Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soft condensed matter physics of foods and macronutrients

This article has been updated

Abstract

Understanding food properties is paramount for enhancing features such as appearance, taste and texture, for improving health-related factors such as minimizing the onset of allergies or improving the digestibility of nutrients, and for preserving food and extending its shelf-life. This Review discusses the challenges and opportunities offered by analysing foods as soft condensed matter systems. Emphasis is placed on the three main macronutrients constituting the main building blocks of foods: polysaccharides, proteins and lipids. Similarities and differences with synthetic polymers, colloids and surfactants are described. This Review also discusses the lessons that can be learned from soft matter approaches and the extent of their applicability to real foods.

Key points

  • The theoretical tools developed in soft condensed matter physics provide a means to describe foods and macronutrients at scales ranging from angstroms to tens of micrometres.

  • Polymer physics can be used to characterize the properties of polysaccharides and unfolded proteins, whose complex nature poses unusual theoretical questions.

  • Dispersions and gels based on proteins can be described by the physics of colloids and aggregates, and their phase diagrams can be rationalized accordingly.

  • The structural properties of food emulsions and targeted delivery of macronutrients from lipid-based mesostructures can be studied and controlled with the aid of surfactant physics and transport theory.

  • Some experimental soft matter tools are currently underexploited in food science, which calls for further theoretical research in soft condensed matter physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the systems discussed.
Fig. 2: Definitions of single-polymer physics.
Fig. 3: Applications of single-polymer physics concepts to protein systems and polysaccharides.
Fig. 4: Physics of colloids and aggregates applied to food systems.
Fig. 5: Topological and geometrical features of some common inverse lipid mesophases.
Fig. 6: Physics of lipid mesophases.

Similar content being viewed by others

Change history

  • 24 September 2019

    The name of the publisher in the caption of Figure 3a, was misspelled. It should read ACS not APS. The mistake has been corrected in the HTML and PDF versions of the article.

References

  1. Mezzenga, R., Schurtenberger, P., Burbidge, A. & Michel, M. Understanding foods as soft materials. Nat. Mater. 4, 729–740 (2005).

    ADS  Google Scholar 

  2. Dominguez-Hernandez, E., Salaseviciene, A. & Ertbjerg, P. Low-temperature long-time cooking of meat: eating quality and underlying mechanisms. Meat Sci. 143, 104–113 (2018).

    Google Scholar 

  3. McClements, D. J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316 (2011).

    ADS  Google Scholar 

  4. Lett, A. M., Yeomans, M. R., Norton, I. T. & Norton, J. E. Enhancing expected food intake behaviour, hedonics and sensory characteristics of oil-in-water emulsion systems through microstructural properties, oil droplet size and flavour. Food Qual. Prefer. 47, 148–155 (2016).

    Google Scholar 

  5. Chiappisi, L. & Grillo, I. Looking into limoncello: the structure of the Italian liquor revealed by small-angle neutron scattering. ACS Omega 3, 15407–15415 (2018).

    Google Scholar 

  6. Gallo, P. et al. Water: a tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).

    Google Scholar 

  7. Barnes, P., Finney, J. L., Nicholas, J. D. & Quinn, J. E. Cooperative effects in simulated water. Nature 282, 459–464 (1979).

    ADS  Google Scholar 

  8. Luzar, A. & Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).

    ADS  Google Scholar 

  9. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    ADS  Google Scholar 

  10. Palmer, J. C., Poole, P. H., Sciortino, F. & Debenedetti, P. G. Advances in computational studies of the liquid–liquid transition in water and water-like models. Chem. Rev. 118, 9129–9151 (2018).

    Google Scholar 

  11. Urbic, T. & Dill, K. A. Water is a cagey liquid. J. Am. Chem. Soc, https://doi.org/10.1021/jacs.8b08856 (2018).

    Article  Google Scholar 

  12. Nomura, K. et al. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. Proc. Natl Acad. Sci. USA 114, 4066–4071 (2017).

    Google Scholar 

  13. Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn (Academic, 2011).

  14. de Gennes, P.-G. Scaling Concepts in Polymer physics (Cornell Univ. Press, 1979)..

  15. Stevens, M. J., Berezney, J. P. & Saleh, O. A. The effect of chain stiffness and salt on the elastic response of a polyelectrolyte. J. Chem. Phys. 149, 163328 (2018).

    ADS  Google Scholar 

  16. Berezney, J. P. & Saleh, O. A. Electrostatic effects on the conformation and elasticity of hyaluronic acid, a moderately flexible polyelectrolyte. Macromolecules 50, 1085–1089 (2017).

    ADS  Google Scholar 

  17. Sassi, A. S., Assenza, S. & De Los Rios, P. Shape of a stretched polymer. Phys. Rev. Lett. 119, 037801 (2017).

    ADS  Google Scholar 

  18. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  19. Jung, J. M., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9, 2477–2486 (2008).

    Google Scholar 

  20. Ortiz-Tafoya, M. C., Rolland-Sabate, A., Garnier, C., Valadez-Garcia, J. & Tecante, A. Thermal, conformational and rheological properties of kappa-carrageenan-sodium stearoyl lactylate gels and solutions. Carbohydr. Polym. 193, 289–297 (2018).

    Google Scholar 

  21. Hofmann, H. et al. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 109, 16155–16160 (2012).

    ADS  Google Scholar 

  22. Kellner, R. et al. Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proc. Natl Acad. Sci. USA 111, 13355–13360 (2014).

    ADS  Google Scholar 

  23. Clisby, N. Accurate estimate of the critical exponent nu for self-avoiding walks via a fast implementation of the pivot algorithm. Phys. Rev. Lett. 104, 055702 (2010).

    ADS  Google Scholar 

  24. Le Guillou, J. C. & Zinn-Justin, J. Critical exponents from field theory. Phys. Rev. B 21, 3976–3998 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  25. Kohn, J. E. et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl Acad. Sci. USA 101, 12491–12496 (2004).

    ADS  Google Scholar 

  26. Valle, F., Favre, M., De Los Rios, P., Rosa, A. & Dietler, G. Scaling exponents and probability distributions of DNA end-to-end distance. Phys. Rev. Lett. 95, 158105 (2005).

    ADS  Google Scholar 

  27. Dahesh, M., Banc, A., Duri, A., Morel, M. H. & Ramos, L. Polymeric assembly of gluten proteins in an aqueous ethanol solvent. J. Phys. Chem. B 118, 11065–11076 (2014).

    Google Scholar 

  28. Dalheim, M. O., Arnfinnsdottir, N. B., Widmalm, G. & Christensen, B. E. The size and shape of three water-soluble, non-ionic polysaccharides produced by lactic acid bacteria: a comparative study. Carbohydr. Polym. 142, 91–97 (2016).

    Google Scholar 

  29. Lara, C., Usov, I., Adamcik, J. & Mezzenga, R. Sub-persistence-length complex scaling behavior in lysozyme amyloid fibrils. Phys. Rev. Lett. 107, 238101 (2011).

    ADS  Google Scholar 

  30. Usov, I., Adamcik, J. & Mezzenga, R. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils. ACS Nano 7, 10465–10474 (2013).

    Google Scholar 

  31. Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016).

    Google Scholar 

  32. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Google Scholar 

  33. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 5, 423–428 (2010).

    ADS  Google Scholar 

  34. Loveday, S. M. & Gunning, A. P. Nanomechanics of pectin-linked beta-lactoglobulin nanofibril bundles. Biomacromolecules 19, 2834–2840 (2018).

    Google Scholar 

  35. Teckentrup, J. et al. Comparative analysis of different xanthan samples by atomic force microscopy. J. Biotechnol. 257, 2–8 (2017).

    Google Scholar 

  36. Jiang, X., Ryoki, A. & Terao, K. Dimensional and hydrodynamic properties of cellulose tris (alkylcarbamate)s in solution: side chain dependent conformation in tetrahydrofuran. Polymer 112, 152–158 (2017).

    Google Scholar 

  37. Ryoki, A., Kim, D., Kitamura, S. & Terao, K. Linear and cyclic amylose derivatives having brush like side groups in solution: amylose tris(n-octadecylcarbamate)s. Polymer 137, 13–21 (2018).

    Google Scholar 

  38. Terao, K. et al. Side-chain-dependent helical conformation of amylose alkylcarbamates: amylose tris(ethylcarbamate) and amylose tris(n-hexylcarbamate). J. Phys. Chem. B 116, 12714–12720 (2012).

    Google Scholar 

  39. Sano, Y. et al. Solution properties of amylose tris(n-butylcarbamate). Helical and global conformation in alcohols. Polymer 51, 4243–4248 (2010).

    Google Scholar 

  40. Schefer, L., Usov, I. & Mezzenga, R. Anomalous stiffening and ion-induced coil–helix transition of carrageenans under monovalent salt conditions. Biomacromolecules 16, 985–991 (2015).

    Google Scholar 

  41. Schefer, L., Adamcik, J. & Mezzenga, R. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy. Angew. Chem. 53, 5376–5379 (2014).

    Google Scholar 

  42. Tirrell, M. V., Granick, S. & Muthukumar, M. Preface: special topic on chemical physics of charged macromolecules. J. Chem. Phys. 149, 163001 (2018).

    ADS  Google Scholar 

  43. Odijk, T. Polyelectrolytes near the rod limit. J. Polym. Sci. Polym. Phys. Ed. 15, 477–483 (1977).

    ADS  Google Scholar 

  44. Skolnick, J. & Fixman, M. Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10, 944–948 (1977).

    ADS  Google Scholar 

  45. Barrat, J. L. & Joanny, J. F. Persistence length of polyelectrolyte chains. Europhys. Lett. 24, 333–338 (1993).

    ADS  Google Scholar 

  46. Caliskan, G. et al. Persistence length changes dramatically as RNA folds. Phys. Rev. Lett. 95, 268303 (2005).

    ADS  Google Scholar 

  47. Savelyev, A. Do monovalent mobile ions affect DNA’s flexibility at high salt content? Phys. Chem. Chem. Phys. 14, 2250–2254 (2012).

    Google Scholar 

  48. Saleh, O. A., McIntosh, D. B., Pincus, P. & Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 102, 068301 (2009).

    ADS  Google Scholar 

  49. Sim, A. Y., Lipfert, J., Herschlag, D. & Doniach, S. Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering. Phys. Rev. E 86, 021901 (2012).

    ADS  Google Scholar 

  50. Micka, U. & Kremer, K. Persistence length of the Debye–Hückel model of weakly charged flexible polyelectrolyte chains. Phys. Rev. E 54, 2653–2662 (1996).

    ADS  Google Scholar 

  51. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    ADS  Google Scholar 

  52. Dobrynin, A. & Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005).

    Google Scholar 

  53. Irani, A. H., Owen, J. L., Mercadante, D. & Williams, M. A. Molecular dynamics simulations illuminate the role of counterion condensation in the electrophoretic transport of homogalacturonans. Biomacromolecules 18, 505–516 (2017).

    Google Scholar 

  54. Netz, R. R. & Orland, H. Variational charge renormalization in charged systems. Eur. Phys. J. E 11, 301–311 (2003).

    Google Scholar 

  55. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    ADS  Google Scholar 

  56. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    ADS  Google Scholar 

  57. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Google Scholar 

  58. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Google Scholar 

  59. Camunas-Soler, J., Ribezzi-Crivellari, M. & Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annu. Rev. Biophys. 45, 65–84 (2016).

    Google Scholar 

  60. Hughes, M. L. & Dougan, L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. Phys. Soc. 79, 076601 (2016).

    ADS  Google Scholar 

  61. Lakshminarayanan, A., Richard, M. & Davis, B. G. Studying glycobiology at the single-molecule level. Nat. Rev. Chem. 2, 148–159 (2018).

    Google Scholar 

  62. Naranjo, T. et al. Dynamics of individual molecular shuttles under mechanical force. Nat. Commun. 9, 4512 (2018).

    ADS  Google Scholar 

  63. Camunas-Soler, J., Alemany, A. & Ritort, F. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science 355, 412–415 (2017).

    ADS  Google Scholar 

  64. Gunning, A. P. & Morris, V. J. Getting the feel of food structure with atomic force microscopy. Food Hydrocoll. 78, 62–76 (2018).

    Google Scholar 

  65. Qian, L., Bao, Y., Duan, W. & Cui, S. Effects of water content of the mixed solvent on the single-molecule mechanics of amylose. ACS Macro Lett. 7, 672–676 (2018).

    Google Scholar 

  66. Marszalek, P. E., Li, H., Oberhauser, A. F. & Fernandez, J. M. Chair–boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl Acad. Sci. USA 99, 4278–4283 (2002).

    ADS  Google Scholar 

  67. Marszalek, P. E., Oberhauser, A. F., Pang, Y. P. & Fernandez, J. M. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    ADS  Google Scholar 

  68. Lara, Cc, Adamcik, J., Jordens, S. & Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011).

    Google Scholar 

  69. Assenza, S., Adamcik, J., Mezzenga, R. & De Los Rios, P. Universal behavior in the mesoscale properties of amyloid fibrils. Phys. Rev. Lett. 113, 268103 (2014).

    ADS  Google Scholar 

  70. Goldsbury, C. S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27 (1997).

    Google Scholar 

  71. Moffat, J., Morris, V. J., Al-Assaf, S. & Gunning, A. P. Visualisation of xanthan conformation by atomic force microscopy. Carbohydr. Polym. 148, 380–389 (2016).

    Google Scholar 

  72. Koziol, A., Cybulska, J., Pieczywek, P. M. & Zdunek, A. Evaluation of structure and assembly of xyloglucan from tamarind seed (Tamarindus indica L.) with atomic force microscopy. Food Biophys. 10, 396–402 (2015).

    Google Scholar 

  73. Xiao, M. et al. Investigation on curdlan dissociation by heating in water. Food Hydrocoll. 70, 57–64 (2017).

    Google Scholar 

  74. Schefer, L., Adamcik, J., Diener, M. & Mezzenga, R. Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale 7, 16182–16188 (2015).

    ADS  Google Scholar 

  75. Mezzenga, R. & Fischer, P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Rep. Prog. Phys. Phys. Soc. 76, 046601 (2013).

    ADS  Google Scholar 

  76. Fusco, D. & Charbonneau, P. Soft matter perspective on protein crystal assembly. Colloids Surf. B 137, 22–31 (2016).

    Google Scholar 

  77. Platten, F., Valadez-Perez, N. E., Castaneda-Priego, R. & Egelhaaf, S. U. Extended law of corresponding states for protein solutions. J. Chem. Phys. 142, 174905 (2015).

    ADS  Google Scholar 

  78. Platten, F., Hansen, J., Wagner, D. & Egelhaaf, S. U. Second virial coefficient as determined from protein phase behavior. J. Phys. Chem. Lett. 7, 4008–4014 (2016).

    Google Scholar 

  79. Baxter, R. J. Percus–yevick equation for hard spheres with surface adhesion. J. Chem. Phys. 49, 2770–2774 (1968).

    ADS  Google Scholar 

  80. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958).

    ADS  Google Scholar 

  81. Asakura, S. & Oosawa, F. On Interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

    ADS  Google Scholar 

  82. Woldeyes, M. A., Calero-Rubio, C., Furst, E. M. & Roberts, C. J. Predicting protein interactions of concentrated globular protein solutions using colloidal models. J. Phys. Chem. B 121, 4756–4767 (2017).

    Google Scholar 

  83. Braun, M. K. et al. Strong isotope effects on effective interactions and phase behavior in protein solutions in the presence of multivalent ions. J. Phys. Chem. B 121, 1731–1739 (2017).

    Google Scholar 

  84. Bucciarelli, S. et al. Extended law of corresponding states applied to solvent isotope effect on a globular protein. J. Phys. Chem. Lett. 7, 1610–1615 (2016).

    Google Scholar 

  85. Hansen, J., Platten, F., Wagner, D. & Egelhaaf, S. U. Tuning protein–protein interactions using cosolvents: specific effects of ionic and non-ionic additives on protein phase behavior. Phys. Chem. Chem. Phys. 18, 10270–10280 (2016).

    Google Scholar 

  86. Noro, M. G. & Frenkel, D. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000).

    ADS  Google Scholar 

  87. Bárcenas, M., Castellanos, V., Reyes, Y., Odriozola, G. & Orea, P. Phase behaviour of short range triangle well fluids: a comparison with lysozyme suspensions. J. Mol. Liq. 225, 723–729 (2017).

    Google Scholar 

  88. Sciortino, F. & Zaccarelli, E. Reversible gels of patchy particles. Curr. Opin. Solid State Mater. Sci. 15, 246–253 (2011).

    ADS  Google Scholar 

  89. Liu, H., Kumar, S. K. & Sciortino, F. Vapor-liquid coexistence of patchy models: relevance to protein phase behavior. J. Chem. Phys. 127, 084902 (2007).

    ADS  Google Scholar 

  90. Gogelein, C. et al. A simple patchy colloid model for the phase behavior of lysozyme dispersions. J. Chem. Phys. 129, 085102 (2008).

    ADS  Google Scholar 

  91. Foffi, G. & Sciortino, F. On the possibility of extending the Noro–Frenkel generalized law of correspondent states to nonisotropic patchy interactions. J. Phys. Chem. B 111, 9702–9705 (2007).

    Google Scholar 

  92. Boire, A., Sanchez, C., Morel, M. H., Lettinga, M. P. & Menut, P. Dynamics of liquid–liquid phase separation of wheat gliadins. Sci. Rep. 8, 14441 (2018).

    ADS  Google Scholar 

  93. Grimaldo, M. et al. Salt-induced universal slowing down of the short-time self-diffusion of a globular protein in aqueous solution. J. Phys. Chem. Lett. 6, 2577–2582 (2015).

    Google Scholar 

  94. Bucciarelli, S. et al. Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Sci. Adv. 2, e1601432 (2016).

    ADS  Google Scholar 

  95. Cai, J. & Sweeney, A. M. The proof is in the pidan: generalizing proteins as patchy particles. ACS Cent. Sci. 4, 840–853 (2018).

    Google Scholar 

  96. Cai, J., Townsend, J. P., Dodson, T. C., Heiney, P. A. & Sweeney, A. M. Eye patches: protein assembly of index-gradient squid lenses. Science 357, 564–569 (2017).

    ADS  Google Scholar 

  97. Fries, M. R. et al. Multivalent-ion-activated protein adsorption reflecting bulk reentrant behavior. Phys. Rev. Lett. 119, 228001 (2017).

    ADS  Google Scholar 

  98. Roosen-Runge, F., Zhang, F., Schreiber, F. & Roth, R. Ion-activated attractive patches as a mechanism for controlled protein interactions. Sci. Rep. 4, 7016 (2014).

    ADS  Google Scholar 

  99. Stopper, D., Hirschmann, F., Oettel, M. & Roth, R. Bulk structural information from density functionals for patchy particles. J. Chem. Phys. 149, 224503 (2018).

    Google Scholar 

  100. Yigit, C., Heyda, J. & Dzubiella, J. Charged patchy particle models in explicit salt: ion distributions, electrostatic potentials, and effective interactions. J. Chem. Phys. 143, 064904 (2015).

    ADS  Google Scholar 

  101. Blanco, M. A. & Shen, V. K. Effect of the surface charge distribution on the fluid phase behavior of charged colloids and proteins. J. Chem. Phys. 145, 155102 (2016).

    ADS  Google Scholar 

  102. Garcia, N. A., Gnan, N. & Zaccarelli, E. Effective potentials induced by self-assembly of patchy particles. Soft Matter 13, 6051–6058 (2017).

    ADS  Google Scholar 

  103. Newton, A. C., Kools, R., Swenson, D. W. H. & Bolhuis, P. G. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids. J. Chem. Phys. 147, 155101 (2017).

    ADS  Google Scholar 

  104. Bleibel, J. et al. Two time scales for self and collective diffusion near the critical point in a simple patchy model for proteins with floating bonds. Soft Matter 14, 8006–8016 (2018).

    ADS  Google Scholar 

  105. Jansens, K. J. A. et al. Rational design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications. Compr. Rev. Food Sci. Food Saf. 18, 84–105 (2019).

    Google Scholar 

  106. Boire, A. et al. Soft matter approaches for controlling food protein interactions and assembly. Annu. Rev. Food Sci. Technol. https://doi.org/10.1146/annurev-food-032818-121907 (2019).

    Article  Google Scholar 

  107. McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22, 73–79 (2016).

    Google Scholar 

  108. Sciortino, F., Mossa, S., Zaccarelli, E. & Tartaglia, P. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93, 055701 (2004).

    ADS  Google Scholar 

  109. Stradner, A. et al. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492–495 (2004).

    ADS  Google Scholar 

  110. Jachimska, B., Wasilewska, M. & Adamczyk, Z. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 24, 6866–6872 (2008).

    Google Scholar 

  111. Ianeselli, L. et al. Protein-protein interactions in ovalbumin solutions studied by small-angle scattering: effect of ionic strength and the chemical nature of cations. J. Phys. Chem. B 114, 3776–3783 (2010).

    Google Scholar 

  112. Shukla, A. et al. Absence of equilibrium cluster phase in concentrated lysozyme solutions. Proc. Natl Acad. Sci. USA 105, 5075–5080 (2008).

    ADS  Google Scholar 

  113. Liu, Y., Fratini, E., Baglioni, P., Chen, W. R. & Chen, S. H. Effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering. Phys. Rev. Lett. 95, 118102 (2005).

    ADS  Google Scholar 

  114. StradnerA.., Cardinaux FEgelhaaf, S. U. & Schurtenberger, P. Do equilibrium clusters exist in concentrated lysozyme solutions? Proc. Natl Acad. Sci. USA 105, E75; author reply E76, https://doi.org/10.1073/pnas.0805815105 (2008).

    ADS  Google Scholar 

  115. Cardinaux, F. et al. Cluster-driven dynamical arrest in concentrated lysozyme solutions. J. Phys. Chem. B 115, 7227–7237 (2011).

    Google Scholar 

  116. Bergman, M. J., Garting, T., Schurtenberger, P. & Stradner, A. Experimental evidence for a cluster glass transition in concentrated lysozyme solutions. J. Phys. Chem. B 123, 2432–2438 (2019).

    Google Scholar 

  117. Riest, J., Nagele, G., Liu, Y., Wagner, N. J. & Godfrin, P. D. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: experiment and theory. J. Chem. Phys. 148, 065101 (2018).

    ADS  Google Scholar 

  118. Kundu, S., Aswal, V. K. & Kohlbrecher, J. Synergistic effect of temperature, protein and salt concentration on structures and interactions among lysozyme proteins. Chem. Phys. Lett. 657, 90–94 (2016).

    ADS  Google Scholar 

  119. Skar-Gislinge, N. et al. A colloid approach to self-assembling antibodies. Preprint at https://arxiv.org/abs/1810.01160 (2018).

  120. Vega, C. & Mercadé-Prieto, R. Culinary biophysics: on the nature of the 6X°C egg. Food Biophys. 6, 152–159 (2011).

    Google Scholar 

  121. Lepetit, J. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci. 76, 147–159 (2007).

    Google Scholar 

  122. Miocinovic, J. et al. Rheological and textural properties of goat and cow milk set type yoghurts. Int. Dairy J. 58, 43–45 (2016).

    Google Scholar 

  123. Baussay, K., Bon, C. L., Nicolai, T., Durand, D. & Busnel, J.-P. Influence of the ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7. Int. J. Biol. Macromol. 34, 21–28 (2004).

    Google Scholar 

  124. Pouzot, M., Nicolai, T., Durand, D. & Benyahia, L. Structure factor and elasticity of a heat-set globular protein gel. Macromolecules 37, 614–620 (2004).

    ADS  Google Scholar 

  125. Nieuwland, M., Bouwman, W. G., Pouvreau, L., Martin, A. H. & de Jongh, H. H. J. Relating water holding of ovalbumin gels to aggregate structure. Food Hydrocoll. 52, 87–94 (2016).

    Google Scholar 

  126. Chen, N., Zhao, M., Chassenieux, C. & Nicolai, T. Structure of self-assembled native soy globulin in aqueous solution as a function of the concentration and the pH. Food Hydrocoll. 56, 417–424 (2016).

    Google Scholar 

  127. Banc, A. et al. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels. Soft Matter 12, 5340–5352 (2016).

    ADS  Google Scholar 

  128. Dahesh, M., Banc, A., Duri, A., Morel, M.-H. & Ramos, L. Spontaneous gelation of wheat gluten proteins in a food grade solvent. Food Hydrocoll. 52, 1–10 (2016).

    Google Scholar 

  129. Ahmed, K. F., Aschi, A. & Nicolai, T. Formation and characterization of chitosan–protein particles with fractal whey protein aggregates. Colloids Surf. B 169, 257–264 (2018).

    Google Scholar 

  130. Doi, M. & Onuki, A. Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II 2, 1631–1656 (1992).

    Google Scholar 

  131. Kantor, Y. & Webman, I. Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984).

    ADS  Google Scholar 

  132. Rafe, A. & Razavi, S. M. A. Scaling law, fractal analysis and rheological characteristics of physical gels cross-linked with sodium trimetaphosphate. Food Hydrocoll. 62, 58–65 (2017).

    Google Scholar 

  133. MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    ADS  Google Scholar 

  134. Cao, Y., Bolisetty, S., Adamcik, J. & Mezzenga, R. Elasticity in physically cross-linked amyloid fibril networks. Phys. Rev. Lett. 120, 158103 (2018).

    ADS  Google Scholar 

  135. Salentinig, S., Phan, S., Khan, J., Hawley, A. & Boyd, B. J. Formation of highly organized nanostructures during the digestion of milk. ACS nano 7, 10904–10911 (2013).

    Google Scholar 

  136. Salentinig, S., Phan, S., Hawley, A. & Boyd, B. J. Self-assembly structure formation during the digestion of human breast milk. Angew. Chem. 54, 1600–1603 (2015).

    Google Scholar 

  137. Salentinig, S., Amenitsch, H. & Yaghmur, A. In situ monitoring of nanostructure formation during the digestion of mayonnaise. ACS omega 2, 1441–1446 (2017).

    Google Scholar 

  138. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980).

    ADS  Google Scholar 

  139. Mezzenga, R. Physics of self-assembly of lyotropic liquid crystals. https://doi.org/10.1002/9781118336632.ch1 (2012).

    Google Scholar 

  140. Qiu, H. & Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223–234 (2000).

    Google Scholar 

  141. Mezzenga, R. et al. Shear rheology of lyotropic liquid crystals: a case study. Langmuir 21, 3322–3333 (2005).

    Google Scholar 

  142. Barauskas, J. & Landh, T. Phase Behavior of the phytantriol/water system. Langmuir 19, 9562–9565 (2003).

    Google Scholar 

  143. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72, 1525 (1976).

    Google Scholar 

  144. Lee, W. B., Mezzenga, R. & Fredrickson, G. H. Anomalous phase sequences in lyotropic liquid crystals. Phys. Rev. Lett. 99, 187801 (2007).

    ADS  Google Scholar 

  145. Müller, M. & Schick, M. Calculation of the phase behavior of lipids. Phys. Rev. E 57, 6973–6978 (1998).

    ADS  Google Scholar 

  146. Templer, R. H., Seddon, J. M., Duesing, P. M., Winter, R. & Erbes, J. Modeling the phase behavior of the inverse hexagonal and inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. J. Phys. Chem. B 102, 7262–7271 (1998).

    Google Scholar 

  147. Schwarz, U. S. & Gompper, G. Bending frustration of lipid−water mesophases based on cubic minimal surfaces. Langmuir 17, 2084–2096 (2001).

    Google Scholar 

  148. Oka, T., Ohta, N. & Hyde, S. Polar–nonpolar interfaces of inverse bicontinuous cubic phases in phytantriol/water system are parallel to triply periodic minimal surfaces. Langmuir 34, 15462–15469 (2018).

    Google Scholar 

  149. Barriga, H. M. G., Holme, M. N. & Stevens, M. M. Cubosomes: the next generation of smart lipid nanoparticles? Angew. Chem. https://doi.org/10.1002/anie.201804067 (2018).

    Google Scholar 

  150. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. & Glatter, O. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 22, 9919–9927 (2006).

    Google Scholar 

  151. Negrini, R. & Mezzenga, R. Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir 28, 16455–16462 (2012).

    Google Scholar 

  152. Tyler, A. I. et al. Electrostatic swelling of bicontinuous cubic lipid phases. Soft Matter 11, 3279–3286 (2015).

    ADS  Google Scholar 

  153. Leung, S. S. W. & Leal, C. The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range. Soft Matter. https://doi.org/10.1039/c8sm02059k (2018).

    Article  Google Scholar 

  154. Brasnett, C., Longstaff, G., Compton, L. & Seddon, A. Effects of cations on the behaviour of lipid cubic phases. Sci. Rep. 7, 8229 (2017).

    ADS  Google Scholar 

  155. Negrini, R. & Mezzenga, R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 27, 5296–5303 (2011).

    Google Scholar 

  156. Barriga, H. M. et al. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales. Soft Matter 11, 600–607 (2015).

    ADS  Google Scholar 

  157. Fong, W.-K. et al. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv. 7, 4368–4377 (2017).

    Google Scholar 

  158. Fong, W. K. et al. Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30, 5373–5377 (2014).

    Google Scholar 

  159. Salentinig, S., Sagalowicz, L., Leser, M. E., Tedeschi, C. & Glatter, O. Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7, 650–661 (2011).

    ADS  Google Scholar 

  160. Sadeghpour, A., Rappolt, M., Misra, S. & Kulkarni, C. V. Bile salts caught in the act: from emulsification to nanostructural reorganization of lipid self-assemblies. Langmuir 34, 13626–13637 (2018).

    Google Scholar 

  161. Clulow, A. J., Salim, M., Hawley, A. & Boyd, B. J. A closer look at the behaviour of milk lipids during digestion. Chem. Phys. lipids 211, 107–116 (2018).

    Google Scholar 

  162. McClements, D. J. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 219, 27–53 (2015).

    Google Scholar 

  163. Sagalowicz, L. et al. Lipid self-assembled structures for reactivity control in food. Phil. Trans. A 374, https://doi.org/10.1098/rsta.2015.0136 (2016).

    ADS  Google Scholar 

  164. Martiel, I. et al. Oil and drug control the release rate from lyotropic liquid crystals. J. Control. Release 204, 78–84 (2015).

    Google Scholar 

  165. Clogston, J. & Caffrey, M. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J. Control. Release 107, 97–111 (2005).

    Google Scholar 

  166. Meikle, T. G. et al. Predicting the release profile of small molecules from within the ordered nanostructured lipidic bicontinuous cubic phase using translational diffusion coefficients determined by PFG-NMR. Nanoscale 9, 2471–2478 (2017).

    Google Scholar 

  167. Fong, W. K., Hanley, T. & Boyd, B. J. Stimuli responsive liquid crystals provide ‘on-demand' drug delivery in vitro and in vivo. J. Control. Release 135, 218–226 (2009).

    Google Scholar 

  168. Assenza, S. & Mezzenga, R. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases. J. Chem. Phys. 148, 054902 (2018).

    ADS  Google Scholar 

  169. Kim, J. et al. Ultrafast hydration dynamics in the lipidic cubic phase: discrete water structures in nanochannels. J. Phys. Chem. B 110, 21994–22000 (2006).

    Google Scholar 

  170. Mezzenga, R. Equilibrium and non-equilibrium structures in complex food systems. Food Hydrocoll. 21, 674–682 (2007).

    Google Scholar 

  171. Bhat, S., Tuinier, R. & Schurtenberger, P. Spinodal decomposition in a food colloid–biopolymer mixture: evidence for a linear regime. J. Phys. Condens Matter 18, L339–L346 (2006).

    ADS  Google Scholar 

  172. Mahmoudi, N. & Stradner, A. Structural arrest and dynamic localization in biocolloidal gels. Soft Matter 13, 4629–4635 (2017).

    ADS  Google Scholar 

  173. Bolisetty, S. & Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 11, 365–371 (2016).

    ADS  Google Scholar 

  174. Shen, Y. et al. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat. Nanotechnol. 12, 642–647 (2017).

    ADS  Google Scholar 

  175. Nagy, K. et al. Vitamin E and vitamin E acetate absorption from self-assembly systems under pancreas insufficiency conditions. Chimia 68, 129–134 (2014).

    Google Scholar 

  176. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  Google Scholar 

  177. Matsuyama, A. & Tanaka, F. Theory of solvation-induced reentrant phase separation in polymer solutions. Phys. Rev. Lett. 65, 341–344 (1990).

    ADS  Google Scholar 

  178. Takahashi, M., Shimazaki, M. & Yamamoto, J. Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J. Polym. Sci. B 39, 91–100 (2001).

    Google Scholar 

  179. Rwei, S.-P. & Lyu, M.-S. 3-D phase diagram of HPC/H2O/H3PO4 tertiary system. Cellulose 19, 1065–1074 (2012).

    Google Scholar 

  180. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Google Scholar 

  181. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Google Scholar 

  182. Wu, X. et al. Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase. Food Hydrocoll. 52, 942–951 (2016).

    Google Scholar 

  183. Brownlow, S. et al. Bovine ß-lactoglobulin at 1.8 Å resolution — still an enigmatic lipocalin. Structure 5, 481–495 (1997).

    Google Scholar 

  184. Weiss, M. S., Palm, G. J. & Hilgenfeld, R. Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD. Acta Crystallogr. D. 56, 952–958 (2000).

    Google Scholar 

  185. Jo, S., Vargyas, M., Vasko-Szedlar, J., Roux, B. & Im, W. PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res. 36, W270–W275 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to W. K. Fong and M. Usuelli for discussions and thank A. Diego-González for producing the mayonnaise sample reported in Fig. 1a.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation, revision and editing.

Corresponding author

Correspondence to Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks E. Zaccarelli, N. Brooks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Glossary

Denaturation

Loss of secondary, tertiary and/or quaternary structure of a protein owing to temperature or chemical stress, for example.

Amyloid fibrils

Protein and peptide-based fibrous aggregates with a characteristic cross-ß secondary structure.

Thermal blob

The portion of chain length whose total interaction energy is of the order of kBT.

Hydrolysed

When peptide chains are fragmented into shorter subunits by chemical, enzymatic or thermal stimuli.

Hamaker constant

A quantity with the units of energy characterizing the van der Waals interactions between colloids.

Second virial coefficient

A quantity with units of volume describing the net two-body interactions between two particles; positive and negative values indicate net repulsion and attraction, respectively.

Association kinetics

Dynamic features of binding between particles, usually characterized by suitable rate constants.

Isoelectric point

Value of pH for which partial protonation induces a net zero charge in a molecule hosting several positively charged and negatively charged groups.

Storage modulus

Parameter with the units of pressure quantifying the elastic response of a viscoelastic material to an external stress.

Block copolymers

Macromolecules obtained by covalently joining two polymers with different physico-chemical properties by one end.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assenza, S., Mezzenga, R. Soft condensed matter physics of foods and macronutrients. Nat Rev Phys 1, 551–566 (2019). https://doi.org/10.1038/s42254-019-0077-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0077-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing