from vegetation stability threshold. Geophys. Res. Lett. 37, L19402 (2010).

    ADS  Google Scholar 

  172. Seizilles, G., Devauchelle, O., Lajeunesse, E. & Métivier, F. Width of laminar laboratory rivers. Phys. Rev. E 87, 052204 (2013).

    ADS  Google Scholar 

  173. Reitz, M. D. et al. Diffusive evolution of experimental braided rivers. Phys. Rev. E 89, 052809 (2014).

    ADS  Google Scholar 

  174. Métivier, F., Lajeunesse, E. & Devauchelle, O. Laboratory rivers: Lacey’s law, threshold theory, and channel stability. Earth Surf. Dyn. 5, 187–198 (2017).

    ADS  Google Scholar 

  175. Dunne, K. B. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583–594 (2018).

    ADS  Google Scholar 

  176. Reitz, M. D. & Jerolmack, D. J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. J. Geophys. Res. Earth Surf. 117, F02021 (2012).

    ADS  Google Scholar 

  177. Delorme, P., Devauchelle, O., Barrier, L. & Métivier, F. Growth and shape of a laboratory alluvial fan. Phys. Rev. E 98, 012907 (2018).

    ADS  Google Scholar 

  178. Parker, G. et al. Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraul. Eng. 124, 996–1004 (1998).

    Google Scholar 

  179. Miller, K. L., Reitz, M. D. & Jerolmack, D. J. Generalized sorting profile of alluvial fans. Geophys. Res. Lett. 41, 7191–7199 (2014).

    ADS  Google Scholar 

  180. Berhanu, M., Petroff, A., Devauchelle, O., Kudrolli, A. & Rothman, D. H. Shape and dynamics of seepage erosion in a horizontal granular bed. Phys. Rev. E 86, 041304 (2012).

    ADS  Google Scholar 

  181. Devauchelle, O. et al. Laplacian networks: growth, local symmetry, and shape optimization. Phys. Rev. E 95, 033113 (2017).

    ADS  Google Scholar 

  182. Allen, B. & Kudrolli, A. Depth resolved granular transport driven by shearing fluid flow. Phys. Rev. Fluids 2, 024304 (2017).

    ADS  Google Scholar 

  183. Durán, O., Andreotti, B. & Claudin, P. Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24, 103306 (2012).

    ADS  Google Scholar 

  184. Phillips, C. B. & Jerolmack, D. J. Dynamics and mechanics of bed-load tracer particles. Earth Surf. Dyn. 2, 513–530 (2014).

    ADS  Google Scholar 

  185. Shields, A. Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. Thesis, Technical Univ. Berlin (1936).

  186. Clark, A. H., Shattuck, M. D., Ouellette, N. T. & O’Hern, C. S. Role of grain dynamics in determining the onset of sediment transport. Phys. Rev. Fluids 2, 034305 (2017).

    ADS  Google Scholar 

  187. Lee, D. B. & Jerolmack, D. Determining the scales of collective entrainment in collision-driven bed load. Earth Surf. Dyn. 6, 1089–1099 (2018).

    ADS  Google Scholar 

  188. Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8, 1363 (2017).

    ADS  Google Scholar 

  189. Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 1757–1760 (2001).

    ADS  Google Scholar 

  190. Crassous, J., Metayer, J.-F., Richard, P. & Laroche, C. Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theory Exp. 2008, P03009 (2008).

    MATH  Google Scholar 

  191. Ben-Dror, E. & Goren, L. Controls over sediment flux along soil-mantled hillslopes: Insights from granular dynamics simulations. J. Geophys. Res. Earth Surf. 123, 924–944 (2018).

    ADS  Google Scholar 

  192. Lucas, A., Mangeney, A. & Ampuero, J. P. Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat. Commun. 5, 3417 (2014).

    ADS  Google Scholar 

  193. Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).

    ADS  Google Scholar 

  194. Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M. & Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 9, 1569 (2019).

    ADS  Google Scholar 

  195. Melosh, H. The physics of very large landslides. Acta Mechanica 64, 89–99 (1986).

    Google Scholar 

  196. Brodsky, E. E. & van der Elst, N. J. The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 42, 317–339 (2014).

    ADS  Google Scholar 

  197. Roering, J. J., Stimely, L. L., Mackey, B. H. & Schmidt, D. A. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophys. Res. Lett. 36, L19402 (2009).

    ADS  Google Scholar 

  198. Di Maio, C., Scaringi, G., Vassallo, R., Rizzo, E. & Perrone, A. in Landslides and Engineered Slopes. Experience, Theory and Practice Ch. 85 (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 813–820 (CRC, 2016).

  199. Lollino, P., Giordan, D. & Allasia, P. Assessment of the behavior of an active earth-slide by means of calibration between numerical analysis and field monitoring. Bull. Eng. Geol. Environ. 76, 421–435 (2017).

    Google Scholar 

  200. Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).

    ADS  Google Scholar 

  201. Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G. & Evans, S. Earthquake-induced-landslides: distribution, motion and mechanisms. Soils Found. 36, 53–64 (1996).

    Google Scholar 

  202. Iverson, R. M. & George, D. L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A 470, 20130819 (2014).

    MathSciNet  MATH  ADS  Google Scholar 

  203. Dansereau, V., Démery, V., Berthier, E., Weiss, J. & Ponson, L. Collective damage growth controls fault orientation in quasibrittle compressive failure. Phys. Rev. Lett. 122, 085501 (2019).

    ADS  Google Scholar 

  204. Mohrig, D., Elverhøi, A. & Parker, G. Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Mar. Geol. 154, 117–129 (1999).

    ADS  Google Scholar 

  205. Ilstad, T., Elverhøi, A., Issler, D. & Marr, J. G. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar. Geol. 213, 415–438 (2004).

    ADS  Google Scholar 

  206. Roering, J. J. How well can hillslope evolution models explain topography? Simulating soil transport and production with high-resolution topographic data. Geol. Soc. Am. Bull. 120, 1248–1262 (2008).

    ADS  Google Scholar 

  207. Agoritsas, E., Bertin, E., Martens, K. & Barrat, J.-L. On the relevance of disorder in athermal amorphous materials under shear. Eur. Phys. J. E 38, 71 (2015).

    Google Scholar 

  208. Johnson, P. A., Savage, H., Knuth, M., Gomberg, J. & Marone, C. Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008).

    ADS  Google Scholar 

  209. Griffa, M. et al. Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering. EPL 96, 14001 (2011).

    ADS  Google Scholar 

  210. Johnson, P. et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material. Geophys. Res. Lett. 40, 5627–5631 (2013).

    ADS  Google Scholar 

  211. Brzinski, T. A. III & Daniels, K. E. Sounds of failure: passive acoustic measurements of excited vibrational modes. Phys. Rev. Lett. 120, 218003 (2018).

    ADS  Google Scholar 

  212. Bérut, A., Pouliquen, O. & Forterre, Y. Avalanches of Brownian granular suspensions. Preprint at arXiv https://arxiv.org/abs/1908.10762 (2019). Shows how thermal fluctuations influence creep and fluidization.

  213. Jerolmack, D. J. & Paola, C. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 37, L19401 (2010).

    ADS  Google Scholar 

  214. Allain, C., Cloitre, M. & Wafra, M. Aggregation and sedimentation in colloidal suspensions. Phys. Rev. Lett. 74, 1478–1481 (1995).

    ADS  Google Scholar 

  215. Barden, L., McGown, A. & Collins, K. The collapse mechanism in partly saturated soil. Eng. Geol. 7, 49–60 (1973).

    Google Scholar 

  216. Delage, P. & Lefebvre, G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 21, 21–35 (1984).

    Google Scholar 

  217. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    ADS  Google Scholar 

  218. Deegan, R. D. Pattern formation in drying drops. Phys. Rev. E 61, 475–485 (2000).

    ADS  Google Scholar 

  219. Goehring, L., Conroy, R., Akhter, A., Clegg, W. J. & Routh, A. F. Evolution of mud-crack patterns during repeated drying cycles. Soft Matter 6, 3562–3567 (2010).

    ADS  Google Scholar 

  220. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    ADS  Google Scholar 

  221. Berthier, L., Flenner, E. & Szamel, G. How active forces influence nonequilibrium glass transitions. New J. Phys. 19, 125006 (2017).

    ADS  Google Scholar 

  222. Junot, G., Briand, G., Ledesma-Alonso, R. & Dauchot, O. Active versus passive hard disks against a membrane: mechanical pressure and instability. Phys. Rev. Lett. 119, 028002 (2017).

    ADS  Google Scholar 

  223. Saintillan, D. Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563–592 (2018).

    MathSciNet  MATH  ADS  Google Scholar 

  224. Singh, J., Patteson, A. E., Purohit, P. K. & Arratia, P. E. Sedimentation and diffusion of passive particles in suspensions of swimming Escherichia coli. Preprint at arXiv https://arxiv.org/abs/1710.04068 (2017).

  225. Butler, D. R. Zoogeomorphology: Animals as Geomorphic Agents (Cambridge Univ. Press, 1995).

  226. Hassan, M. A. et al. Salmon-driven bed load transport and bed morphology in mountain streams. Geophys. Res. Lett. 35, L04405 (2008).

    ADS  Google Scholar 

  227. Wilkinson, M. T., Richards, P. J. & Humphreys, G. S. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci. Rev. 97, 257–272 (2009).

    ADS  Google Scholar 

  228. Reinhardt, L., Jerolmack, D., Cardinale, B. J., Vanacker, V. & Wright, J. Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf. Process. Landf. 35, 78–101 (2010).

    ADS  Google Scholar 

  229. Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    ADS  Google Scholar 

  230. Kolb, E., Hartmann, C. & Genet, P. Radial force development during root growth measured by photoelasticity. Plant Soil 360, 19–35 (2012).

    Google Scholar 

  231. Wendell, D. M., Luginbuhl, K., Guerrero, J. & Hosoi, A. E. Experimental investigation of plant root growth through granular substrates. Exp. Mech. 52, 945–949 (2012).

    Google Scholar 

  232. Diambra, A., Ibraim, E., Muir Wood, D. & Russell, A. Fibre reinforced sands: Experiments and modelling. Geotext. Geomembr. 28, 238–250 (2010).

    Google Scholar 

  233. Dos Santos, A. S., Consoli, N. & Baudet, B. The mechanics of fibre-reinforced sand. Géotechnique 60, 791–799 (2010).

    Google Scholar 

  234. Major, J. J. & Pierson, T. C. Debris flow rheology: experimental analysis of fine-grained slurries. Water Resour. Res. 28, 841–857 (1992).

    ADS  Google Scholar 

  235. Coussot, P. & Meunier, M. Recognition, classification and mechanical description of debris flows. Earth Sci. Rev. 40, 209–227 (1996).

    ADS  Google Scholar 

  236. Scotto di Santolo, A., Pellegrino, A. M. & Evangelista, A. Experimental study on the rheological behaviour of debris flow. Nat. Hazards Earth Syst. Sci. 10, 2507–2514 (2010).

    ADS  Google Scholar 

  237. Bardou, E., Boivin, P. & Pfeifer, H.-R. Properties of debris flow deposits and source materials compared: implications for debris flow characterization. Sedimentology 54, 469–480 (2007).

    ADS  Google Scholar 

  238. Parsons, J. D., Whipple, K. X. & Simoni, A. Experimental study of the grain-flow, fluid-mud transition in debris flows. J. Geol. 109, 427–447 (2001).

    ADS  Google Scholar 

  239. Leonardi, A. et al. Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92, 052204 (2015).

    ADS  Google Scholar 

  240. Jeong, S. W., Locat, J., Leroueil, S. & Malet, J.-P. Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Can. Geotech. J. 47, 1085–1100 (2010).

    Google Scholar 

  241. Dagois-Bohy, S., Hormozi, S., Guazzelli, É. & Pouliquen, O. Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776, R2 (2015).

    MathSciNet  MATH  ADS  Google Scholar 

  242. Wang, M. & Brady, J. F. Constant stress and pressure rheology of colloidal suspensions. Phys. Rev. Lett. 115, 158301 (2015).

    ADS  Google Scholar 

  243. Berger, N., Azéma, E., Douce, J.-F. & Radjai, F. Scaling behaviour of cohesive granular flows. EPL 112, 64004 (2016).

    ADS  Google Scholar 

  244. Roy, S., Luding, S. & Weinhart, T. A general(ized) local rheology for wet granular materials. New J. Phys. 19, 043014 (2017).

    ADS  Google Scholar 

  245. Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91, 032203 (2015).

    ADS  Google Scholar 

  246. Pednekar, S., Chun, J. & Morris, J. F. Bidisperse and polydisperse suspension rheology at large solid fraction. J. Rheol. 62, 513–526 (2018).

    ADS  Google Scholar 

  247. Koos, E. & Willenbacher, N. Capillary forces in suspension rheology. Science 331, 897–900 (2011).

    ADS  Google Scholar 

  248. Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).

    ADS  Google Scholar 

  249. Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.-C. & Dennin, M. Quantifying flow and stress in ice mélange, the world’s largest granular material. Proc. Natl Acad. Sci. USA 115, 5105–5110 (2018).

    ADS  Google Scholar 

  250. Lin, J. & Wyart, M. Microscopic processes controlling the Herschel–Bulkley exponent. Phys. Rev. E 97, 012603 (2018).

    ADS  Google Scholar 

  251. Hassan, M. A. & Roy, A. G. in Tools in Fluvial Geomorphology Ch. 14 (eds Kondolf, G. M. & Piégay, H.) 306–323 (Wiley, 2016).

  252. Underwood, E. Geomorphology: how to build a smarter rock. Science 338, 1412–1413 (2012).

    ADS  Google Scholar 

  253. Geay, T. et al. Passive acoustic monitoring of bed load discharge in a large gravel bed river. J. Geophys. Res. Earth Surf. 122, 528–545 (2017).

    ADS  Google Scholar 

  254. Church, M., Biron, P. & Roy, A. Gravel Bed Rivers: Processes, Tools, Environments (Wiley, 2012).

  255. Horel, J. et al. Mesowest: Cooperative mesonets in the western United States. Bull. Am. Meteorol. Soc. 83, 211–226 (2002).

    ADS  Google Scholar 

  256. Lins, H. F. USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey fact sheet 2012-3047 (USGS, 2012).

  257. de Arruda Moreira, G. et al. Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula. Atmos. Res. 213, 185–195 (2018).

    Google Scholar 

  258. Perillo, M. M., Minton, B., Buttles, J. & Mohrig, D. Acoustic imaging of experimental subaqueous sediment-laden flows and their deposits. J. Sediment. Res. 85, 1–5 (2015).

    Google Scholar 

  259. Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).

    ADS  Google Scholar 

  260. Krishnan, S. et al. in Proc. 2nd Int. Conf. Comput. Geospat. Res. Appl. 7 (ACM, 2011).

  261. John, M. D., Campbell, K. J. & Devine, C. A. in Offshore Technol. Conf. (OTC, 2018).

  262. Yufei, G. & Bing, H. Deformation mechanism and trend research on a creep landslide in Sichuan Province of China. Electron. J. Geotech. Eng. 17, 3415–3428 (2012).

    Google Scholar 

  263. Lin, C.-P., Tang, S.-H., Lin, W.-C. & Chung, C.-C. Quantification of cable deformation with time domain reflectometry — implications to landslide monitoring. J. Geotech. Geoenviron. Eng. 135, 143–152 (2009).

    Google Scholar 

  264. Wang, G. GPS landslide monitoring: single base vs. network solutions – a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J. Geod. Sci. 1, 191–203 (2011).

    Google Scholar 

  265. Zaugg, E. C., Bradley, J. P., Lee, H. & Cao, N. in 2016 IEEE Radar Conf. Proc. (IEEE, 2016).

  266. Tordesillas, A., Zhou, Z. & Batterham, R. A data-driven complex systems approach to early prediction of landslides. Mech. Res. Commun. 92, 137–141 (2018).

    Google Scholar 

  267. Burtin, A., Hovius, N. & Turowski, J. M. Seismic monitoring of torrential and fluvial processes. Earth Surf. Dyn. 4, 285–307 (2016).

    ADS  Google Scholar 

  268. Roth, D. L. et al. Bed load sediment transport inferred from seismic signals near a river. J. Geophys. Res. Earth Surf. 121, 725–747 (2016).

    ADS  Google Scholar 

  269. Mainsant, G. et al. Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J. Geophys. Res. Earth Surf. 117, F01030 (2012).

    ADS  Google Scholar 

  270. Bertello, L., Berti, M., Castellaro, S. & Squarzoni, G. Dynamics of an active earthflow inferred from surface-wave monitoring. J. Geophys. Res. Earth Surf. 123, 1811–1834 (2018).

    ADS  Google Scholar 

  271. Garcimartin, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).

    ADS  Google Scholar 

  272. Sequeiros, O. E. et al. Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed. J. Hydraul. Eng. 136, 412–433 (2010).

    Google Scholar 

  273. Majmudar, T. S. & Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

The idea for this manuscript originated at the Physics of Dense Suspensions program at the Kavli Institute for Theoretical Physics, supported by the National Science Foundation (PHY-1748958). The authors are grateful to all participants of that workshop, especially the organizers: Bulbul Chakraborty, Emanuela Del Gado and Jeff Morris. D.J.J. was sponsored by the Army Research Office (W911-NF-16-1-0290), the National Science Foundation (NRI INT 1734355) and the US National Institute of Environmental Health Sciences (P42ES02372). K.E.D. is grateful for support from the National Science Foundation (DMR-1206808 and DMR-1608097), the International Fine Particle Research Institute and the James S. McDonnell Foundation. The authors thank their research groups and also Doug Durian and Paulo Arratia for discussions that contributed to ideas presented here, and Andrew Gunn for creating Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Douglas J. Jerolmack or Karen E. Daniels.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks E. Brodsky, A. Kudrolli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Glossary

Upscaling

The application of models derived from small scale dynamics, transferred to larger scales.

Yield stress

The amount of load a material can accommodate without bulk flow arising.

Colloids

Materials composed of one type of microscopic particle dispersed within a second substance, which doesn’t easily phase-separate once mixed.

Glassy dynamics

Extremely slow dynamics (creep) observed in disordered materials in the vicinity of yielding.

Jamming

The development of a finite yield stress in an idealized, disordered material; the transition from a flowing to a rigid state.

Rigidity

Ability to support a finite stress without inducing bulk flow.

Disordered materials

Solid materials in a non-crystalline state.

Rheology

The science relating how external forces cause material deformation, including the rate-dependence of these effects.

Creep

Small deformation or motion of the particles within a solid, occurring below yield.

Thermal effects

Effects arising when the thermal fluctuations on the constituent particles in the material are of non-negligible magnitude; this corresponds to low Péclet number.

Colloidal gel

Colloidal system consisting of attractive or cohesive particles dispersed in a liquid, at a volume fraction that is above the rigidity transition.

Cohesion

Component of shear strength that is independent of inter-particle friction (geotechnical) or the finite force required to separate two particles in contact (physics); our usage is compatible with both.

Shear localization

Deformation of a material is accommodated within a small region; one example is shear banding associated with a region 5–10 particles across, and another is shear transformation zones defined below.

Mohr–Coulomb failure

A solid mechanical failure criterion that determines the shear and normal stresses required to cause fracture in a frictional material.

Fragile

A metastable state in which very small perturbations can lead to structural rearrangements and/or flow.

Shear transformation zones

(Also known as STZs). Small regions within an amorphous solid which undergo localized, plastic deformation due to an applied load.

Depinning

The phenomenon in which an interface within a rough potential-energy landscape becomes unstable and slips.

Excluded volume

Volume that a particle cannot occupy because another particle is already at that location.

Plastic

Refers to rearrangements of particles that occur during creep or yield, and are irreversible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerolmack, D.J., Daniels, K.E. Viewing Earth’s surface as a soft-matter landscape. Nat Rev Phys 1, 716–730 (2019). https://doi.org/10.1038/s42254-019-0111-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0111-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing