Abstract
The discovery of atomic monolayer magnetic materials has triggered significant interest in the magnetism/spintronics and 2D van der Waals materials communities. Here we review recent progress in this rapidly growing field. We survey the physical properties of the large class of layered magnetic materials, and discuss recent advances in the study of these materials in the 2D limit. We then overview the optical and electrical techniques used for probing 2D magnetic materials (for reading their magnetic states) and the mechanisms for reorienting and/or switching 2D magnets by electric fields (for writing). Emerging device concepts based on magnetic van der Waals heterostructures are also discussed. We conclude with the future challenges and opportunities in this area of research.
Key points
-
There is a large class of layered magnetic materials with unique magnetic properties, which provides an ideal platform to study magnetism and spintronics device concepts in the 2D limit.
-
Magneto-optical and electrical probes are powerful techniques for probing or reading the magnetic states of these materials.
-
Because these materials are atomically thin, their magnetic states can be effectively controlled or switched by external perturbations other than magnetic fields, such as electric fields, free carrier doping and strain.
-
New materials concepts, such as magnetizing 2D semiconductors by magnetic proximity coupling, and new devices, such as spin tunnel field-effect transistors, are rapidly emerging.
-
Although rapid progress has already been made, there are many opportunities and challenges remaining in this young field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014).
Tongay, S., Varnoosfaderani, S. S., Appleton, B. R., Wu, J. & Hebard, A. F. Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett. 101, 123105 (2012).
Yan, S. et al. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 106, 012408 (2015).
Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).
Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).
Liu, J., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).
Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).
Wang, H., Eyert, V. & Schwingenschlögl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Condens. Matter 23, 116003 (2011).
Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).
Lebègue, S., Björkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013).
Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). The first optical probe of magnetic states in 2D Cr 2 Ge 2 Te 6.
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). The first demonstration of layer number dependent magnetic states in 2D CrI 3.
Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).
Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).
Bromberg, D. M., Morris, D. H., Pileggi, L. & Zhu, J. Novel STT-MTJ device enabling all-metallic logic circuits. IEEE Trans. Magn. 48, 3215–3218 (2012).
Datta, S., Salahuddin, S. & Behin-Aein, B. Non-volatile spin switch for Boolean and non-Boolean logic. Appl. Phys. Lett. 101, 252411 (2012).
Arias, R. & Mills, D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B 60, 7395–7409 (1999).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Fisher, M. E. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597–616 (1974).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–49 (2010).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).
Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).
McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).
Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).
Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der waals layered materials. Adv. Mater. 29, 1602852 (2017).
Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).
Khomskii, D. I. in Transition Metal Compounds Ch. 2 (Cambridge Univ. Press, 2014).
Stamokostas, G. L. & Fiete, G. A. Mixing of t 2g–e g orbitals in 4d and 5d transition metal oxides. Phys. Rev. B 97, 085150 (2018).
Feldkemper, S. & Weber, W. Generalized calculation of magnetic coupling constants for Mott–Hubbard insulators: application to ferromagnetic Cr compounds. Phys. Rev. B 57, 7755–7766 (1998).
Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Siberchicot, B., Jobic, S., Carteaux, V., Gressier, P. & Ouvrard, G. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J. Phys. Chem. 100, 5863–5867 (1996).
Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).
Morosan, E. et al. Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75, 104401 (2007).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Ressouche, E. et al. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity. Phys. Rev. B 82, 100408 (2010).
Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi A 72, 161–168 (1982).
Jacobs, I. S. & Lawrence, P. E. Metamagnetic phase transitions and hysteresis in FeCl2. Phys. Rev. 164, 866–878 (1967).
Wilkinson, M. K., Cable, J. W., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeCl2, and CoCl2. Phys. Rev. 113, 497–507 (1959).
Deng, Y. et al. Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/1904.11468 (2019).
Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Jpn 15, 1664–1668 (1960).
Rule, K. C., McIntyre, G. J., Kennedy, S. J. & Hicks, T. J. Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007).
Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
Tokunaga, Y. et al. Multiferroicity in NiBr2 with long-wavelength cycloidal spin structure on a triangular lattice. Phys. Rev. B 84, 060406 (2011).
Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).
Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).
Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).
Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299–313 (2009).
Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).
Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).
Hirakawa, K., Kadowaki, H. & Ubukoshi, K. Study of frustration effects in two-dimensional triangular lattice antiferromagnets–neutron powder diffraction study of VX2, X≡Cl, Br and I. J. Phys. Soc. Jpn 52, 1814–1824 (1983).
Johnson, R. D. et al. Monoclinic crystal structure of α–RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).
Kim, H.-S., V, V. S., Catuneanu, A. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B 91, 241110 (2015).
Plumb, K. W. et al. α–RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).
Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).
Cheng, R., Okamoto, S. & Xiao, D. Spin Nernst effect of magnons in collinear antiferromagnets. Phys. Rev. Lett. 117, 217202 (2016).
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.
Zhang, X. et al. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6. Jpn J. Appl. Phys. 55, 033001 (2016).
MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon–magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).
Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).
Xing, W. et al. Magnon transport in quasi-two-dimensional van der waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).
Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018).
Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).
Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
Du, K.-z et al. Weak van der waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).
Zhou, B. et al. Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3. J. Phys. Chem. Solids 128, 291–295 (2018).
Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).
Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).
Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).
Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).
Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.
Klein, D. R. et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. Preprint at https://arxiv.org/abs/1903.00002 (2019).
Sun, Z. et al. Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer CrI3. Nature 572, 497–501 (2019).
Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Preprint at https://arxiv.org/abs/1905.10905 (2019).
Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Preprint at https://arxiv.org/abs/1905.10860 (2019).
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).
Ma, Y. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).
Fuh, H.-R., Yan, B., Wu, S.-C., Felser, C. & Chang, C.-R. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys. 18, 113038 (2016).
O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).
Weiglhofer, W. S. & Lakhtakia, A. (eds) Introduction to Complex Mediums for Optics and Electromagnetics 175 (SPIE, 2003).
Schubert, M., Kühne, P., Darakchieva, V. & Hofmann, T. Optical Hall effect — model description: tutorial. J. Opt. Soc. Am. A 33, 1553–1568 (2016).
Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).
Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).
Kapitulnik, A., Xia, J., Schemm, E. & Palevski, A. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J. Phys. 11, 055060 (2009).
Sato, K. Measurement of magneto-optical Kerr effect using piezo-birefringent modulator. Jpn J. Appl. Phys. 20, 2403–2409 (1981).
Lee, J.-W., Kim, J., Kim, S.-K., Jeong, J.-R. & Shin, S.-C. Full vectorial spin-reorientation transition and magnetization reversal study in ultrathin ferromagnetic films using magneto-optical Kerr effects. Phys. Rev. B 65, 144437 (2002).
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018). Demonstration of efficient tuning of magnetic states in bilayer CrI 3 by electrostatic doping.
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018). The first demonstration of magnetoelectricity in antiferromagnetic bilayer CrI 3.
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018). Demonstration of tuning of magnetic states in bilayer CrI 3 by electric field effects.
Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).
Lee, J., Wang, Z., Xie, H., Mak, K. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).
O’Dell, T. H. The electrodynamics of magneto-electric media. Phil. Mag. 7, 1653–1669 (1962).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Rado, G. T. Magnetoelectric evidence for the attainability of time-reversed antiferromagnetic configurations by metamagnetic transitions in DyPO4. Phys. Rev. Lett. 23, 644–647 (1969).
Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).
Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Coey, J. M. D. in Magnetism and Magnetic Materials Ch. 10 (Cambridge Univ. Press, 2009).
Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).
Arai, M. et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl. Phys. Lett. 107, 103107 (2015).
Yamasaki, Y. et al. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2. 2D Mater. 4, 041007 (2017).
Lohmann, M. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous Hall effect in Pt. Nano Lett. 19, 2397–2403 (2019).
Gupta, V. et al. Current-induced torques in heterostructures of 2D van der Waals magnets. Bull. Am. Phys. Soc. Abstr. P15.009 (2019).
Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunnelling. J. Phys. Condens. Matter 19, 165202 (2007).
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.
Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).
Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).
Gould, C. et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).
Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (ed. ten Haar, D.) Ch. 5 (Pergamon Press, 1975).
Coh, S., Vanderbilt, D., Malashevich, A. & Souza, I. Chern-Simons orbital magnetoelectric coupling in generic insulators. Phys. Rev. B 83, 085108 (2011).
Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).
Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).
Cardoso, C., Soriano, D., García-Martínez, N. A. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).
Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).
Lee, I. et al. Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI3. Preprint at https://arxiv.org/abs/1902.00077 (2019).
Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).
Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).
Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Acknowledgements
The authors acknowledge the support and encouragement of collaborators within the Cornell Centre for Materials Research, funded by the National Science Foundation Materials Research Science and Engineering Centers programme (DMR-1719875).
Reviewer information
Nature Reviews Physics thanks W. Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
All authors co-wrote, discussed and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mak, K.F., Shan, J. & Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys 1, 646–661 (2019). https://doi.org/10.1038/s42254-019-0110-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0110-y
This article is cited by
-
Dipolar spin wave packet transport in a van der Waals antiferromagnet
Nature Physics (2024)
-
Hybrid spin-orbit exciton-magnon excitations in FePS3
npj Quantum Materials (2024)
-
Electronic excitations and spin interactions in chromium trihalides from embedded many-body wavefunctions
npj 2D Materials and Applications (2024)
-
Resonant Raman scattering of few layers CrBr3
Scientific Reports (2024)
-
A first-principles study of bilayer 1T'-WTe2/CrI3: a candidate topological spin filter
npj Spintronics (2024)