Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Creating designer quantum states of matter atom-by-atom

Abstract

Advances in high-resolution and spin-resolved scanning tunnelling microscopy, as well as atomic-scale manipulation, have enabled the bottom-up, atom-by-atom creation and characterization of quantum states of matter. This capability is largely based on controlling the particle-like or wave-like nature of electrons and the interactions between spins, electrons and orbitals, as well as their interplay with structure and dimensionality. In this Review, we describe recent progress in using a scanning tunnelling microscope to create artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also offer our perspective on the future directions of this developing field, namely the exploration of non-equilibrium dynamics, engineering quantum phase transitions and topology, prototype technologies and the general concept in nature of evolution of complexity from simplicity.

Key points

  • Scanning tunnelling microscopy and spectroscopy can be used to create quantum states of matter through atomic manipulation.

  • It is possible to create low-dimensional structures that exhibit strong quantum confinement as well as Dirac-type materials and topologically non-trivial matter.

  • Magnetic states of matter can be tailored atom-by-atom by quantifying the interactions between individual atomic spins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Platforms for artificial electronic and spin lattices.
Fig. 2: Formation of quantum well states from nearest-neighbour interactions of adatoms and vacancies.
Fig. 3: Creating complex lattice structures.
Fig. 4: Determination of spin couplings on different substrates.
Fig. 5: Spin chains built in different coupling regimes.

References

  1. 1.

    Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    ADS  Google Scholar 

  2. 2.

    Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    Google Scholar 

  3. 3.

    Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Google Scholar 

  4. 4.

    Khajetoorians, A. A. et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat. Phys. 8, 497–503 (2012).

    Google Scholar 

  5. 5.

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Google Scholar 

  6. 6.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Google Scholar 

  7. 7.

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Google Scholar 

  8. 8.

    Singha, A. et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011).

    ADS  Google Scholar 

  9. 9.

    Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).

    Google Scholar 

  10. 10.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Google Scholar 

  11. 11.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  12. 12.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  13. 13.

    Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).

    ADS  Google Scholar 

  14. 14.

    Elemans, J. A. A. W., Lei, S. B. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    Google Scholar 

  15. 15.

    Lackinger, M. On-surface polymerization — a versatile synthetic route to two-dimensional polymers. Polym. Int. 64, 1073–1078 (2015).

    Google Scholar 

  16. 16.

    Dong, L., Gao, Z. A. & Lin, N. Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 91, 101–135 (2016).

    ADS  Google Scholar 

  17. 17.

    Klappenberger, F. et al. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagome network. Nano Lett. 9, 3509–3514 (2009).

    ADS  Google Scholar 

  18. 18.

    Lobo-Checa, J. et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper. Surf. Sci. 325, 300–303 (2009).

    Google Scholar 

  19. 19.

    Shang, J. et al. Assembling molecular Sierpinski triangle fractals. Nat. Chem. 7, 389–393 (2015).

    Google Scholar 

  20. 20.

    Piquero-Zulaica, I. et al. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 8, 787 (2017).

    ADS  Google Scholar 

  21. 21.

    Cheng, F. et al. Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nat. Commun. 9, 4871 (2018).

    ADS  Google Scholar 

  22. 22.

    Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 3, 229–233 (2004).

    ADS  Google Scholar 

  23. 23.

    Schlickum, U. et al. Metal–organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 7, 3813–3817 (2007).

    ADS  Google Scholar 

  24. 24.

    Li, C. et al. Construction of Sierpinski triangles up to the fifth order. J. Am. Chem. Soc. 139, 13749–13753 (2017).

    Google Scholar 

  25. 25.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    ADS  Google Scholar 

  26. 26.

    Eichhorn, J. et al. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks. ACS Nano 8, 7880–7889 (2014).

    Google Scholar 

  27. 27.

    Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    ADS  Google Scholar 

  28. 28.

    Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

    ADS  Google Scholar 

  29. 29.

    Collins, L. C., Witte, T. G., Silverman, R., Green, D. B. & Gomes, K. K. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nat. Commun. 8, 15961 (2017).

    ADS  Google Scholar 

  30. 30.

    Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    ADS  Google Scholar 

  31. 31.

    Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    ADS  Google Scholar 

  32. 32.

    Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).

    Google Scholar 

  33. 33.

    Serrate, D. et al. Imaging and manipulating the spin direction of individual atoms. Nat. Nanotechnol. 5, 350–353 (2010).

    ADS  Google Scholar 

  34. 34.

    Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).

    ADS  Google Scholar 

  35. 35.

    Kalff, F. E. et al. A kilobyte rewritable atomic memory. Nat. Nanotechnol. 11, 926–929 (2016).

    ADS  Google Scholar 

  36. 36.

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    ADS  Google Scholar 

  37. 37.

    Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    ADS  Google Scholar 

  38. 38.

    Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    ADS  Google Scholar 

  39. 39.

    Khajetoorians, A. A. et al. Spin excitations of individual Fe atoms on Pt(111): impact of the site-dependent giant substrate polarization. Phys. Rev. Lett. 111, 157204 (2013).

    ADS  Google Scholar 

  40. 40.

    Khajetoorians, A. A. et al. Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys. Rev. Lett. 106, 037205 (2011).

    ADS  Google Scholar 

  41. 41.

    Khajetoorians, A. A. et al. Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 467, 1084–1087 (2010).

    ADS  Google Scholar 

  42. 42.

    Celotta, R. J. et al. Invited article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Rev. Sci. Instrum. 85, 121301 (2014).

    ADS  Google Scholar 

  43. 43.

    von Allwörden, H. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at 30 mK and in a vector magnetic field. Rev. Sci. Instrum. 89, 033902 (2018).

    ADS  Google Scholar 

  44. 44.

    Machida, T., Kohsaka, Y. & Hanaguri, T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Rev. Sci. Instrum. 89, 093707 (2018).

    ADS  Google Scholar 

  45. 45.

    Misra, S. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 84, 103903 (2013).

    ADS  Google Scholar 

  46. 46.

    Singh, U. R., Enayat, M., White, S. C. & Wahl, P. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope. Rev. Sci. Instrum. 84, 013708 (2013).

    ADS  Google Scholar 

  47. 47.

    Song, Y. J. et al. Invited review article: A 10 mK scanning probe microscopy facility. Rev. Sci. Instrum. 81, 121101 (2010).

    ADS  Google Scholar 

  48. 48.

    Schuler, B. et al. Effect of electron–phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B 91, 235443 (2015).

    ADS  Google Scholar 

  49. 49.

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    ADS  Google Scholar 

  50. 50.

    Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

    ADS  Google Scholar 

  51. 51.

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal. Surf. Sci. 262, 218–220 (1993).

    Google Scholar 

  52. 52.

    Heller, E. J., Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).

    ADS  Google Scholar 

  53. 53.

    Hermenau, J. et al. A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling. Nat. Commun. 8, 642 (2017).

    ADS  Google Scholar 

  54. 54.

    Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    ADS  Google Scholar 

  55. 55.

    Otte, A. F. et al. Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203 (2009).

    ADS  Google Scholar 

  56. 56.

    Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    ADS  Google Scholar 

  57. 57.

    Zhou, L. et al. Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale. Nat. Phys. 6, 187–191 (2010).

    Google Scholar 

  58. 58.

    Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420–424 (2017).

    ADS  Google Scholar 

  59. 59.

    Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    ADS  Google Scholar 

  60. 60.

    Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    ADS  Google Scholar 

  61. 61.

    Nilius, N., Wallis, T. M. & Ho, W. Tailoring electronic properties of atomic chains assembled by STM. Appl. Phys. A 80, 951–956 (2005).

    ADS  Google Scholar 

  62. 62.

    Nilius, N., Wallis, T. M. & Ho, W. Building alloys from single atoms: Au−Pd Chains on NiAl(110). J. Phys. Chem. B 108, 14616–14619 (2004).

    Google Scholar 

  63. 63.

    Fölsch, S., Hyldgaard, P., Koch, R. & Ploog, K. H. Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92, 056803 (2004).

    ADS  Google Scholar 

  64. 64.

    Nilius, N., Wallis, T. M., Persson, M. & Ho, W. Interplay between electronic properties and interatomic spacing in artificial gold chains on NiAl(110). J. Phys. Chem. C 118, 29001–29006 (2014).

    Google Scholar 

  65. 65.

    Fölsch, S., Yang, J., Nacci, C. & Kanisawa, K. Atom-by-atom quantum state control in adatom chains on a semiconductor. Phys. Rev. Lett. 103, 096104 (2009).

    ADS  Google Scholar 

  66. 66.

    Matsui, T., Meyer, C., Sacharow, L., Wiebe, J. & Wiesendanger, R. Electronic states of Fe atoms and chains on InAs(110) from scanning tunneling spectroscopy. Phys. Rev. B 75, 165405 (2007).

    ADS  Google Scholar 

  67. 67.

    Sperl, A. et al. Unoccupied states of individual silver clusters and chains on Ag(111). Phys. Rev. B 77, 085422 (2008).

    ADS  Google Scholar 

  68. 68.

    Schofield, S. R. et al. Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013).

    ADS  Google Scholar 

  69. 69.

    Girovsky, J. et al. Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom. SciPost Phys. 2, 020 (2017).

    ADS  Google Scholar 

  70. 70.

    Crain, J. N. & Pierce, D. T. End states in one-dimensional atom chains. Science 307, 703–706 (2005).

    ADS  Google Scholar 

  71. 71.

    Park, C.-H. & Louie, S. G. Making massless Dirac fermions from a patterned two-dimensional electron gas. Nano Lett. 9, 1793–1797 (2009).

    ADS  Google Scholar 

  72. 72.

    Paavilainen, S., Ropo, M., Nieminen, J., Akola, J. & Räsänen, E. Coexisting honeycomb and kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 16, 3519–3523 (2016).

    ADS  Google Scholar 

  73. 73.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. Electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Google Scholar 

  74. 74.

    Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2018).

    Google Scholar 

  75. 75.

    Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    ADS  Google Scholar 

  76. 76.

    Khajetoorians, A. A. et al. Current-driven spin dynamics of artificially constructed quantum magnets. Science 339, 55–59 (2013).

    ADS  Google Scholar 

  77. 77.

    Steinbrecher, M. et al. Non-collinear spin states in bottom-up fabricated atomic chains. Nat. Commun. 9, 2853 (2018).

    ADS  Google Scholar 

  78. 78.

    Kubetzka, A., Bode, M., Pietzsch, O. & Wiesendanger, R. Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. Phys. Rev. Lett. 88, 057201 (2002).

    ADS  Google Scholar 

  79. 79.

    Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    ADS  Google Scholar 

  80. 80.

    Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    ADS  Google Scholar 

  81. 81.

    Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys. 4, 847–850 (2008).

    Google Scholar 

  82. 82.

    Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    ADS  Google Scholar 

  83. 83.

    Loth, S. et al. Controlling the state of quantum spins with electric currents. Nat. Phys. 6, 340–344 (2010).

    Google Scholar 

  84. 84.

    Rau, I. G. et al. Reaching the magnetic anisotropy limit of a 3d metal atom. Science 344, 988–992 (2014).

    ADS  Google Scholar 

  85. 85.

    Bryant, B., Spinelli, A., Wagenaar, J. J. T., Gerrits, M. & Otte, A. F. Local control of single atom magnetocrystalline anisotropy. Phys. Rev. Lett. 111, 127203 (2013).

    ADS  Google Scholar 

  86. 86.

    Spinelli, A. et al. Exploring the phase diagram of the two-impurity Kondo problem. Nat. Commun. 6, 10046 (2015).

    ADS  Google Scholar 

  87. 87.

    Natterer, F. D. et al. Reading and writing single-atom magnets. Nature 543, 226–228 (2017).

    ADS  Google Scholar 

  88. 88.

    Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    ADS  Google Scholar 

  89. 89.

    Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    ADS  Google Scholar 

  90. 90.

    Hermenau, J., Ternes, M., Steinbrecher, M., Wiesendanger, R. & Wiebe, J. Long spin-relaxation times in a transition-metal atom in direct contact to a metal substrate. Nano Lett. 18, 1978–1983 (2018).

    ADS  Google Scholar 

  91. 91.

    Neel, N. et al. Two-site Kondo effect in atomic chains. Phys. Rev. Lett. 107, 106804 (2011).

    ADS  Google Scholar 

  92. 92.

    Choi, D. J. et al. Building complex Kondo impurities by manipulating entangled spin chains. Nano Lett. 17, 6203–6209 (2017).

    ADS  Google Scholar 

  93. 93.

    Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    ADS  Google Scholar 

  94. 94.

    Kiraly, B. et al. An orbitally derived single-atom magnetic memory. Nat. Commun. 9, 3904 (2018).

    ADS  Google Scholar 

  95. 95.

    Slot, M. R. et al. p-Band engineering in artificial electronic lattices. Phys. Rev. X 9, 011009 (2019).

    Google Scholar 

  96. 96.

    Steinbrecher, M., Harutyunyan, H., Ast, C. R. & Wegner, D. Rashba-type spin splitting from interband scattering in quasiparticle interference maps. Phys. Rev. B 87, 245436 (2013).

    ADS  Google Scholar 

  97. 97.

    Huda, M. N., Kezilebieke, S., Ojanen, T., Drost, R. & Liljeroth, P. Tuneable topological domain wall states in engineered atomic chains. Preprint at https://arxiv.org/abs/1806.08614 (2018).

  98. 98.

    Kempkes, S. N. et al. Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized kagome lattice. Preprint at https://arxiv.org/abs/1905.06053 (2019).

  99. 99.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    ADS  Google Scholar 

  100. 100.

    Röntynen, J. & Ojanen, T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114, 236803 (2015).

    ADS  Google Scholar 

  101. 101.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    ADS  Google Scholar 

  102. 102.

    Figgins, J. et al. Quantum engineered Kondo lattices. Preprint at https://arxiv.org/abs/1902.04680 (2019).

  103. 103.

    Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    ADS  Google Scholar 

  104. 104.

    Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F 5, 965–974 (1975).

    ADS  Google Scholar 

  105. 105.

    Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).

    Google Scholar 

  106. 106.

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    ADS  Google Scholar 

  107. 107.

    Chen, C. J. Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford Univ. Press, 2015).

  108. 108.

    Voigtländer, B. Scanning Probe Microscopy (Springer, 2015).

  109. 109.

    Assig, M. et al. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. Rev. Sci. Instrum. 84, 033903 (2013).

    ADS  Google Scholar 

  110. 110.

    Roychowdhury, A. et al. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips. Rev. Sci. Instrum. 85, 043706 (2014).

    ADS  Google Scholar 

  111. 111.

    Balashov, T., Meyer, M. & Wulfhekel, W. A compact ultrahigh vacuum scanning tunneling microscope with dilution refrigeration. Rev. Sci. Instrum. 89, 113707 (2018).

    ADS  Google Scholar 

  112. 112.

    Lorente, N. & Persson, M. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. Lett. 85, 2997–3000 (2000).

    ADS  Google Scholar 

  113. 113.

    Lorente, N., Persson, M., Lauhon, L. J. & Ho, W. Symmetry selection rules for vibrationally inelastic tunneling. Phys. Rev. Lett. 86, 2593–2596 (2001).

    ADS  Google Scholar 

  114. 114.

    Ternes, M. Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy. Prog. Surf. Sci. 92, 83–115 (2017).

    ADS  Google Scholar 

  115. 115.

    Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    ADS  Google Scholar 

  116. 116.

    Vitali, L., Schneider, M. A., Kern, K., Wirtz, L. & Rubio, A. Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite. Phys. Rev. B 69, 121414 (2004).

    ADS  Google Scholar 

  117. 117.

    Gawronski, H., Mehlhorn, M. & Morgenstern, K. Imaging phonon excitation with atomic resolution. Science 319, 930–933 (2008).

    ADS  Google Scholar 

  118. 118.

    Gao, C. L. et al. Spin wave dispersion on the nanometer scale. Phys. Rev. Lett. 101, 167201 (2008).

    ADS  Google Scholar 

  119. 119.

    Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1495 (2009).

    ADS  Google Scholar 

  120. 120.

    Bode, M. Spin-polarized scanning tunnelling microscopy. Rep. Progr. Phys. 66, 523–582 (2003).

    ADS  Google Scholar 

  121. 121.

    Bartels, L., Meyer, G. & Rieder, K. H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–697 (1997).

    ADS  Google Scholar 

  122. 122.

    Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    ADS  Google Scholar 

  123. 123.

    Hla, S. W. Atom-by-atom assembly. Rep. Prog. Phys. 77, 056502 (2014).

    ADS  Google Scholar 

  124. 124.

    Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunneling microscope. Nature 352, 600–603 (1991).

    ADS  Google Scholar 

  125. 125.

    Bartels, L., Meyer, G. & Rieder, K. H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

    ADS  Google Scholar 

  126. 126.

    Swart, I., Sonnleitner, T., Niedenführ, J. & Repp, J. Controlled lateral manipulation of molecules on insulating films by STM. Nano Lett. 12, 1070–1074 (2012).

    ADS  Google Scholar 

  127. 127.

    Shen, T. C. et al. Atomic-scale desorption through electronic and vibrational-excitation mechanisms. Science 268, 1590–1592 (1995).

    ADS  Google Scholar 

  128. 128.

    Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).

    Google Scholar 

  129. 129.

    Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4, 803–810 (2009).

    ADS  Google Scholar 

  130. 130.

    Dujardin, G. & Mayne, A. J. (eds.) Atomic and Molecular Manipulation (Elsevier, 2011).

  131. 131.

    Tseng, A. A. & Li, Z. Manipulations of atoms and molecules by scanning probe microscopy. J. Nanosci. Nanotechnol. 7, 2582–2595 (2007).

    Google Scholar 

  132. 132.

    Hla, S. W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).

    ADS  Google Scholar 

  133. 133.

    Yan, L. & Liljeroth, P. Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons. Preprint at https://arxiv.org/abs/1905.03328 (2019).

Download references

Acknowledgements

A.A.K. acknowledges the Dutch Research Council (NWO) NWO-VIDI project ‘Manipulating the interplay between superconductivity and chiral magnetism at the single-atom level’ (project no. 680-47-534) and funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 818399 ‘SPINAPSE’). A.F.O. acknowledges support from the ERC (ERC Starting Grant 676895 ‘SPINCAD’). I.S. acknowledges funding from the NWO (grant no. 16PR3245-1).

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alexander A. Khajetoorians or Ingmar Swart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khajetoorians, A.A., Wegner, D., Otte, A.F. et al. Creating designer quantum states of matter atom-by-atom. Nat Rev Phys 1, 703–715 (2019). https://doi.org/10.1038/s42254-019-0108-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing