Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing and controlling magnetic states in 2D layered magnetic materials

Abstract

The discovery of atomic monolayer magnetic materials has triggered significant interest in the magnetism/spintronics and 2D van der Waals materials communities. Here we review recent progress in this rapidly growing field. We survey the physical properties of the large class of layered magnetic materials, and discuss recent advances in the study of these materials in the 2D limit. We then overview the optical and electrical techniques used for probing 2D magnetic materials (for reading their magnetic states) and the mechanisms for reorienting and/or switching 2D magnets by electric fields (for writing). Emerging device concepts based on magnetic van der Waals heterostructures are also discussed. We conclude with the future challenges and opportunities in this area of research.

Key points

  • There is a large class of layered magnetic materials with unique magnetic properties, which provides an ideal platform to study magnetism and spintronics device concepts in the 2D limit.

  • Magneto-optical and electrical probes are powerful techniques for probing or reading the magnetic states of these materials.

  • Because these materials are atomically thin, their magnetic states can be effectively controlled or switched by external perturbations other than magnetic fields, such as electric fields, free carrier doping and strain.

  • New materials concepts, such as magnetizing 2D semiconductors by magnetic proximity coupling, and new devices, such as spin tunnel field-effect transistors, are rapidly emerging.

  • Although rapid progress has already been made, there are many opportunities and challenges remaining in this young field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures and types of magnetic order for layered magnetic materials.
Fig. 2: Magneto-optical measurements of 2D magnetism.
Fig. 3: Magneto-optical birefringence and dichroism.
Fig. 4: Electrical readout of 2D magnetic states.
Fig. 5: Reorienting and switching 2D magnets by electric fields.
Fig. 6: Spin transistors and the van der Waals magnetic proximity effect.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  3. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    ADS  Google Scholar 

  4. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014).

    ADS  Google Scholar 

  5. Tongay, S., Varnoosfaderani, S. S., Appleton, B. R., Wu, J. & Hebard, A. F. Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett. 101, 123105 (2012).

    ADS  Google Scholar 

  6. Yan, S. et al. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 106, 012408 (2015).

    ADS  Google Scholar 

  7. Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).

    Google Scholar 

  8. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

    ADS  Google Scholar 

  9. Liu, J., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).

    Google Scholar 

  10. Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

    ADS  Google Scholar 

  11. Wang, H., Eyert, V. & Schwingenschlögl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Condens. Matter 23, 116003 (2011).

    ADS  Google Scholar 

  12. Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).

    Google Scholar 

  13. Lebègue, S., Björkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013).

    Google Scholar 

  14. Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).

    ADS  Google Scholar 

  15. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). The first optical probe of magnetic states in 2D Cr 2 Ge 2 Te 6.

    ADS  Google Scholar 

  16. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). The first demonstration of layer number dependent magnetic states in 2D CrI 3.

    ADS  Google Scholar 

  17. Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    MathSciNet  ADS  Google Scholar 

  18. Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).

    Google Scholar 

  19. Bromberg, D. M., Morris, D. H., Pileggi, L. & Zhu, J. Novel STT-MTJ device enabling all-metallic logic circuits. IEEE Trans. Magn. 48, 3215–3218 (2012).

    ADS  Google Scholar 

  20. Datta, S., Salahuddin, S. & Behin-Aein, B. Non-volatile spin switch for Boolean and non-Boolean logic. Appl. Phys. Lett. 101, 252411 (2012).

    ADS  Google Scholar 

  21. Arias, R. & Mills, D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B 60, 7395–7409 (1999).

    ADS  Google Scholar 

  22. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS  Google Scholar 

  23. Fisher, M. E. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597–616 (1974).

    ADS  Google Scholar 

  24. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    ADS  Google Scholar 

  25. Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    ADS  Google Scholar 

  26. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Google Scholar 

  27. Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–49 (2010).

    Google Scholar 

  28. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  29. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    ADS  Google Scholar 

  30. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    ADS  Google Scholar 

  31. McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Google Scholar 

  32. Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

    Google Scholar 

  33. Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der waals layered materials. Adv. Mater. 29, 1602852 (2017).

    Google Scholar 

  34. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS  Google Scholar 

  35. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Google Scholar 

  36. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    ADS  Google Scholar 

  37. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Google Scholar 

  38. Khomskii, D. I. in Transition Metal Compounds Ch. 2 (Cambridge Univ. Press, 2014).

  39. Stamokostas, G. L. & Fiete, G. A. Mixing of t 2ge g orbitals in 4d and 5d transition metal oxides. Phys. Rev. B 97, 085150 (2018).

    ADS  Google Scholar 

  40. Feldkemper, S. & Weber, W. Generalized calculation of magnetic coupling constants for Mott–Hubbard insulators: application to ferromagnetic Cr compounds. Phys. Rev. B 57, 7755–7766 (1998).

    ADS  Google Scholar 

  41. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Google Scholar 

  42. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Google Scholar 

  43. Siberchicot, B., Jobic, S., Carteaux, V., Gressier, P. & Ouvrard, G. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J. Phys. Chem. 100, 5863–5867 (1996).

    Google Scholar 

  44. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  Google Scholar 

  45. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    ADS  Google Scholar 

  46. Morosan, E. et al. Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75, 104401 (2007).

    ADS  Google Scholar 

  47. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  ADS  Google Scholar 

  48. Ressouche, E. et al. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity. Phys. Rev. B 82, 100408 (2010).

    ADS  Google Scholar 

  49. Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi A 72, 161–168 (1982).

    ADS  Google Scholar 

  50. Jacobs, I. S. & Lawrence, P. E. Metamagnetic phase transitions and hysteresis in FeCl2. Phys. Rev. 164, 866–878 (1967).

    ADS  Google Scholar 

  51. Wilkinson, M. K., Cable, J. W., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeCl2, and CoCl2. Phys. Rev. 113, 497–507 (1959).

    ADS  Google Scholar 

  52. Deng, Y. et al. Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/1904.11468 (2019).

  53. Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Jpn 15, 1664–1668 (1960).

    ADS  Google Scholar 

  54. Rule, K. C., McIntyre, G. J., Kennedy, S. J. & Hicks, T. J. Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007).

    ADS  Google Scholar 

  55. Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    ADS  Google Scholar 

  56. Tokunaga, Y. et al. Multiferroicity in NiBr2 with long-wavelength cycloidal spin structure on a triangular lattice. Phys. Rev. B 84, 060406 (2011).

    ADS  Google Scholar 

  57. Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    ADS  Google Scholar 

  58. Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).

    ADS  Google Scholar 

  59. Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Google Scholar 

  60. Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299–313 (2009).

    ADS  Google Scholar 

  61. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS  Google Scholar 

  62. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  Google Scholar 

  63. Hirakawa, K., Kadowaki, H. & Ubukoshi, K. Study of frustration effects in two-dimensional triangular lattice antiferromagnets–neutron powder diffraction study of VX2, X≡Cl, Br and I. J. Phys. Soc. Jpn 52, 1814–1824 (1983).

    ADS  Google Scholar 

  64. Johnson, R. D. et al. Monoclinic crystal structure of α–RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).

    ADS  Google Scholar 

  65. Kim, H.-S., V, V. S., Catuneanu, A. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B 91, 241110 (2015).

    ADS  Google Scholar 

  66. Plumb, K. W. et al. α–RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    ADS  Google Scholar 

  67. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    ADS  Google Scholar 

  68. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    ADS  Google Scholar 

  69. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    ADS  Google Scholar 

  70. Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    ADS  Google Scholar 

  71. Cheng, R., Okamoto, S. & Xiao, D. Spin Nernst effect of magnons in collinear antiferromagnets. Phys. Rev. Lett. 117, 217202 (2016).

    ADS  Google Scholar 

  72. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.

    ADS  Google Scholar 

  73. Zhang, X. et al. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6. Jpn J. Appl. Phys. 55, 033001 (2016).

    ADS  Google Scholar 

  74. MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon–magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    ADS  Google Scholar 

  75. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Google Scholar 

  76. Xing, W. et al. Magnon transport in quasi-two-dimensional van der waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    Google Scholar 

  77. Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018).

    Google Scholar 

  78. Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).

    Google Scholar 

  79. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS  Google Scholar 

  80. Du, K.-z et al. Weak van der waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Google Scholar 

  81. Zhou, B. et al. Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3. J. Phys. Chem. Solids 128, 291–295 (2018).

    ADS  Google Scholar 

  82. Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).

    ADS  Google Scholar 

  83. Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Google Scholar 

  84. Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).

    ADS  Google Scholar 

  85. Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).

    Google Scholar 

  86. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.

    ADS  Google Scholar 

  87. Klein, D. R. et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. Preprint at https://arxiv.org/abs/1903.00002 (2019).

  88. Sun, Z. et al. Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer CrI3. Nature 572, 497–501 (2019).

    ADS  Google Scholar 

  89. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Preprint at https://arxiv.org/abs/1905.10905 (2019).

  90. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Preprint at https://arxiv.org/abs/1905.10860 (2019).

  91. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    ADS  Google Scholar 

  92. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    ADS  Google Scholar 

  93. Ma, Y. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).

    Google Scholar 

  94. Fuh, H.-R., Yan, B., Wu, S.-C., Felser, C. & Chang, C.-R. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys. 18, 113038 (2016).

    ADS  Google Scholar 

  95. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    ADS  Google Scholar 

  96. Weiglhofer, W. S. & Lakhtakia, A. (eds) Introduction to Complex Mediums for Optics and Electromagnetics 175 (SPIE, 2003).

  97. Schubert, M., Kühne, P., Darakchieva, V. & Hofmann, T. Optical Hall effect — model description: tutorial. J. Opt. Soc. Am. A 33, 1553–1568 (2016).

    ADS  Google Scholar 

  98. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    ADS  Google Scholar 

  99. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    ADS  Google Scholar 

  100. Kapitulnik, A., Xia, J., Schemm, E. & Palevski, A. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J. Phys. 11, 055060 (2009).

    ADS  Google Scholar 

  101. Sato, K. Measurement of magneto-optical Kerr effect using piezo-birefringent modulator. Jpn J. Appl. Phys. 20, 2403–2409 (1981).

    ADS  Google Scholar 

  102. Lee, J.-W., Kim, J., Kim, S.-K., Jeong, J.-R. & Shin, S.-C. Full vectorial spin-reorientation transition and magnetization reversal study in ultrathin ferromagnetic films using magneto-optical Kerr effects. Phys. Rev. B 65, 144437 (2002).

    ADS  Google Scholar 

  103. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018). Demonstration of efficient tuning of magnetic states in bilayer CrI 3 by electrostatic doping.

    ADS  Google Scholar 

  104. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018). The first demonstration of magnetoelectricity in antiferromagnetic bilayer CrI 3.

    ADS  Google Scholar 

  105. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018). Demonstration of tuning of magnetic states in bilayer CrI 3 by electric field effects.

    ADS  Google Scholar 

  106. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    ADS  Google Scholar 

  107. Lee, J., Wang, Z., Xie, H., Mak, K. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    ADS  Google Scholar 

  108. O’Dell, T. H. The electrodynamics of magneto-electric media. Phil. Mag. 7, 1653–1669 (1962).

    ADS  Google Scholar 

  109. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  Google Scholar 

  110. Rado, G. T. Magnetoelectric evidence for the attainability of time-reversed antiferromagnetic configurations by metamagnetic transitions in DyPO4. Phys. Rev. Lett. 23, 644–647 (1969).

    ADS  Google Scholar 

  111. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Google Scholar 

  112. Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).

    ADS  Google Scholar 

  113. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Google Scholar 

  114. Coey, J. M. D. in Magnetism and Magnetic Materials Ch. 10 (Cambridge Univ. Press, 2009).

  115. Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    ADS  Google Scholar 

  116. Arai, M. et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl. Phys. Lett. 107, 103107 (2015).

    ADS  Google Scholar 

  117. Yamasaki, Y. et al. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2. 2D Mater. 4, 041007 (2017).

    Google Scholar 

  118. Lohmann, M. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous Hall effect in Pt. Nano Lett. 19, 2397–2403 (2019).

    ADS  Google Scholar 

  119. Gupta, V. et al. Current-induced torques in heterostructures of 2D van der Waals magnets. Bull. Am. Phys. Soc. Abstr. P15.009 (2019).

  120. Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunnelling. J. Phys. Condens. Matter 19, 165202 (2007).

    ADS  Google Scholar 

  121. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier.

    ADS  Google Scholar 

  122. Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    ADS  Google Scholar 

  123. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    ADS  Google Scholar 

  124. Gould, C. et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    ADS  Google Scholar 

  125. Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (ed. ten Haar, D.) Ch. 5 (Pergamon Press, 1975).

  126. Coh, S., Vanderbilt, D., Malashevich, A. & Souza, I. Chern-Simons orbital magnetoelectric coupling in generic insulators. Phys. Rev. B 83, 085108 (2011).

    ADS  Google Scholar 

  127. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    ADS  Google Scholar 

  128. Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).

    Google Scholar 

  129. Cardoso, C., Soriano, D., García-Martínez, N. A. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).

    ADS  Google Scholar 

  130. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    ADS  Google Scholar 

  131. Lee, I. et al. Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI3. Preprint at https://arxiv.org/abs/1902.00077 (2019).

  132. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    ADS  Google Scholar 

  133. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    ADS  Google Scholar 

  134. Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).

    ADS  Google Scholar 

  135. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and encouragement of collaborators within the Cornell Centre for Materials Research, funded by the National Science Foundation Materials Research Science and Engineering Centers programme (DMR-1719875).

Reviewer information

Nature Reviews Physics thanks W. Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors co-wrote, discussed and commented on the manuscript.

Corresponding authors

Correspondence to Kin Fai Mak, Jie Shan or Daniel C. Ralph.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, K.F., Shan, J. & Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys 1, 646–661 (2019). https://doi.org/10.1038/s42254-019-0110-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0110-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing