Abstract
Thin objects are deformed in a range of applications and at a range of scales, from graphene and the actuators used in soft robots to the light sails of spacecraft. Such deformations are constrained, as it is much easier to bend than to stretch a thin object — this constraint is often used to determine the deformations that are allowed and those that are prohibited. Recently, however, a series of applications has emerged in which apparently prohibited deformations are observed. In many of these examples, the apparent ability to stretch and compress (as well as bend) is facilitated by excess material that is stored in microscopic buckled structures: the changes in length that are required to enable particular deformations are ‘buffered by buckling’. In this Review, I discuss buffering by buckling as a means of enabling elastic deformations without significant changes of material length (thereby distinguishing this mechanism from material swelling and growth). I discuss a range of examples from technology and nature and consider the conditions under which buffering by buckling operates.
Key points
-
Thin elastic objects are much easier to bend than to stretch or compress and thus usually deform while preserving their length.
-
Gauss’s Theorema Egregium places severe restrictions on the length-preserving deformations that are possible.
-
The introduction of small-scale buckling structures within a thin object can enable it to access deformation modes that appear to require changes in length: buckles buffer the required change in length.
-
Small-scale buckles are often designed in systems but also emerge naturally through instabilities such as wrinkling.
-
Emergent buckling structures enable changes in curvature, but in turn, the fine structure of the buckling depends on this curvature.
-
Buffering by buckling is an effective mechanism for accommodating apparent changes in length but only operates when an object is extremely slender and subject to intermediate tensions or confinement.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Elastocapillary cleaning of twisted bilayer graphene interfaces
Nature Communications Open Access 20 August 2021
-
Universally bistable shells with nonzero Gaussian curvature for two-way transition waves
Nature Communications Open Access 29 January 2021
-
Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices
Nature Communications Open Access 21 January 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Atwater, H. A. et al. Materials challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro-Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Reis, P. M. A perspective on the revival of structural (in)stability with novel opportunities for function: from buckliphobia to buckliphilia. J. Appl. Mech. 82, 111001 (2015).
Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nat. Photonics 6, 327–332 (2012).
Harrison, C., Stafford, C. M., Zhang, W. & Karim, A. Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85, 4016 (2004).
Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).
Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).
Baek, C., Sageman-Furnas, A. O., Jawed, M. K. & Reis, P. M. Form finding in elastic gridshells. Proc. Natl Acad. Sci. USA. 115, 75–80 (2017).
Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).
Paulsen, J. D. et al. Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14, 1206–1209 (2015).
Kumar, D., Paulsen, J. D., Russell, T. P. & Menon, N. Wrapping with a splash: high-speed encapsulation with ultrathin sheets. Science 359, 775–778 (2018).
Liu, P. et al. Autoperforation of 2D materials for generating two-terminal memristive Janus particles. Nat. Mater. 17, 1005–1012 (2018).
Landau, L. D. & Lifschitz, E. M. Theory of Elasticity 2nd edn, Ch. 2 (Pergamon, 1970).
Rayleigh, J. W. S. The Theory of Sound Vol. 1, 396 (Dover, 1945).
Wilson, P. M. H. Curved Spaces: From Classical Geometries to Elementary Differential Geometry 155 (Cambridge Univ. Press, 2008).
Ben Amar, M. & Pomeau, Y. Crumpled paper. Proc. R. Soc. A 453, 729–755 (1997).
Chaieb, S. & Melo, F. Experimental study of developable cones. Phys. Rev. Lett. 80, 2354–2357 (1998).
Cerda, E. & Mahadevan, L. Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998).
Cerda, E., Chaieb, S., Melo, F. & Mahadevan, L. Conical dislocations in crumpling. Nature 401, 46–50 (1999).
Efrati, E., Pocivavsek, L., Meza, R., Lee, K. Y. C. & Witten, T. A. Confined disclinations: exterior versus material constraints in developable thin elastic sheets. Phys. Rev. E 91, 022404 (2015).
Pogorelov, A. V. Bending of Surfaces and Stability of Shells (American Mathematical Society, 1988).
Neek-Amal, M. et al. Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnel microscopy. Nat. Commun. 5, 4962 (2014).
Bende, N. P. et al. Geometrically controlled snapping transitions in shells with curved creases. Proc. Natl Acad. Sci. USA. 112, 11175–11180 (2015).
Gomez, M., Moulton, D. E. & Vella, D. The shallow shell approach to ‘Pogorelov’s problem’ and the breakdown of ‘mirror buckling’. Proc. R. Soc. A 472, 20150732 (2016).
Taffetani, M., Jiang, X., Holmes, D. P. & Vella, D. Static bistability of spherical caps. Proc. R. Soc. A 474, 20170910 (2018).
Liang, T. & Witten, T. A. Crescent singularities in crumpled sheets. Phys. Rev. E. 71, 016612 (2005).
Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007).
Barois, T., Tadrist, L., Quilliet, C. & Forterre, Y. How a curved elastic strip opens. Phys. Rev. Lett. 113, 214301 (2014).
Fuentealba, J. F., Albarrán, O., Hamm, E. & Cerda, E. Transition from isometric to stretching ridges. Phys. Rev. E. 91, 032407 (2015).
Guven, J., Hanna, J. A., Kahraman, O. & Müller, M. M. Dipoles in thin sheets. Eur. Phys. J. E 36, 106 (2013).
Gottesman, O., Efrati, E. & Rubinstein, S. M. Furrows in the wake of propagating ‘d’-cones. Nat. Commun. 6, 7232 (2015).
Hamm, E., Reis, P. M., Le Blanc, M., Roman, B. & Cerda, E. Tearing as a test for mechanical characterization of thin adhesive films. Nat. Mater. 7, 386–390 (2008).
Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012).
Liang, H. & Mahadevan, L. The shape of a long leaf. Proc. Natl Acad. Sci. USA 106, 22049–22054 (2009).
Liang, L. & Mahadevan, L. Growth, geometry and mechanics of a blooming lily. Proc. Natl Acad. Sci. USA 108, 5516–5521 (2011).
Chirat, R., Moulton, D. E. & Goriely, A. The mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc. Natl Acad. Sci. USA 110, 6015–6020 (2013).
Goriely, A. The Mathematics and Mechanics of Biological Growth Ch. 10 (Springer, 2017).
Huang, C., Wang, Z., Quinn, D., Suresh, S. & Hsia, K. J. Differential growth and shape formation in plant organs. Proc. Natl Acad. Sci. USA 115, 12359–12364 (2018).
Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007).
Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).
Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
Aharoni, H., Xia, Y., Zhang, X., Kamien, R. D. & Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl Acad. Sci. USA 115, 7206–7211 (2018).
Kowalski, B. A., Mostajeran, C., Godman, N. P., Warner, M. & White, T. J. Curvature by design and on demand in liquid crystal elastomers. Phys. Rev. E 97, 012504 (2018).
Hippler, M. et al. Controlling the shape of 3D microstructures by temperature and light. Nat. Comm. 10, 232 (2019).
Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2018).
Dervaux, J. & Ben Amar, M. Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068101 (2008).
Müller, M. M., Ben Amar, M. & Guven, J. Conical defects in growing sheets. Phys. Rev. Lett. 101, 156104 (2008).
van Rees, W. M., Vouga, E. & Mahadevan, L. Growth patterns for shape-shifting elastic bilayers. Proc. Natl Acad. Sci. USA 114, 11597–11602 (2017).
Cerda, E., Mahadevan, L. & Pasini, J. M. The elements of draping. Proc. Natl Acad. Sci. USA 101, 1806–1810 (2004).
Paulsen, J. D. Wrapping liquids, solids and gases in thin sheets. Annu. Rev. Cond. Matter Phys. 10, 431–450 (2019).
Badalucco, L. Kirigami: The Art of 3-Dimensional Paper Cutting (Sterling, 2000).
Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).
Cho, Y. et al. Engineering the shape and structure of materials by fractal cut. Proc. Natl Acad. Sci. USA 111, 17390–17395 (2014).
Konacovic, M. et al. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans. Graph. 35, 89 (2016).
Castle, T. et al. Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).
Sussman, D. M. et al. Algorithmic lattice kirgiami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).
Castle, T., Sussman, D. M., Tanis, M. & Kamien, R. D. Additive lattice kirigami. Sci. Adv. 2, e1601258 (2016).
Gladfelter, W. G. A comparative analysis of the locomotory systems of medusoid Cnidaria. Helgol. Wiss. Meeresunters. 25, 228–272 (1973).
Nawroth, J. C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792–797 (2012).
Guo, X. et al. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc. Natl Acad. Sci. USA 106, 20149–20154 (2009).
Py, C. et al. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007).
Reis, P. M., Hure, J., Jung, S., Bush, J. W. M. & Clanet, C. Grabbing water. Soft Matter 6, 5705–5708 (2010).
Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).
Yang, Y., Dias, M. A. & Holmes, D. P. Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).
Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).
Callens, S. J. P. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).
Lacour, S. P., Chan, D., Wagner, S., Li, T. & Suo, Z. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).
Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).
Gerratt, A. P., Michaud, H. O. & Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Func. Mater. 25, 2287–2295 (2015).
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).
Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).
Ning, X. et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv. Mater. Interfaces 5, 1800284 (2018).
Xu, R. et al. Kirigami-inspired highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng. 4, 36 (2018).
Zhang, Y. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).
Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).
Nan, K. et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv. Funct. Mater. 27, 1604281 (2017).
Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).
Jang, K.-I. et al. Self-assembled three-dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
Ko, H. C. et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009).
Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).
Park, S.-I. et al. Theoretical and experimental studies of inorganic metals on plastic substrates. Adv. Func. Mater. 18, 2673–2684 (2008).
Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).
Wang, S. et al. Mechanics of curvilinear electronics. Soft Matter 6, 5757–5763 (2010). Presents detailed modelling of curvilinear electronics, including the determination of conditions for local versus global buckling.
Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).
Vella, D., Bico, J., Boudaoud, A., Roman, B. & Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl Acad. Sci. USA 106, 10901–10906 (2009).
Nolte, A. J., Chung, J. Y., Davis, C. S. & Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter 13, 7930–7937 (2017).
Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 24, 1424 (1953).
Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).
Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).
Parton, R. G. & del Pozo, M. A. Caveolae as plasma membrane sensors, protectors and organisers. Nat. Rev. Cell. Biol. 14, 98–112 (2013).
Parton, R. G., Tillu, V. A. & Collins, B. M. Caveolae. Curr. Biol. 28, R402–R405 (2018).
Nassoy, P. & Lamaze, C. Stressing caveolae new role in cell mechanics. Trends Cell Biol. 22, 381–389 (2012). Discusses the importance of the flattening of caveolae in the buffering of membrane tension.
Dulhunty, A. F. & Franzini-Armstrong, C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250, 513–539 (1975).
Prescott, L. & Brightman, M. W. The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell. 8, 241–258 (1976).
Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of Caveolae. Cell 144, 402–413 (2011).
Kozera, L., White, E. & Callaghan, S. Caveolae act as membrane reserves which limit mechanosensitive I Cl,swell channel activation during swelling in the rat ventricular myocyte. PLoS One 4, e8312 (2009).
Sens, P. & Turner, M. S. Budded membrane microdomains as tension regulators. Phys. Rev. E 73, 031918 (2006).
Mayor, S. Need tension relief fast? Try caveolae. Cell 144, 323–324 (2011).
Mahadevan, L. & Rica, S. Self-organized origami. Science 307, 1740 (2005).
Audoly, B. & Boudaoud, A. Buckling of a stiff film bound to a compliant substrate. Part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008).
Vollrath, F. & Edmonds, D. T. Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 304–307 (1989).
Elettro, H., Neukirch, S., Vollrath, F. & Antkowiak, A. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties. Proc. Natl Acad. Sci. USA 113, 6143 (2016).
Elettro, H., Vollrath, F., Antkowiak, A. & Neukirch, S. Coiling of an elastic beam inside a disk: a model for spider-capture silk. Int. J. Nonlin. Mech. 75, 59–66 (2015).
Grandgeorge, P., Antkowiak, A. & Neukirch, S. Auxiliary soft beam for the amplification of elasto-capillary coiling: towards stretchable electronics. Adv. Colloid Interf. Sci. 225, 2–9 (2018).
Grandgeorge, P. et al. Capillarity-induced folds fuel extreme shape changes in thin wicked membranes. Science 360, 296 (2018). Introduces buffering of area in wicked membranes.
Müller, I. & Strehlow, P. Rubber and Rubber Balloons (Springer, 2004)
Erikson, C. A. & Trinkhaus, J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp. Cell Res. 99, 375–384 (1976).
Huang, J. et al. Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2012).
Holmes, D. P. & Crosby, A. J. Draping films: a wrinkle to fold transition. Phys. Rev. Lett. 105, 038303 (2010).
Vella, D., Huang, J., Menon, N., Russell, T. P. & Davidovitch, B. Indentation of ultrathin elastic films and the emergence of asymptotic isometry. Phys. Rev. Lett. 114, 104301 (2015).
Vella, D. & Davidovitch, B. Regimes of wrinkling in an indented floating elastic sheet. Phys. Rev. E 98, 013003 (2018).
Ripp, M. M., Démery, V., Zhang, T. & Paulsen, J. D. Geometry underlies the mechanical stiffening and softening of thin sheets. Preprint at https://arxiv.org/abs/1804.02421 (2018).
Paulsen, J. D. et al. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl Acad. Sci. USA 113, 1144 (2016).
Vaziri, A. & Mahadevan, L. Localized and extended deformations of elastic shells. Proc. Natl Acad. Sci. USA 105, 7913–7918 (2008). A detailed numerical study of the breakdown of mirror buckling in indented shells.
Vaziri, A. Mechanics of highly deformed elastic shells. Thin Wall. Struct. 47, 692–700 (2009).
Datta, S. S. et al. Delayed buckling and guided folding of inhomogeneous capsules. Phys. Rev. Lett. 109, 134302 (2012).
Knoche, S. & Kierfeld, J. The secondary buckling transition: wrinkling of buckled spherical shells. Eur. Phys. J. E 37, 62 (2014).
Hutchinson, J. W. & Thompson, J. M. T. Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples. Philos. Trans. R. Soc. A 375, 20160154 (2017).
Szyszkowski, W. & Glockner, P. G. Spherical membranes subject to vertical concentrated loads: an experimental study. Eng. Struct. 9, 183–192 (1987).
Li, X. & Steigmann, D. J. Point loads on a hemispherical elastic membrane. Int. J. Nonlin. Mech. 30, 569–581 (1995).
Gordon, V. D. et al. Self-assembled polymer membrane capsules inflated by osmotic pressure. J. Am. Chem. Soc. 126, 14117–14122 (2004).
Vella, D., Ajdari, A., Vaziri, A. & Boudaoud, A. Wrinkling of pressurized elastic shells. Phys. Rev. Lett. 107, 174301 (2011).
Vella, D., Ebrahimi, H., Vaziri, A. & Davidovitch, B. Wrinkling reveals a new isometry of pressurized elastic shells. EPL 112, 24007 (2015).
Hohlfeld, E. & Davidovitch, B. Wrinkle patterns on a sphere: wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91, 012407 (2015). Provides a detailed analysis of the asymptotic state of a flat sheet adhered to a soft sphere and how wrinkling enables the sheet to avoid strain.
Chopin, J. & Kudrolli, A. Helicoids, loops and wrinkles in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013).
Chopin, J., Démery, V. & Davidovitch, B. Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119, 137–189 (2015).
Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M. & Cerda, E. A prototypical model for tensional wrinkling in thin sheets. Proc. Natl Acad. Sci. USA 108, 18227–18232 (2011).
Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).
Stafford, C. M. et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004).
Taffetani, M. & Vella, D. Regimes of wrinkling in pressurized elastic shells. Philos. Trans. R. Soc. A 375, 20160330 (2017).
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
Lu, Q., Arroyo, M. & Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. D. 42, 102002 (2009).
Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).
Ghorbanfekr-Kalashami, H., Vasu, K. S., Nair, R. R., Peeters, F. M. & Neek-Amal, M. Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017).
Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).
Aharoni, H. et al. The smectic order of wrinkles. Nat. Commun. 8, 15809 (2017).
Mitchell, N. P. et al. Conforming nanoparticle sheets to surfaces with Gaussian curvature. Soft Matter 14, 9107–9117 (2018).
Davidovitch, B., Sun, Y. & Grason, G. M. Geometrically incompatible confinement of solids. Proc. Natl Acad. Sci. USA 116, 1483–1488 (2019). Discusses how a thin flat sheet can adopt a curved gross shape even in the absence of applied tension.
Ebrahimi, H., Ajdari, A., Vella, D., Boudaoud, A. & Vaziri, A. Anisotropic blistering instability of highly ellipsoidal shells. Phys. Rev. Lett. 112, 094302 (2014).
Stoeber, M. et al. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc. Natl Acad. Sci. USA 113, E8069–E8078 (2016).
Bende, N. P. et al. Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’ holds its shape. Soft Matter 14, 8636–8642 (2018).
Seffen, K. A. Compliant shell mechanisms. Philos. Trans. R. Soc. A 370, 2010–2026 (2012).
Schenk, M. & Guest, S. D. Geometry of Miura-folded materials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).
Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).
Yang, W. et al. On the tear resistance of skin. Nat. Commun. 6, 6649 (2015).
Acknowledgements
The author thanks B. Davidovitch and A. Goriely for various discussions and B. Davidovitch, M. Liu and J. Paulsen for comments on an earlier version of this Review. This work is supported by funding from the Leverhulme Trust through a Philip Leverhulme Prize.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Buckling
-
Bending or giving way under compression.
- Pure bending
-
Bending without stretching of the centre-line of a surface.
- Euler buckling
-
The buckling of a 1D structure over its whole length and confined to a single plane.
- Isometries
-
Deformations of a surface that preserve distances between points, as measured within the surface.
- Gaussian curvature
-
The product of the principal curvatures of a surface; Gaussian curvature is an intrinsic property of a surface, depending only on distances measured in the surface itself.
- Gross shape
-
The large-scale shape of a thin object, which may be decorated by fine-scale structure such as wrinkles.
- Tension-field theory
-
A limit of the equations of elasticity theory in which objects resist only tensile, not compressive, forces.
Rights and permissions
About this article
Cite this article
Vella, D. Buffering by buckling as a route for elastic deformation. Nat Rev Phys 1, 425–436 (2019). https://doi.org/10.1038/s42254-019-0063-1
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0063-1
This article is cited by
-
Exact solutions for the wrinkle patterns of confined elastic shells
Nature Physics (2022)
-
Universally bistable shells with nonzero Gaussian curvature for two-way transition waves
Nature Communications (2021)
-
Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices
Nature Communications (2021)
-
Elastocapillary cleaning of twisted bilayer graphene interfaces
Nature Communications (2021)