Abstract
Advances in high-resolution and spin-resolved scanning tunnelling microscopy, as well as atomic-scale manipulation, have enabled the bottom-up, atom-by-atom creation and characterization of quantum states of matter. This capability is largely based on controlling the particle-like or wave-like nature of electrons and the interactions between spins, electrons and orbitals, as well as their interplay with structure and dimensionality. In this Review, we describe recent progress in using a scanning tunnelling microscope to create artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also offer our perspective on the future directions of this developing field, namely the exploration of non-equilibrium dynamics, engineering quantum phase transitions and topology, prototype technologies and the general concept in nature of evolution of complexity from simplicity.
Key points
-
Scanning tunnelling microscopy and spectroscopy can be used to create quantum states of matter through atomic manipulation.
-
It is possible to create low-dimensional structures that exhibit strong quantum confinement as well as Dirac-type materials and topologically non-trivial matter.
-
Magnetic states of matter can be tailored atom-by-atom by quantifying the interactions between individual atomic spins.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).
Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).
Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).
Khajetoorians, A. A. et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat. Phys. 8, 497–503 (2012).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
Singha, A. et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011).
Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).
Elemans, J. A. A. W., Lei, S. B. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).
Lackinger, M. On-surface polymerization — a versatile synthetic route to two-dimensional polymers. Polym. Int. 64, 1073–1078 (2015).
Dong, L., Gao, Z. A. & Lin, N. Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 91, 101–135 (2016).
Klappenberger, F. et al. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagome network. Nano Lett. 9, 3509–3514 (2009).
Lobo-Checa, J. et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper. Surf. Sci. 325, 300–303 (2009).
Shang, J. et al. Assembling molecular Sierpinski triangle fractals. Nat. Chem. 7, 389–393 (2015).
Piquero-Zulaica, I. et al. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 8, 787 (2017).
Cheng, F. et al. Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nat. Commun. 9, 4871 (2018).
Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 3, 229–233 (2004).
Schlickum, U. et al. Metal–organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 7, 3813–3817 (2007).
Li, C. et al. Construction of Sierpinski triangles up to the fifth order. J. Am. Chem. Soc. 139, 13749–13753 (2017).
Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).
Eichhorn, J. et al. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks. ACS Nano 8, 7880–7889 (2014).
Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).
Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).
Collins, L. C., Witte, T. G., Silverman, R., Green, D. B. & Gomes, K. K. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nat. Commun. 8, 15961 (2017).
Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).
Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).
Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).
Serrate, D. et al. Imaging and manipulating the spin direction of individual atoms. Nat. Nanotechnol. 5, 350–353 (2010).
Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).
Kalff, F. E. et al. A kilobyte rewritable atomic memory. Nat. Nanotechnol. 11, 926–929 (2016).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).
Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).
Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).
Khajetoorians, A. A. et al. Spin excitations of individual Fe atoms on Pt(111): impact of the site-dependent giant substrate polarization. Phys. Rev. Lett. 111, 157204 (2013).
Khajetoorians, A. A. et al. Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys. Rev. Lett. 106, 037205 (2011).
Khajetoorians, A. A. et al. Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 467, 1084–1087 (2010).
Celotta, R. J. et al. Invited article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Rev. Sci. Instrum. 85, 121301 (2014).
von Allwörden, H. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at 30 mK and in a vector magnetic field. Rev. Sci. Instrum. 89, 033902 (2018).
Machida, T., Kohsaka, Y. & Hanaguri, T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Rev. Sci. Instrum. 89, 093707 (2018).
Misra, S. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 84, 103903 (2013).
Singh, U. R., Enayat, M., White, S. C. & Wahl, P. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope. Rev. Sci. Instrum. 84, 013708 (2013).
Song, Y. J. et al. Invited review article: A 10 mK scanning probe microscopy facility. Rev. Sci. Instrum. 81, 121101 (2010).
Schuler, B. et al. Effect of electron–phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B 91, 235443 (2015).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).
Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal. Surf. Sci. 262, 218–220 (1993).
Heller, E. J., Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).
Hermenau, J. et al. A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling. Nat. Commun. 8, 642 (2017).
Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).
Otte, A. F. et al. Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203 (2009).
Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).
Zhou, L. et al. Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale. Nat. Phys. 6, 187–191 (2010).
Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420–424 (2017).
Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).
Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).
Nilius, N., Wallis, T. M. & Ho, W. Tailoring electronic properties of atomic chains assembled by STM. Appl. Phys. A 80, 951–956 (2005).
Nilius, N., Wallis, T. M. & Ho, W. Building alloys from single atoms: Au−Pd Chains on NiAl(110). J. Phys. Chem. B 108, 14616–14619 (2004).
Fölsch, S., Hyldgaard, P., Koch, R. & Ploog, K. H. Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92, 056803 (2004).
Nilius, N., Wallis, T. M., Persson, M. & Ho, W. Interplay between electronic properties and interatomic spacing in artificial gold chains on NiAl(110). J. Phys. Chem. C 118, 29001–29006 (2014).
Fölsch, S., Yang, J., Nacci, C. & Kanisawa, K. Atom-by-atom quantum state control in adatom chains on a semiconductor. Phys. Rev. Lett. 103, 096104 (2009).
Matsui, T., Meyer, C., Sacharow, L., Wiebe, J. & Wiesendanger, R. Electronic states of Fe atoms and chains on InAs(110) from scanning tunneling spectroscopy. Phys. Rev. B 75, 165405 (2007).
Sperl, A. et al. Unoccupied states of individual silver clusters and chains on Ag(111). Phys. Rev. B 77, 085422 (2008).
Schofield, S. R. et al. Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013).
Girovsky, J. et al. Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom. SciPost Phys. 2, 020 (2017).
Crain, J. N. & Pierce, D. T. End states in one-dimensional atom chains. Science 307, 703–706 (2005).
Park, C.-H. & Louie, S. G. Making massless Dirac fermions from a patterned two-dimensional electron gas. Nano Lett. 9, 1793–1797 (2009).
Paavilainen, S., Ropo, M., Nieminen, J., Akola, J. & Räsänen, E. Coexisting honeycomb and kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 16, 3519–3523 (2016).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. Electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2018).
Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).
Khajetoorians, A. A. et al. Current-driven spin dynamics of artificially constructed quantum magnets. Science 339, 55–59 (2013).
Steinbrecher, M. et al. Non-collinear spin states in bottom-up fabricated atomic chains. Nat. Commun. 9, 2853 (2018).
Kubetzka, A., Bode, M., Pietzsch, O. & Wiesendanger, R. Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. Phys. Rev. Lett. 88, 057201 (2002).
Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).
Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys. 4, 847–850 (2008).
Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).
Loth, S. et al. Controlling the state of quantum spins with electric currents. Nat. Phys. 6, 340–344 (2010).
Rau, I. G. et al. Reaching the magnetic anisotropy limit of a 3d metal atom. Science 344, 988–992 (2014).
Bryant, B., Spinelli, A., Wagenaar, J. J. T., Gerrits, M. & Otte, A. F. Local control of single atom magnetocrystalline anisotropy. Phys. Rev. Lett. 111, 127203 (2013).
Spinelli, A. et al. Exploring the phase diagram of the two-impurity Kondo problem. Nat. Commun. 6, 10046 (2015).
Natterer, F. D. et al. Reading and writing single-atom magnets. Nature 543, 226–228 (2017).
Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).
Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).
Hermenau, J., Ternes, M., Steinbrecher, M., Wiesendanger, R. & Wiebe, J. Long spin-relaxation times in a transition-metal atom in direct contact to a metal substrate. Nano Lett. 18, 1978–1983 (2018).
Neel, N. et al. Two-site Kondo effect in atomic chains. Phys. Rev. Lett. 107, 106804 (2011).
Choi, D. J. et al. Building complex Kondo impurities by manipulating entangled spin chains. Nano Lett. 17, 6203–6209 (2017).
Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).
Kiraly, B. et al. An orbitally derived single-atom magnetic memory. Nat. Commun. 9, 3904 (2018).
Slot, M. R. et al. p-Band engineering in artificial electronic lattices. Phys. Rev. X 9, 011009 (2019).
Steinbrecher, M., Harutyunyan, H., Ast, C. R. & Wegner, D. Rashba-type spin splitting from interband scattering in quasiparticle interference maps. Phys. Rev. B 87, 245436 (2013).
Huda, M. N., Kezilebieke, S., Ojanen, T., Drost, R. & Liljeroth, P. Tuneable topological domain wall states in engineered atomic chains. Preprint at https://arxiv.org/abs/1806.08614 (2018).
Kempkes, S. N. et al. Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized kagome lattice. Preprint at https://arxiv.org/abs/1905.06053 (2019).
Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
Röntynen, J. & Ojanen, T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114, 236803 (2015).
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
Figgins, J. et al. Quantum engineered Kondo lattices. Preprint at https://arxiv.org/abs/1902.04680 (2019).
Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).
Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F 5, 965–974 (1975).
Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).
Chen, C. J. Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford Univ. Press, 2015).
Voigtländer, B. Scanning Probe Microscopy (Springer, 2015).
Assig, M. et al. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. Rev. Sci. Instrum. 84, 033903 (2013).
Roychowdhury, A. et al. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips. Rev. Sci. Instrum. 85, 043706 (2014).
Balashov, T., Meyer, M. & Wulfhekel, W. A compact ultrahigh vacuum scanning tunneling microscope with dilution refrigeration. Rev. Sci. Instrum. 89, 113707 (2018).
Lorente, N. & Persson, M. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. Lett. 85, 2997–3000 (2000).
Lorente, N., Persson, M., Lauhon, L. J. & Ho, W. Symmetry selection rules for vibrationally inelastic tunneling. Phys. Rev. Lett. 86, 2593–2596 (2001).
Ternes, M. Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy. Prog. Surf. Sci. 92, 83–115 (2017).
Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).
Vitali, L., Schneider, M. A., Kern, K., Wirtz, L. & Rubio, A. Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite. Phys. Rev. B 69, 121414 (2004).
Gawronski, H., Mehlhorn, M. & Morgenstern, K. Imaging phonon excitation with atomic resolution. Science 319, 930–933 (2008).
Gao, C. L. et al. Spin wave dispersion on the nanometer scale. Phys. Rev. Lett. 101, 167201 (2008).
Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1495 (2009).
Bode, M. Spin-polarized scanning tunnelling microscopy. Rep. Progr. Phys. 66, 523–582 (2003).
Bartels, L., Meyer, G. & Rieder, K. H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–697 (1997).
Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).
Hla, S. W. Atom-by-atom assembly. Rep. Prog. Phys. 77, 056502 (2014).
Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunneling microscope. Nature 352, 600–603 (1991).
Bartels, L., Meyer, G. & Rieder, K. H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).
Swart, I., Sonnleitner, T., Niedenführ, J. & Repp, J. Controlled lateral manipulation of molecules on insulating films by STM. Nano Lett. 12, 1070–1074 (2012).
Shen, T. C. et al. Atomic-scale desorption through electronic and vibrational-excitation mechanisms. Science 268, 1590–1592 (1995).
Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).
Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4, 803–810 (2009).
Dujardin, G. & Mayne, A. J. (eds.) Atomic and Molecular Manipulation (Elsevier, 2011).
Tseng, A. A. & Li, Z. Manipulations of atoms and molecules by scanning probe microscopy. J. Nanosci. Nanotechnol. 7, 2582–2595 (2007).
Hla, S. W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).
Yan, L. & Liljeroth, P. Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons. Preprint at https://arxiv.org/abs/1905.03328 (2019).
Acknowledgements
A.A.K. acknowledges the Dutch Research Council (NWO) NWO-VIDI project ‘Manipulating the interplay between superconductivity and chiral magnetism at the single-atom level’ (project no. 680-47-534) and funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 818399 ‘SPINAPSE’). A.F.O. acknowledges support from the ERC (ERC Starting Grant 676895 ‘SPINCAD’). I.S. acknowledges funding from the NWO (grant no. 16PR3245-1).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khajetoorians, A.A., Wegner, D., Otte, A.F. et al. Creating designer quantum states of matter atom-by-atom. Nat Rev Phys 1, 703–715 (2019). https://doi.org/10.1038/s42254-019-0108-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0108-5
This article is cited by
-
Doping-dependent charge- and spin-density wave orderings in a monolayer of Pb adatoms on Si(111)
npj Quantum Materials (2024)
-
Atomically precise engineering of spin–orbit polarons in a kagome magnetic Weyl semimetal
Nature Communications (2024)
-
Atomically engineering metal vacancies in monolayer transition metal dichalcogenides
Nature Synthesis (2024)
-
Atomic-scale manipulation of buried graphene–silicon carbide interface by local electric field
Communications Physics (2024)
-
Construction of topological quantum magnets from atomic spins on surfaces
Nature Nanotechnology (2024)