Abstract
Originally developed in the context of condensed-matter physics and based on renormalization group ideas, tensor networks have been revived thanks to quantum information theory and the progress in understanding the role of entanglement in quantum many-body systems. Moreover, tensor network states have turned out to play a key role in other scientific disciplines. In this context, here I provide an overview of the basic concepts and key developments in the field. I briefly discuss the most important tensor network structures and algorithms, together with an outline of advances related to global and gauge symmetries, fermions, topological order, classification of phases, entanglement Hamiltonians, holografic duality, artificial intelligence, the 2D Hubbard model, 2D quantum antiferromagnets, conformal field theory, quantum chemistry, disordered systems and many-body localization.
Key points
-
Tensor networks are mathematical representations of quantum many-body states based on their entanglement structure.
-
Different tensor network structures describe different physical situations, such as low-energy states of gapped 1D systems, 2D systems and scale-invariant systems.
-
Variational methods over families of tensor networks enable the approximation of the low-energy properties of complex quantum Hamiltonians. Other methods also allow the simulation of time evolution, the calculation of low-energy excitations and much more.
-
Symmetric tensor network states enable more efficient simulation methods and the description of fermionic systems, lattice gauge theories, topological order and the classification of phases of quantum matter.
-
Tensor networks, such as the multiscale entanglement renormalization ansatz, have been linked to a possible lattice realization of the holographic principle in quantum gravity.
-
Tensor networks also provide a natural framework for understanding machine learning and probabilistic language models.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry
Nature Communications Open Access 07 April 2023
-
Geometry of tree-based tensor formats in tensor Banach spaces
Annali di Matematica Pura ed Applicata (1923 -) Open Access 04 March 2023
-
Estimating the randomness of quantum circuit ensembles up to 50 qubits
npj Quantum Information Open Access 24 November 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. -New Y. 349, 117158 (2014). Broad introduction to basic concepts about TNs, MPS and PEPS.
Kramers, H. A. & Wannier, G. H. Statistics of the two-dimensional ferromagnet. Part II. Phys. Rev. 60, 263 (1941).
Baxter, R. J. Corner transfer matrices. Phys. A 106, 18–27 (1981).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 28632866 (1992). Original DMRG paper, which includes many of the fundamental ideas of TNs.
White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1992).
Fannes, M., Nachtergaele, B. & Werner, R. F. Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992).
Klümper, A., Schadschneider, A. & Zittartz, J. Equivalence and solution of anisotropic spin-1 models and generalized t-J fermion models in one dimension. J. Phys. A 24, L955 (1991).
Klümper, A., Schadschneider, A. & Zittartz, J. Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets. Europhys. Lett. 24, 293 (1993).
Hackbusch, W. Tensor Spaces and Numerical Tensor Calculus (Springer, 2012).
Östlund, S. & Rommer, S. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537 (1995).
Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). Scaling of entanglement at (1+1) d conformal field theories. A basic result to understand the motivation for TNs.
Hastings, M. B. Solving gapped Hamiltonians locally. Phys. Rev. B 73, 085115 (2006).
Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. Preprint at https://arxiv.org/abs/cond-mat/0407066 (2004). An example of PEPS being used as variational ansatz for 2D systems.
Vidal, G. Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007). Paper on entanglement renormalization, discussing its fundamental ideas.
Swingle, B. Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012). Paper on the connection between MERA and the geometry of space-time.
Levine, Y., Sharir, O., Cohen, N. & Shashua, A. Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122, 065301 (2019).
Wolf, M. M., Verstraete, F., Hastings, M. B. & Cirac, J. I. Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008).
Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003). An introduction to the basics of the canonical decomposition of an MPS.
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 939, 040502 (2004).
Vidal, G. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 070201 (2007).
Orús, R. & Vidal, G. Infinite time-evolving block decimation algorithm beyond unitary evolution. Phys. Rev. B 78, 155117 (2008).
Tagliacozzo, L., de Oliveira, R. R., Iblisdir, S. & Latorre, J. I. Scaling of entanglement support for matrix product states. Phys. Rev. B 78, 024410 (2008).
Pollmann, F., Mukerjee, S., Turner, A. & Moore, J. E. Theory of finite-entanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett. 102, 255701 (2009).
Zou, Y., Milsted, A. & Vidal, G. Conformal data and renormalization group flow in critical quantum spin chains using periodic uniform matrix product states. Phys. Rev. Lett. 121, 230402 (2018).
Perez-García, D., Verstraete, F., Cirac, J. I. & Wolf, M. M. PEPS as unique ground states of local Hamiltonians. Quant. Inf. Comp. 8, 0650–0663 (2008).
Verstraete, F., Wolf, M. M., Pérez-García, D. & Cirac, J. I. Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96, 220601 (2006).
Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007).
Dubail, J. & Read, N. Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension. Phys. Rev. B 92, 205307 (2015).
Buerschaper, O., Aguado, M. & Vidal, G. Explicit tensor network representation for the ground states of string-net models. Phys. Rev. B 79, 085119 (2009).
Gu, Z.-C., Levin, M., Swingle, B. & Wen, X.-G. Tensor-product representations for string-net condensed states. Phys. Rev. B 79, 085118 (2009).
Shi, Y., Duan, L. & Vidal, G. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006).
Silvi, P. et al. Homogeneous binary trees as ground states of quantum critical Hamiltonians. Phys. Rev. A 81, 062335 (2010).
Tagliacozzo, L., Evenbly, G. & Vidal, G. Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law. Phys. Rev. B 80, 235127 (2009).
Evenbly, G. & Vidal, G. Strongly Correlated Systems: Numerical Methods (eds Avella, A. & Mancini, F.) Ch. 4 (Springer, 2013).
Evenbly, G. & Vidal, G. Class of highly entangled many-body states that can be efficiently simulated. Phys. Rev. Lett. 112, 240502 (2014).
Zwolak, M. & Vidal, G. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004).
Czarnik, P. & Dziarmaga, J. Variational approach to projected entangled pair states at finite temperature. Phys. Rev. B 92, 035152 (2015).
Verstraete, F., Garcia-Ripoll, J. J. & Cirac, J. I. Matrix product density operators: simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004).
De las Cuevas, G., Schuch, N., Pérez-García, D. & Cirac, J. I. Purifications of multipartite states: limitations and constructive methods. New J. Phys. 15, 123021 (2013).
Verstraete, F. & Cirac, I. Continuous matrix product states for quantum fields. Phys. Rev. Lett. 104, 190405 (2010).
Haegeman, J., Osborne, T. J., Verschelde, H. & Verstraete, F. Entanglement renormalization for quantum fields in real space. Phys. Rev. Lett. 110, 100402 (2013).
Brockt, C. & Haegeman, J. & Jennings, D. & Osborne, T. J. & Verstraete, F. The continuum limit of a tensor network: a path integral representation. Preprint at https://arxiv.org/abs/1210.5401 (2012).
Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011).
McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008).
Crosswhite, G. M., Doherty, A. C. & Vidal, G. Applying matrix product operators to model systems with long-range interactions. Phys. Rev. B 78, 035116 (2008).
Porras, D., Verstraete, F. & Cirac, J. I. Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205 (2004).
Porras, D., Verstraete, F. & Cirac, J. I. Renormalization algorithm for the calculation of spectra of interacting quantum systems. Phys. Rev. B 73, 014410 (2006).
Chepiga, N. & Mila, F. Excitation spectrum and density matrix renormalization group iterations. Phys. Rev. B 96, 054425 (2017).
Evenbly, G. & Vidal, G. Algorithms for entanglement renormalization. Phys. Rev. B 79, 144108 (2009).
Haegeman, J., Osborne, T. J. & Verstraete, F. Post-matrix product state methods: to tangent space and beyond. Phys. Rev. B 88, 075133 (2013).
Vanderstraeten, L. & Haegeman, J. & Verstraete, F. Tangent-space methods for uniform matrix product states. Preprint at https://arxiv.org/abs/1810.07006 (2018).
Haegeman, J. et al. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011).
Haegeman, J. et al. Variational matrix product ansatz for dispersion relations. Phys. Rev. B 85, 100408(R) (2012).
Zauner-Stauber, V., Vanderstraeten, L., Fishman, M. T., Verstraete, F. & Haegeman, J. Variational optimization algorithms for uniform matrix product states. Phys. Rev. B 97, 045145 (2018).
Bañuls, M. C., Hastings, M. B., Verstraete, F. & Cirac, J. I. Matrix product states for dynamical simulation of infinite chains. Phys. Rev. Lett. 102, 240603 (2009).
Daley, A. J. & Kollath, C. & Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. P04005 (2004).
Pollock, F. A., Rodriguez-Rosario, C., Frauenheim, T., Paternostro, M. & Modi, K. Non-Markovian quantum processes: Complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018).
Luchnikov, I. A., Vintskevich, S. V., Ouerdane, H. & Filippov, S. N. Simulation complexity of open quantum dynamics:connection with tensor networks. Phys. Rev. Lett. 122, 160401 (2019).
Jordan, J., Orús, R., Vidal, G., Verstraete, F. & Cirac, J. I. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett. 101, 250602 (2008). Paper on infinite PEPS for 2D systems.
Jordan, J., Orús, R. & Vidal, G. Numerical study of the hard-core Bose–Hubbard model on an infinite square lattice. Phys. Rev. B 79, 174515 (2009).
Nishino, T. & Okunishi, K. Corner transfer matrix renormalization group method. J. Phys. Soc. Jpn 65, 891–894 (1996).
Orús, R. & Vidal, G. Simulation of two-dimensional quantum systems on an infinite lattice revisited: corner transfer matrix for tensor contraction. Phys. Rev. B 80, 094403 (2009). Paper on corner transfer matrices in the context of iPEPS.
Orús, R. Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems. Phys. Rev. B 85, 205117 (2012).
Vanderstraeten, L., Mariën, M., Verstraete, F. & Haegeman, J. Excitations and the tangent space of projected entangled-pair states. Phys. Rev. B 92, 201111 (2015).
Levin, M. & Nave, C. P. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett. 99, 120601 (2007).
Xie, Z. Y., Jiang, H. C., Chen, Q. N., Weng, Z. Y. & Xiang, T. Second renormalization of tensor-network states. Phys. Rev. Lett. 103, 160601 (2009).
Xie, Z. Y. et al. Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B 86, 045139 (2012).
Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).
Evenbly, G. & Vidal, G. Tensor network renormalization. Phys. Rev. Lett. 115, 180405 (2015).
Yang, S., Gu, Z.-C. & Wen, X.-G. Loop optimization for tensor network renormalization. Phys. Rev. Lett. 118, 110504 (2017).
Bal, M., Mariën, M., Haegeman, J. & Verstraete, F. Renormalization group flows of Hamiltonians using tensor networks. Phys. Rev. Lett. 118, 250602 (2017).
Zhao, H.-H., Xie, Z.-Y., Xiang, T. & Imada, M. Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices. Phys. Rev. B 93, 125115 (2016).
Xie, Z. Y. et al. Optimized contraction scheme for tensor-network states. Phys. Rev. B 96, 045128 (2017).
Stoudenmire, E. M. & White, S. R. Studying two dimensional systems with the density matrix renormalization group. Ann. Rev. Cond. Matt. Phys. 3, 111–128 (2012).
White, S. R. & Scalapino, D. J. Ground states of the doped four-leg t–J ladder. Phys. Rev. B 55, R14701 (1997).
White, S. R. & Scalapino, D. J. Density matrix renormalization group study of the striped phase in the 2D t–J model. Phys. Rev. Lett. 80, 1272 (1998).
Jiang, H. C., Weng, Z. Y. & Sheng, D. N. Density matrix renormalization group numerical study of the kagome antiferromagnet. Phys. Rev. Lett. 101, 117203 (2008).
Yan, S., Huse, D. A. & White, S. Spin liquid ground state of the S = 1/2 kagome Heisenberg model. Science 332, 1173 (2011).
Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the spin-liquid ground state of the S = 1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012).
Ehlers, G., White, S. R. & Noack, R. M. Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model. Phys. Rev. B 95, 125125 (2017).
Tagliacozzo, L. & Vidal, G. Entanglement renormalization and gauge symmetry. Phys. Rev. B 83, 115127 (2011).
Murg, V., Verstraete, F. & Cirac, J. I. Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states. Phys. Rev. A 75, 033605 (2007).
Vanderstraeten, L., Haegeman, J., Corboz, P. & Verstraete, F. Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B 94, 155123 (2016).
Corboz, P. Variational optimization with infinite projected entangled-pair states. Phys. Rev. B 94, 035133 (2016).
Jiang, H. C., Weng, Z. Y. & Xiang, T. Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett. 101, 090603 (2008). Simple update scheme for iPEPS algorithms.
Phien, H. N., Bengua, J. A., Tuan, H. D., Corboz, P. & Orús, R. Infinite projected entangled pair states algorithm improved: fast full update and gauge fixing. Phys. Rev. B 92, 035142 (2015).
Vanderstraeten, L., Haegeman, J. & Verstraete, F. Phys. Rev. B 99, 165121 (2019).
Corboz, P. Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model. Phys. Rev. B 93, 045116 (2016).
Jahromi, S. S. & Orús, R. A universal tensor network algorithm for any infinite lattice. Phys. Rev. B 99, 195105 (2019).
Evenbly, G. & Vidal, G. Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett. 102, 180406 (2009).
Evenbly, G. & Vidal, G. Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a kagome lattice. Phys. Rev. Lett. 104, 187203 (2010).
Corboz, P., Evenbly, G., Verstraete, F. & Vidal, G. Simulation of interacting fermions with entanglement renormalization. Phys. Rev. A 81, 010303(R) (2010).
Corboz, P. & Vidal, G. Fermionic multiscale entanglement renormalization ansatz. Phys. Rev. B 80, 165129 (2009).
Sandvik, A. W. & Vidal, G. Variational quantum Monte Carlo simulations with tensor-network states. Phys. Rev. Lett. 99, 220602 (2007).
Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. Phys. Rev. Lett. 100, 040501 (2008).
Lubasch, M. et al. Systematic construction of density functionals based on matrix product state computations. New J. Phys. 18, 083039 (2016).
Wolf, F. A., McCulloch, I. P., Parcollet, O. & Schollwöck, U. Chebyshev matrix product state impurity solver for dynamical mean-field theory. Phys. Rev. B 90, 115124 (2014).
Evenbly, G. & White, S. R. Entanglement renormalization and wavelets. Phys. Rev. Lett. 116, 140403 (2016).
Evenbly, G. & White, S. R. Representation and design of wavelets using unitary circuits. Phys. Rev. A 97, 052314 (2018).
Haegeman, J. et al. Rigorous free-fermion entanglement renormalization from wavelet theory. Phys. Rev. X 8, 011003 (2018).
Sahin, S., Schmidt, K. P. & Orús, R. Entanglement continuous unitary transformations. Eur. Lett. 117, 20002 (2017).
Wegner, F. Flow equations for Hamiltonians. Ann. Phys. 3, 77 (1994).
Vanderstraeten, L. et al. Bridging perturbative expansions with tensor networks. Phys. Rev. Lett. 119, 070401 (2017).
Halko, N., Martinsson, P. G. & Tropp, J. A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217 (2011).
Tamascelli, D., Rosenbach, R. & Plenio, M. B. Improved scaling of time-evolving block-decimation algorithm through reduced-rank randomized singular value decomposition. Phys. Rev. E 91, 063306 (2015).
Huang, R.-Z. et al. Generalized Lanczos method for systematic optimization of tensor network states. Preprint at https://arxiv.org/abs/1611.09574 (2016).
Murg, V., Korepin, V. E. & Verstraete, F. Algebraic Bethe ansatz and tensor networks. Phys. Rev. B 86, 045125 (2012).
Ferris, A. J. Fourier transform for fermionic systems and the spectral tensor network. Phys. Rev. Lett. 113, 010401 (2014).
Rams, M. M., Zauner, V., Bal, M., Haegeman, J. & Verstraete, F. Truncating an exact matrix product state for the XY model: transfer matrix and its renormalization. Phys. Rev. B 92, 235150 (2015).
Schmoll, P. & Orús, R. Kitaev honeycomb tensor networks: exact unitary circuits and applications. Phys. Rev. B 95, 045112 (2017).
McCulloch, I. & Gulacsi, M. The non-Abelian density matrix renormalization group algorithm. Eur. Phys. Lett. 57, 852 (2002).
Singh, S., Pfeifer, R. N. C. & Vidal, G. Tensor network states and algorithms in the presence of a global U(1) symmetry. Phys. Rev. B 83, 115125 (2011).
Bauer, B., Corboz, P., Orús, R. & Troyer, M. Implementing global Abelian symmetries in projected entangled-pair state algorithms. Phys. Rev. B 83, 125106 (2011).
Liu, T., Li, W., Weichselbaum, A., von Delft, J. & Su, G. Simplex valence-bond crystal in the spin-1 kagome Heisenberg antiferromagnet. Phys. Rev. B 91, 060403 (2015).
Weichselbaum, A. Non-Abelian symmetries in tensor networks: a quantum symmetry space approach. Ann. Phys. 327, 2972–3047 (2012).
Schmoll, P. & Singh, S. & Rizzi, M. & Orús, R. A programming guide for tensor networks with global SU(2) symmetry. Preprint at https://arxiv.org/abs/1809.08180 (2018).
Penrose, R. Angular Momentum: An Approach to Combinatorial Space-time (http://math.ucr.edu/home/baez/penrose/) (1971).
Cornwell, J. F. Group Theory in Physics (Academic, 1997).
Corboz, P., Orús, R., Bauer, B. & Vidal, G. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states. Phys. Rev. B 81, 165104 (2010).
Kraus, C. V., Schuch, N., Verstraete, F. & Cirac, J. I. Fermionic projected entangled pair states. Phys. Rev. A 81, 052338 (2010).
Pizorn, I. & Verstraete, F. Fermionic implementation of projected entangled pair states algorithm. Phys. Rev. B 81, 245110 (2010).
Barthel, T., Pineda, C. & Eisert, J. Contraction of fermionic operator circuits and the simulation of strongly correlated fermions. Phys. Rev. A 80, 042333 (2009).
Orús, R. Advances on tensor network theory: symmetries, fermions, entanglement, and holography. Eur. Phys. J. B 87, 280 (2014).
Tagliacozzo, L., Celi, A. & Lewenstein, M. Tensor networks for lattice gauge theories with continuous groups. Phys. Rev. X 4, 041024 (2014).
Buyens, B., Haegeman, J., Van Acoleyen, K., Verschelde, H. & Verstraete, F. Matrix product states for gauge field theories. Phys. Rev. Lett. 113, 091601 (2014).
Sugihara, T. Matrix product representation of gauge invariant states in a Bbb Z2 lattice gauge theory. J. High Energy Phys. 7, 022 (2005).
Byrnes, T. M. R., Sriganesh, P., Bursill, R. J. & Hamer, C. J. Density matrix renormalisation group approach to the massive Schwinger model. Nucl. Phys. B 109, 202 (2002).
Banuls, M. C. & Cichy, K. & Cirac, J. I. & Jansen, K. & Saito, H. Matrix product states for lattice field theories. PoS (LATTICE 2013) 332 (2013).
Saito, H. & Banuls, M. C. & Cichy, K. & Cirac, J. I. & Jansen, K. The temperature dependence of the chiral condensate in the Schwinger model with matrix product states. Preprint at https://arxiv.org/abs/1412.0596 (2014).
Banuls, M. C., Cichy, K., Jansen, K. & Cirac, J. I. The mass spectrum of the Schwinger model with matrix product states. JHEP 11, 158 (2013).
Buyens, B. & Haegeman, J. & Hebenstreit, F. & Verstraete, F. & Van Acoleyen, K. Real-time simulation of the Schwinger effect with matrix product states. Phys. Rev. D 96, 114501 (2017)
Buyens, B. & Montangero, S. & Haegeman, J. & Verstraete, F. & Van Acoleyen, K. Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks. Phys. Rev. D 95, 094509 (2017).
Banuls, M. C., Cichy, K., Cirac, J. I. & Kühn, S. Density induced phase transitions in the Schwinger model: a study with matrix product states. Phys. Rev. Lett. 118, 071601 (2017).
Zapp, K. & Orús, R. Tensor network simulation of QED on infinite lattices: learning from (1+1)d, and prospects for (2+1)d. Phys. Rev. D. 95, 114508 (2017).
Buyens, B., Haegeman, J., Verschelde, H., Verstraete, F. & Van Acoleyen, K. Confinement and string breaking for QED2 in the Hamiltonian Picture. Phys. Rev. X 6, 041040 (2016).
Pilcher, T., Dalmonte, M., Rico, E., Zoller, P. & Montangero, S. Real-time dynamics in U(1) lattice gauge theories with tensor networks. Phys. Rev. X 6, 011023 (2016).
Kühn, S., Zohar, E., Cirac, J. I. & Banuls, M. C. Non-Abelian string breaking phenomena with matrix product states. JHEP 07, 130 (2015).
Silvi, P., Rico, E., Dalmonte, Tschirsich, F. & Montangero, S. Finite-density phase diagram of a (1+1)d non-Abelian lattice gauge theory with tensor networks. Quantum 1, 9 (2017).
Zohar, E. & Burrello, M. & Wahl, T. B. & Cirac, J. I. Fermionic projected entangled pair states and local U(1) gauge theories. Ann. Phys. 363, 385–439 (2015).
Zohar, E., Burrello, M., Wahl, T. B. & Cirac, J. I. Projected entangled pair states with non-Abelian gauge symmetries: an SU(2) study. Ann. Phys. 374, 84–137 (2016).
Levin, M. A. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).
Aguado, M. & Vidal, G. Entanglement renormalization and topological order. Phys. Rev. Lett. 100, 070404 (2008).
Dusuel, S., Kamfor, M., Orús, R., Schmidt, K. P. & Vidal, J. Robustness of a perturbed topological phase. Phys. Rev. Lett. 106, 107203 (2011).
Zaletel, M. P., Mong, R. S. K. & Pollmann, F. Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians. Phys. Rev. Lett. 110, 236801 (2013).
Pollmann, F., Turner, A., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).
Estienne, B., Papic, Z., Regnault, N. & Bernevig, B. A. Matrix product states for trial quantum Hall states. Phys. Rev. B 87, 161112(R) (2013).
Pfeifer, R. N. C. et al. Simulation of anyons with tensor network algorithms. Phys. Rev. B 82, 115126 (2010).
Bultinck, N. et al. Anyons and matrix product operator algebras. Ann. Phys. 378, 183–233 (2017).
Williamson, D. J. & Bultinck, N. & Verstraete, F. Symmetry-enriched topological order in tensor networks: defects, gauging and anyon condensation. Preprint at https://arxiv.org/abs/1711.07982 (2017).
Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 41004 (2017).
Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).
Schuch, N., Pérez-García, D. & Cirac, J. I. Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011).
Buerschaper, O. Twisted injectivity in projected entangled pair states and the classification of quantum phases. Ann. Phys. 351, 447–476 (2014).
Williamson, D. J. & Bultinck, N. & Haegeman, J. & Verstraete, F. Fermionic matrix product operators and topological phases of matter. Preprint at https://arxiv.org/abs/1609.02897 (2016).
Bultinck, N., Williamson, D. J., Haegeman, J. & Verstraete, F. Fermionic projected entangled-pair states and topological phases. J. Phys. A 51, 025202 (2017).
Bultinck, N., Williamson, D. J., Haegeman, J. & Verstraete, F. Fermionic matrix product states and one-dimensional topological phases. Phys. Rev. B 95, 075108 (2017).
Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008).
Cirac, J. I., Poilblanc, D., Schuch, N. & Verstraete, F. Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011).
Haferkamp, J. & Hangleiter, D. & Eisert, J. & Gluza, M. Contracting projected entangled pair states is average-case hard. Preprint at https://arxiv.org/abs/1810.00738 (2018).
Kastoryano, M. J. & Lucia, A. & Pérez-García, D. Locality at the boundary implies gap in the bulk for 2D PEPS. Preprint at https://arxiv.org/abs/1709.07691 (2017).
Maldecena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998).
Evenbly, G. & Vidal, G. Tensor network states and geometry. J. Stat. Phys. 145, 891–918 (2011).
Swingle, B. Constructing holographic spacetimes using entanglement renormalization. Preprint at https://arxiv.org/abs/1209.3304 (2012).
Nozaki, M., Ryu, S. & Takayanagi, T. Holographic geometry of entanglement renormalization in quantum field theories. JHEP 10, 193 (2012).
Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 06, 149 (2015).
Bény, C. Causal structure of the entanglement renormalization ansatz. New J. Phys. 15, 023020 (2013).
Milsted, A. & Vidal, G. Geometric interpretation of the multi-scale entanglement renormalization ansatz. Preprint at https://arxiv.org/abs/1812.00529 (2018).
Chen, J., Cheng, S., Xie, H., Wang, L. & Xiang, T. Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018).
Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).
Stoudenmire, E. M. & Schwab, D. J. Supervised learning with quantum-inspired tensor networks. Adv. Neur. Inf. Proc. Syst. 29, 4799 (2016).
Stoudenmire, E. M. Learning relevant features of data with multi-scale tensor networks. Quant. Sci. Tech. 3, 034003 (2018).
Liu, D. et al. Machine learning by unitary tensor network of hierarchical tree structure. Preprint at https://arxiv.org/abs/1710.04833 (2017).
Han, Z.-Y., Wang, J., Fan, H., Wang, L. & Zhang, P. Unsupervised generative modeling using matrix product states. Phys. Rev. X 8, 031012 (2018).
Huggins, W. & Patel, P. & Whaley, K. B. & Stoudenmire, E. M. Towards quantum machine learning with tensor networks. Preprint at https://arxiv.org/abs/1803.11537 (2018).
Glasser, I. & Pancotti, N. & Cirac, J. I. Supervised learning with generalized tensor networks. Preprint at https://arxiv.org/abs/1806.05964 (2018).
Gállego, A. J. & Orús, R. Language design as information renormalization. Preprint at https://arxiv.org/abs/1708.01525 (2017).
Corboz, P., White, S. R., Vidal, G. & Troyer, M. Stripes in the two-dimensional t–J model with infinite projected entangled-pair states. Phys. Rev. B 84, 041108 (2011).
Xie, Z. Y. et al. Tensor renormalization of quantum many-body systems using projected entangled simplex states. Phys. Rev. X 4, 011025 (2014).
Picot, T., Ziegler, M., Orús, R. & Poilblanc, D. Spin-S kagome quantum antiferromagnets in a field with tensor networks. Phys. Rev. B 93, 060407 (2016).
Corboz, P., Laeuchli, A. M., Penc, K., Troyer, M. & Mila, F. Simultaneous dimerization and SU(4) symmetry breaking of 4-color fermions on the square lattice. Phys. Rev. Lett. 107, 215301 (2011).
Czech, B. et al. Tensor network quotient takes the vacuum to the thermal state. Phys. Rev. B 94, 085101 (2016).
Hauru, M., Evenbly, G., Ho, W. W., Gaiotto, D. & Vidal, G. Topological conformal defects with tensor networks. Phys. Rev. B 94, 115125 (2016).
Hu, Q. & Vidal, G. Spacetime symmetries and conformal data in the continuous multiscale entanglement renormalization ansatz. Phys. Rev. Lett. 119, 010603 (2017).
Milsted, A. & Vidal, G. Tensor networks as conformal transformations. Preprint at https://arxiv.org/abs/1805.12524 (2018).
Milsted, A. & Vidal, G. Tensor networks as path integral geometry. Preprint at https://arxiv.org/abs/1807.02501 (2018).
Bal, M. et al. Mapping topological to conformal field theories through strange correlators. Preprint at https://arxiv.org/abs/1801.05959 (2018).
Chan, G. K.-L. et al. An introduction to the density matrix renormalization group ansatz in quantum chemistry. Preprint at https://arxiv.org/abs/0711.1398 (2007).
Krumnow, C., Veis, L., Legeza, Ö. & Eisert, J. Fermionic orbital optimization in tensor network states. Phys. Rev. Lett. 117, 210402 (2016).
Szalay, S. et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quant. Chem. 115, 1342 (2015).
Paredes, B., Verstraete, F. & Cirac, J. I. Exploiting quantum parallelism to simulate quantum random many-body systems. Phys. Rev. Lett. 95, 140501 (2005).
Chandran, A., Carrasquilla, J., Kim, I. H., Abanin, D. A. & Vidal, G. Spectral tensor networks for many-body localization. Phys. Rev. B 92, 024201 (2015).
Pollmann, F., Khemani, V., Cirac, J. I. & Sondhi, S. L. Efficient variational diagonalization of fully many-body localized Hamiltonians. Phys. Rev. B 94, 041116 (2016).
Wahl, T. B., Pal, A. & Simon, S. H. Efficient representation of fully many-body localized systems using tensor networks. Phys. Rev. X 7, 021018 (2017).
Wahl, T. B. Tensor networks demonstrate the robustness of localization and symmetry-protected topological phases. Phys. Rev. B 98, 054204 (2018).
Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006).
Acknowledgements
The author acknowledged financial support from Ikerbasque, Donostia International Physics Center (DIPC) and Deutsche Forschungsgemeinschaft (DFG), as well as discussions over the years with many people on topics presented here. The author also acknowledges M. Rizzi and P. Schmoll for critical reading.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Renormalization
-
The process of removing degrees of freedom that are not relevant to describe a complex system at different scales of some physical variable (energy, length…).
- Anti-de Sitter
-
(AdS). A geometric space with negative curvature.
- Conformal field theory
-
(CFT). A quantum field theory with conformal symmetry, which includes scale invariance. Low-energy field theories of quantum critical systems are usually CFTs.
- Topological order
-
A type of order in quantum matter entirely due to global entanglement properties and which does not exist classically. Other characterizations: excitations are anyonic, the topological entanglement entropy is non-zero, ground states are topologically degenerate, and reduced density matrices are locally equivalent.
- Area-law
-
Property by which the entanglement entropy of a region scales proportionally to the size of the boundary of the region.
- Tensor contraction
-
Sum over the common indices of a set of tensors (for example, matrix multiplication).
- Correlation length
-
Non-mathematically, this is the length scale at which correlations are sizeable in a many-body system.
- Wilsonian renormalization
-
In this context, a renormalization scheme by which different length scales are obtained purely by removing short-distance degrees of freedom, without having previously disentangled them. In many cases, this is done by removing high-energy (and/or high-momenta) degrees of freedom.
- Trotter decomposition
-
Decomposition of the exponential of the sum of two matrices A and B as \({{\rm{e}}}^{(A+B)t}=\mathop{{\rm{lim}}}\limits_{n\to \infty }{({{\rm{e}}}^{At/n}{{\rm{e}}}^{Bt/n})}^{n}\), with t some real parameter.
- Daubechies wavelets
-
Family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support.
- Wegner’s flow
-
Flow of continuous unitary transformations that diagonalizes a Hamiltonian, as \({H}_{{\rm{D}}}=\mathop{{\rm{lim}}}\limits_{l\to \infty }{U}^{\dagger }(l)HU(l)\) with l the flow parameter and HD the diagonal Hamiltonian.
- Lanczos methods
-
An adaptation of a power method to find the eigenvalues and eigenvectors of a matrix.
- Clebsch–Gordan coefficient
-
Coefficient of the change of basis in angular momentum, from a tensor product basis to a coupled basis (for instance, from spins \(1/2\otimes 1/2\) to spins \(0\oplus 1\).
- SWAP gate
-
Unitary gate that swaps the quantum states of two physical systems.
- Parent Hamiltonian
-
Hamiltonian that has a given PEPS or MPS as unique ground state.
- Boltzmann machine
-
A specific type of neural network in which the target is to reproduce some Gibbs thermal probabilities.
- MERGE
-
Linguistic operation introduced by Noam Chomsky, which picks up two entities (for example, noun and adjective) and produces a new one from the two (for instance, noun phrase).
- Many-body localization
-
(MBL). Property of interacting quantum many-body systems with disorder leading to a phase of matter that does not self-thermalize.
Rights and permissions
About this article
Cite this article
Orús, R. Tensor networks for complex quantum systems. Nat Rev Phys 1, 538–550 (2019). https://doi.org/10.1038/s42254-019-0086-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0086-7
This article is cited by
-
Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry
Nature Communications (2023)
-
Density matrix renormalization group, 30 years on
Nature Reviews Physics (2023)
-
Approximation Theory of Tree Tensor Networks: Tensorized Univariate Functions
Constructive Approximation (2023)
-
Grammar-aware sentence classification on quantum computers
Quantum Machine Intelligence (2023)
-
Geometry of tree-based tensor formats in tensor Banach spaces
Annali di Matematica Pura ed Applicata (1923 -) (2023)