Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond

Abstract

Whenever a quantum system undergoes a cyclic evolution governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov–Bohm phase and the Pancharatnam and Berry phase, but both earlier and later manifestations exist. Although traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and become increasingly influential in many areas from condensed-matter physics and optics to high-energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review, we first introduce the Aharonov–Bohm effect as an important realization of the geometric phase. Then, we discuss in detail the broader meaning, consequences and realizations of the geometric phase, emphasizing the most important mathematical methods and experimental techniques used in the study of the geometric phase, in particular those related to recent works in optics and condensed-matter physics.

Key points

  • The Aharonov–Bohm phase, acquired by charged particles encircling a confined magnetic flux, is topological, gauge invariant and realistic, highlighting the unique role of electromagnetic potentials in quantum mechanics.

  • The Aharonov–Bohm phase can be seen as a manifestation of Berry’s geometric phase accumulated whenever a quantum system is adiabatically transported around a cyclic circuit on an abstract surface in the parameter space (with additional generalizations to degenerate and open systems, and to non-adiabatic, non-cyclic, non-unitary evolutions).

  • The geometric phase is an example of a holonomy (failure of parallel transport around closed cycles to preserve the geometrical information being transported) and its profound role in physics.

  • The two main types of geometric phase in optics originate from ‘spin redirection’ (when light with a fixed state of polarization is changing direction) and from a slow change in polarization (of light propagating through an anisotropic medium in a fixed direction), giving rise to the Pancharatnam–Berry phase.

  • In condensed-matter physics, the geometric phase manifests itself in the electronic Bloch states, quantum Hall effect, electric polarization, exchange statistics and many other phenomena.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Aharonov–Bohm effect.
Fig. 2: Parallel transport and holonomy within a vector bundle.
Fig. 3: Illustrations of the geometric phase in optics.
Fig. 4: Realizations of a spin-dependent geometric phase through a structured metasurface.
Fig. 5: Photonic quantum walk employing orbital angular momentum.
Fig. 6: Electronic Bloch states in the first Brillouin zone, and the quantum Hall effect.
Fig. 7: Exchange statistics in the case of anyons.

References

  1. 1.

    Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 11, 485 (1959).

  2. 2.

    Franz, W. Elektroneninterferenzen im Magnetfeld. Verh. Dtsch Phys. Ges. 20, 65 (1939).

  3. 3.

    Ehrenberg, W. & Siday, R. E. The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. Lond. Sect. B 62, 8 (1949).

  4. 4.

    Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845 (1975).

  5. 5.

    Peshkin, M. The Aharonov–Bohm effect: why it cannot be eliminated from quantum mechanics. Phys. Rep. 80, 375–386 (1981).

  6. 6.

    Olariu, S. & Popescu, I. I. The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339 (1985).

  7. 7.

    Popescu, S. Dynamical quantum non-locality. Nat. Phys. 6, 151–153 (2010).

  8. 8.

    Aharonov, Y., Cohen, E. & Rohrlich, D. Nonlocality of the Aharonov–Bohm effect. Phys. Rev. A 93, 042110 (2016).

  9. 9.

    Vaidman, L. Role of potentials in the Aharonov–Bohm effect. Phys. Rev. A 86, 040101 (2012).

  10. 10.

    Aharonov, Y., Cohen, E. & Rohrlich, D. Comment on “role of potentials in the Aharonov–Bohm effect”. Phys. Rev. A 92, 026101 (2015).

  11. 11.

    Vaidman, L. Reply to “comment on ‘role of potentials in the Aharonov–Bohm effect’. Phys. Rev. A 92, 026102 (2015).

  12. 12.

    Pearle, P. & Rizzi, A. Quantum-mechanical inclusion of the source in the Aharonov–Bohm effects. Phys. Rev. A 95, 052123 (2017).

  13. 13.

    Pearle, P. & Rizzi, A. Quantized vector potential and alternative views of the magnetic Aharonov–Bohm phase shift. Phys. Rev. A 95, 052124 (2017).

  14. 14.

    Maudlin, T. Ontological clarity via canonical presentation: electromagnetism and the Aharonov–Bohm effect. Entropy 20, 465 (2018).

  15. 15.

    Li, B., Hewak, D. W. & Wang, Q. J. The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov–Bohm effect. Found. Phys. 48, 837–852 (2018).

  16. 16.

    Weisskopf, V. F. in Lectures in Theoretical Physics Vol. 3 (ed. Britten, W. E.) 67 (Interscience, 1961).

  17. 17.

    Kretzschmar, M. Aharonov–Bohm scattering of a wave packet of finite extension. Z. Phys. 185, 84–96 (1965).

  18. 18.

    Roy, S. M. Condition for nonexistence of Aharonov–Bohm effect. Phys. Rev. Lett. 44, 111–114 (1980).

  19. 19.

    Berry, M. in Fundamental Aspects of Quantum theory (eds Gorini V. & Frigerio, A.) 319–320 (Springer, 1986).

  20. 20.

    Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).

  21. 21.

    Cimmino, A. et al. Observation of the topological Aharonov–Casher phase shift by neutron interferometry. Phys. Rev. Lett. 63, 380–383 (1989).

  22. 22.

    Elion, W. J., Wachters, J. J., Sohn, L. L. & Mooij, J. D. Observation of the Aharonov–Casher effect for vortices in Josephson-junction arrays. Phys. Rev. Lett. 71, 2311–2314 (1993).

  23. 23.

    Koenig, M. et al. Direct observation of the Aharonov–Casher phase. Phys. Rev. Lett. 96, 076804 (2006).

  24. 24.

    Chambers, R. G. Shift of an electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5, 3–5 (1960).

  25. 25.

    Tonomura, A. et al. Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792 (1986).

  26. 26.

    Webb, R. A., Washburn, S., Umbach, C. P. & Laibowitz, R. B. Observation of h/e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696–2699 (1985).

  27. 27.

    Yacoby, Y., Heiblum, M., Mahalu, D. & Shtrikman, H. Coherence and phase sensitive measurements in a quantum dot. Phys. Rev. Lett. 74, 4047–4050 (1995).

  28. 28.

    Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

  29. 29.

    Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

  30. 30.

    Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2010).

  31. 31.

    Bardarson, J. H., Brouwer, P. W. & Moore, J. E. Aharonov–Bohm oscillations in disordered topological insulator nanowires. Phys. Rev. Lett. 105, 156803 (2010).

  32. 32.

    Zhang, Y. & Vishwanath, A. Anomalous Aharonov–Bohm conductance oscillations from topological insulator surface states. Phys. Rev. Lett. 105, 206601 (2010).

  33. 33.

    Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

  34. 34.

    Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

  35. 35.

    Noguchi, A., Shikano, Y., Toyoda, K. & Urabe, S. Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap. Nat. Commun. 5, 3868 (2014).

  36. 36.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).

  37. 37.

    Born, M. & Fock, V. A. Beweis des Adiabatensatzes. Z. Phys. A 51, 165–180 (1927).

  38. 38.

    Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983).

  39. 39.

    Wilczek, F. & Shapere, A. Geometric Phases in Physics. (World Scientific:, 1989).

  40. 40.

    Markovski, B. & Vinitsky, S. I. Topological Phases in Quantum Theory. (World Scientific:, 1989).

  41. 41.

    Zwanziger, J. W., Koenig, M. & Pines, A. Berry’s phase. Annu. Rev. Phys. Chem. 41, 601–646 (1990).

  42. 42.

    Anandan, J. The geometric phase. Nature 360, 307–313 (1992).

  43. 43.

    Li, H.-Z Global Properties of Simple Quantum Systems — Berry’s Phase and Others. (Shanghai Scientific and Technical Publishers:, 1998).

  44. 44.

    Bohm, A, Mostafazadeh, A, Koizumi, H, Niu, Q. & Zwanziger, J. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics. (Springer Verlag:, 2003).

  45. 45.

    Chruscinski, D. & Jamiolkowski, A. Geometric Phases in Classical and Quantum Mechanics. (Birkhäuser:, 2004).

  46. 46.

    Berry, M. V. Geometric phases. WordPress https://michaelberryphysics.files.wordpress.com/2018/03/berryd.pdf (2018).

  47. 47.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

  48. 48.

    Berry, M. Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990).

  49. 49.

    Berry, M. Geometric phase memories. Nat. Phys. 6, 148–150 (2010).

  50. 50.

    Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

  51. 51.

    Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

  52. 52.

    Longuet-Higgins, H. C., Öpik, U., Pryce, M. H. L. & Sack, R. A. Studies of the Jahn–Teller effect. II. The dynamical problem. Proc. R. Soc. Lond. A 244, 1–16 (1958).

  53. 53.

    Mead, C. A. & Truhlar, D. G. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70, 2284–2296 (1979).

  54. 54.

    Hamilton, W. R. Third supplement to an essay on the theory of systems of rays. Trans. R. Ir. Acad. 17, 1–144 (1837).

  55. 55.

    Lloyd, H. On the phenomena presented by light in its passage along the axes of biaxial crystals. Phil. Mag. 1, 112–120; 207–210 (1833).

  56. 56.

    Bortolotti, E. Memories and notes presented by fellows. Rend. R. Acc. Naz. Linc. 4, 552 (1926).

  57. 57.

    Rytov, S. M. On transition from wave to geometrical optics. Dokl. Akad. Nauk SSSR 18, 263–266 (1938).

  58. 58.

    Vladimirskii, V. V. The rotation of a polarization plane for curved light ray. Dokl. Akad. Nauk. SSSR 31, 222–224 (1941).

  59. 59.

    Budden, K. G. & Smith, M. S. Phase memory and additional memory in WKB solutions for wave propagation in stratified media. Proc. R. Soc. Lond. A 350, 27–46 (1976).

  60. 60.

    Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111 (1984).

  61. 61.

    Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987).

  62. 62.

    Berry, M. V. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. Lond. A 414, 31–46 (1987).

  63. 63.

    Samuel, J. & Bhandari, R. General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339 (1988).

  64. 64.

    Hannay, J. H. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A 18, 221–230 (1985).

  65. 65.

    Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747 (1989).

  66. 66.

    Meir, Y., Gefen, Y. & Entin-Wohlman, O. Universal effects of spin-orbit scattering in mesoscopic systems. Phys. Rev. Lett. 63, 798 (1989).

  67. 67.

    Loss, D., Goldbart, P. & Balatsky, A. V. Berry’s phase and persistent charge and spin currents in textured mesoscopic rings. Phys. Rev. Lett. 65, 1655 (1990).

  68. 68.

    Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K. & Nitta, J. Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4, 2526 (2013).

  69. 69.

    Garrison, J. C. & Wright, E. M. Complex geometrical phases for dissipative systems. Phys. Lett. A 128, 177–181 (1988).

  70. 70.

    Berry, M. V. Geometric amplitude factors in adiabatic quantum transitions. Proc. R. Soc. Lond. A 430, 405–411 (1990).

  71. 71.

    Zwanziger, J. W., Rucker, S. P. & Chingas, G. C. Measuring the geometric component of the transition probability in a two-level system. Phys. Rev. A 43, 3232–3240 (1991).

  72. 72.

    Kepler, T. B. & Kagan, M. L. Geometric phase shifts under adiabatic parameter changes in classical dissipative systems. Phys. Rev. Lett. 66, 847 (1991).

  73. 73.

    Ning, C. Z. & Haken, H. Geometrical phase and amplitude accumulations in dissipative systems with cyclic attractors. Phys. Rev. Lett. 68, 2109–2122 (1992).

  74. 74.

    Bliokh, K. Y. The appearance of a geometric-type instability in dynamic systems with adiabatically varying parameters. J. Phys. A 32, 2551 (1999).

  75. 75.

    Carollo, A., Fuentes-Guridi, I., Santos, M. F. & Vedral, V. Geometric phase in open systems. Phys. Rev. Lett. 90, 160402 (2003).

  76. 76.

    Dietz, B. et al. Exceptional points in a microwave billiard with time-reversal invariance violation. Phys. Rev. Lett. 106, 150403 (2011).

  77. 77.

    Whitney, R. S. & Gefen, Y. Berry phase in a nonisolated system. Phys. Rev. Lett. 90, 190402 (2003).

  78. 78.

    Whitney, R. S., Makhlin, Y., Shnirman, A. & Gefen, Y. Geometric nature of the environment-induced Berry phase and geometric dephasing. Phys. Rev. Lett. 94, 070407 (2005).

  79. 79.

    Berger, S. et al. Measurement of geometric dephasing using a superconducting qubit. Nat. Commun. 6, 8757 (2015).

  80. 80.

    Gaitan, F. Berry’s phase in the presence of a stochastically evolving environment: a geometric mechanism for energy-level broadening. Phys. Rev. A 58, 1665 (1998).

  81. 81.

    De Chiara, G. & Palma, G. M. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 90404 (2003).

  82. 82.

    Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).

  83. 83.

    Mailybaev, A. A., Kirillov, O. N. & Seyranian, A. P. Geometric phase around exceptional points. Phys. Rev. A 72, 014104 (2005).

  84. 84.

    Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

  85. 85.

    Zygelman, B. Appearance of gauge potentials in atomic collision physics. Phys. Lett. A 125, 476–481 (1987).

  86. 86.

    Holstein, B. R. The Aharonov–Bohm effect and variations. Contemp. Phys. 36, 93–102 (1995).

  87. 87.

    Aharonov, Y. et al. Aharonov–Bohm and Berry phases for a quantum cloud of charge. Phys. Rev. Lett. 73, 918 (1994).

  88. 88.

    Bott, R. & Chern, S. S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114, 71–112 (1965).

  89. 89.

    Chern, S. S. Characteristic classes of Hermitian manifolds. Ann. Math. 47, 85–121 (1946).

  90. 90.

    Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60–72 (1931).

  91. 91.

    Pietilä, V. & Möttönen, M. Creation of Dirac monopoles in spinor Bose–Einstein condensates. Phys. Rev. Lett. 103, 030401 (2009).

  92. 92.

    Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M. & Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014).

  93. 93.

    Bernevig, B. A. It’s been a Weyl coming. Nat. Phys. 11, 698–699 (2015).

  94. 94.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  95. 95.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

  96. 96.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  97. 97.

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

  98. 98.

    Lu, L., Fu, L., Joannopoulos, J. D. & Soljaĉić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics 7, 294–299 (2013).

  99. 99.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

  100. 100.

    Bliokh, K. Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A 11, 094009 (2009).

  101. 101.

    Ross, J. N. The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects. Opt. Quantum Electron. 16, 455–461 (1984).

  102. 102.

    Tomita, A. & Chiao, R. Y. Observation of Berry’s topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937 (1986).

  103. 103.

    Chiao, R. Y. & Wu, Y. S. Manifestations of Berry’s topological phase for the photon. Phys. Rev. Lett. 57, 933 (1986).

  104. 104.

    Mathur, H. Thomas precession, spin-orbit interaction, and Berry’s phase. Phys. Rev. Lett. 67, 3325 (1991).

  105. 105.

    Berard, A. & Mohrbach, H. Spin Hall effect and Berry phase of spinning particles. Phys. Lett. A 352, 190–195 (2006).

  106. 106.

    Bliokh, K. Y., Alonso, M. A., Ostrovskaya, E. A. & Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A 82, 063825 (2010).

  107. 107.

    Jones, R. C. A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941).

  108. 108.

    Simon, R., Kimble, H. J. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: an optical experiment. Phys. Rev. Lett. 61, 19 (1988).

  109. 109.

    Bhandari, R. Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997).

  110. 110.

    Berry, M. V. & Klein, S. Geometric phases from stacks of crystal plates. J. Mod. Opt. 43, 165–180 (1996).

  111. 111.

    Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

  112. 112.

    Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002).

  113. 113.

    Marrucci, L., Manzo, C. & Paparo, D. Pancharatnam–Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl. Phys. Lett. 88, 221102 (2006).

  114. 114.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

  115. 115.

    Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Phancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328 (2003).

  116. 116.

    Mansuripur, M., Zakharian, A. R. & Wright, E. M. Spin and orbital angular momenta of light refrected from a cone. Phys. Rev. A 81, 033813 (2011).

  117. 117.

    Bouchard, F., Mand, H., Mirhosseini, M., Karimi, E. & Boyd, R. W. Achromatic orbital angular momentum generator. New J. Phys. 16, 123006 (2014).

  118. 118.

    Radwell, N., Hawley, R. D., Gotte, J. B. & Franke-Arnold, S. Achromatic vector vortex beams from a glass cone. Nat. Commun. 7, 10564 (2016).

  119. 119.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

  120. 120.

    Padgett, M. J. & Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 24, 430–432 (1999).

  121. 121.

    Galvez, E. J. et al. Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum. Phys. Rev. Lett. 90, 203901 (2003).

  122. 122.

    Calvo, G. F. Wigner representation and geometric transformations of optical orbital angular momentum spatial modes. Opt. Lett. 30, 1207–1209 (2005).

  123. 123.

    Karimi, E., Slussarenko, S., Piccirillo, B., Marrucci, L. & Santamato, E. Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum. Phys. Rev. A 81, 053813 (2010).

  124. 124.

    Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

  125. 125.

    Malhotra, T. et al. Measuring geometric phase without interferometry. Phys. Rev. Lett. 120, 233602 (2018).

  126. 126.

    Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).

  127. 127.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

  128. 128.

    Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M. & Woerdman, J. P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

  129. 129.

    Heckenberg, N. R., McDuff, R., Smith, C. P., Rubinsztein-Dunlop, H. & Wegener, M. J. Laser beams with phase singularities. Opt. Quantum Electron. 24, S951–S962 (1992).

  130. 130.

    Bazhenov, V. Yu, Soskin, M. S. & Vasnetsov, M. V. Screw dislocations in light wavefronts. J. Mod. Opt. 39, 985–990 (1992).

  131. 131.

    Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

  132. 132.

    Liberman, V. S. & Zeldovich, B. Y. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46, 5199–5520 (1992).

  133. 133.

    Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

  134. 134.

    Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

  135. 135.

    Larocque, H. et al. Arbitrary optical wavefront shaping via spin-to-orbit coupling. J. Opt. 18, 124002 (2016).

  136. 136.

    Quabis, S., Dorn, R. & Leuchs, G. Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B 81, 597–600 (2005).

  137. 137.

    Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1–C6 (2012).

  138. 138.

    Beresna, M., Gecevicius, M., Kazansky, P. G. & Gertus, T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011).

  139. 139.

    Cardano, F., Karimi, E., Marrucci, L., de Lisio, C. & Santamato, E. Generation and dynamics of optical beams with polarization singularities. Opt. Express 21, 8815–8820 (2013).

  140. 140.

    Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

  141. 141.

    Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).

  142. 142.

    Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105, 101905 (2014).

  143. 143.

    Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photonics 2, 748–753 (2008).

  144. 144.

    Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

  145. 145.

    Merano, M., Aiello, A., Van Exter, M. P. & Woerdman, J. P. Observing angular deviations in the specular reflection of a light beam. Nat. Photonics 3, 337–340 (2009).

  146. 146.

    Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

  147. 147.

    Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015).

  148. 148.

    Cardano, F. et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439 (2016).

  149. 149.

    Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017).

  150. 150.

    Sephton, B. et al. A versatile quantum walk resonator with bright classical light. Preprint at arXiv https://arxiv.org/abs/1810.06850 (2018).

  151. 151.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  152. 152.

    Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).

  153. 153.

    Bliokh, K. Y., Bliokh, Y. P., Savel’Ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

  154. 154.

    Karimi, E., Marrucci, L., Grillo, V. & Santamato, E. Spin-to-orbital angular momentum conversion and spin-polarization filtering in electron beams. Phys. Rev. Lett. 108, 044801 (2012).

  155. 155.

    Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915 (1999).

  156. 156.

    Bliokh, K. Y. & Bliokh, Y. P. Spin gauge fields: from Berry phase to topological spin transport and Hall effects. Ann. Phys. 319, 13 (2005).

  157. 157.

    Wyckoff, R. W. G The Analytical Expression of the Results of the Theory of Space Groups(Carnegie Institution of Washington:, 1922).

  158. 158.

    Thouless, J. D., Kohmoto, M., Nightingale, P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

  159. 159.

    Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

  160. 160.

    Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154 (1954).

  161. 161.

    Smit, J. The spontaneous Hall effect in ferromagnetics I. Physica 21, 877 (1955).

  162. 162.

    Resta, R. Theory of the electric polarization in crystals. Ferroelectrics 136, 51–55 (1992).

  163. 163.

    King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651 (1993).

  164. 164.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

  165. 165.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

  166. 166.

    Resta, R. & Vanderbilt, D. in Physics of Ferroelectrics Topics in Applied Physics Vol. 105 (eds Ascheron, C. E. & Skolaut, W.) 31–68 (Springer-Verlag Berlin, 2007).

  167. 167.

    Berry, M. V. & Robbins, J. M. Indistinguishability for quantum particles: spin, statistics and the geometric phase. Proc. R. Soc. A 453, 1771–1790 (1997).

  168. 168.

    Berry, M. V. & Robbins, J. M. Quantum Indistinguishability: alternative constructions of the transported basis. J. Phys. A 33, L207–L214 (2000).

  169. 169.

    Leinaas, J. M. & Myrheim, J. On the theory of identical particles. Nuovo Cim. 37, 1–23 (1977).

  170. 170.

    Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982).

  171. 171.

    Campagnano, G. et al. Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012).

  172. 172.

    Altland, A., Gefen, Y. & Rosenow, B. Intermediate fixed point in a Luttinger liquid with elastic and dissipative backscattering. Phys. Rev. B 92, 085124 (2015).

  173. 173.

    Law, K. T., Feldman, D. E. & Gefen, Y. Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006).

  174. 174.

    Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

  175. 175.

    Thouless, D. J. & Gefen, Y. Fractional quantum Hall effect and multiple Aharonov–Bohm periods. Phys. Rev. Lett. 66, 806 (1991).

  176. 176.

    Chamon, C. C., Freed, D. & Wen, X. G. Tunneling and quantum noise in one-dimensional Luttinger liquids. Phys. Rev. B 51, 2363 (1995).

  177. 177.

    Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in an anyonic Mach–Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

  178. 178.

    Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

  179. 179.

    Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445 (1974).

  180. 180.

    Sonoda, H. Berry’s phase in chiral gauge theories. Nucl. Phys. B 266, 410–422 (1986).

  181. 181.

    Aitchison, I. J. R. & Hey, A. J. G. Gauge Theories in Particle Physics: A Practical Introduction. Volume 2: Non-Abelian Gauge Theories: QCD and the Electroweak Theory(CRC Press:, 2012).

  182. 182.

    Dowker, J. S. A gravitational Aharonov–Bohm effect. Nuovo Ciemento B 52, 129–135 (1967).

  183. 183.

    Ford, L. H. & Vilenkin, A. A gravitational analogue of the Aharonov–Bohm effect. J. Phys. A 14, 2353 (1981).

  184. 184.

    Datta, D. P. Geometric phase in vacuum instability: applications in quantum cosmology. Phys. Rev. D 48, 5746 (1993).

  185. 185.

    Berry, M. V. et al. Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154 (1980).

  186. 186.

    Son, D. T. & Yamamoto, N. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Phys. Rev. Lett. 109, 81602 (2012).

  187. 187.

    Mead, C. A. The geometric phase in molecular systems. Rev. Mod. Phys. 64, 51 (1992).

  188. 188.

    Kuppermann, A. & Wu, Y. S. M. The geometric phase effect shows up in chemical reactions. Chem. Phys. Lett. 205, 577–586 (1993).

  189. 189.

    Kendrick, B. K., Hazra, J. & Balakrishnan, N. The geometric phase controls ultracold chemistry. Nat. Commun. 6, 7918 (2015).

  190. 190.

    Berry, M. V. & Shukla, P. Geometric phase curvature for random states. J. Phys. A 51, 475101 (2018).

  191. 191.

    Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).

  192. 192.

    Jones, J. A., Vedral, V., Ekert, A. & Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000).

  193. 193.

    Duan, L. M., Cirac, J. I. & Zoller, P. Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001).

  194. 194.

    Vedral, V. Geometric phases and topological quantum computation. Int. J. Quant. Inf. 1, 1–23 (2003).

  195. 195.

    Leek, P. J. et al. Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007).

  196. 196.

    Nayak, C. et al. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

  197. 197.

    Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

  198. 198.

    Berger, S. et al. Measurement of geometric dephasing using a superconducting qubit. Nat. Commun. 6, 8757 (2015).

  199. 199.

    Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016).

Download references

Acknowledgements

This work was supported by Canada Research Chair (CRC), Canada Foundation for Innovation (CFI), Canada First Excellence Research Fund (CFREF) Program, DFG grants no. MI 658/10-1, no. RO 2247/8-1 and CRC 183, Leverhulme Trust and the Italia-Israel project QUANTRA.

Author information

All authors have read, discussed and contributed to the writing of the manuscript.

Correspondence to Eliahu Cohen or Ebrahim Karimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Topological invariants

Any properties of a topological space that are invariant under homeomorphisms.

Winding number

The number of times that a closed curve travels anticlockwise around a point on a surface.

Connection

Operation that allows parallel transport over the vector bundle.

Vector bundle

A family of vector spaces.

Chern class

A certain topological invariant associated with vector bundles on smooth manifolds.

Jones vectors

The 2D vectors describing polarization of light.

Quantum walk

The quantum analogue of classical random walk taking advantage of quantum coherent superposition.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark