Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Buffering by buckling as a route for elastic deformation

Abstract

Thin objects are deformed in a range of applications and at a range of scales, from graphene and the actuators used in soft robots to the light sails of spacecraft. Such deformations are constrained, as it is much easier to bend than to stretch a thin object — this constraint is often used to determine the deformations that are allowed and those that are prohibited. Recently, however, a series of applications has emerged in which apparently prohibited deformations are observed. In many of these examples, the apparent ability to stretch and compress (as well as bend) is facilitated by excess material that is stored in microscopic buckled structures: the changes in length that are required to enable particular deformations are ‘buffered by buckling’. In this Review, I discuss buffering by buckling as a means of enabling elastic deformations without significant changes of material length (thereby distinguishing this mechanism from material swelling and growth). I discuss a range of examples from technology and nature and consider the conditions under which buffering by buckling operates.

Key points

  • Thin elastic objects are much easier to bend than to stretch or compress and thus usually deform while preserving their length.

  • Gauss’s Theorema Egregium places severe restrictions on the length-preserving deformations that are possible.

  • The introduction of small-scale buckling structures within a thin object can enable it to access deformation modes that appear to require changes in length: buckles buffer the required change in length.

  • Small-scale buckles are often designed in systems but also emerge naturally through instabilities such as wrinkling.

  • Emergent buckling structures enable changes in curvature, but in turn, the fine structure of the buckling depends on this curvature.

  • Buffering by buckling is an effective mechanism for accommodating apparent changes in length but only operates when an object is extremely slender and subject to intermediate tensions or confinement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Buckling and buffering by buckling.
Fig. 2: Elastic deformation facilitated by the removal of material and insertion of cuts.
Fig. 3: Curvature changes enabled by buffering by buckling of a designed microstructure.
Fig. 4: High-extensibility materials resulting from emergent buffering by buckling.
Fig. 5: Apparent changes in Gaussian curvature enabled by wrinkling.

Similar content being viewed by others

References

  1. Atwater, H. A. et al. Materials challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro-Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  3. Reis, P. M. A perspective on the revival of structural (in)stability with novel opportunities for function: from buckliphobia to buckliphilia. J. Appl. Mech. 82, 111001 (2015).

    Article  ADS  Google Scholar 

  4. Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nat. Photonics 6, 327–332 (2012).

    Article  ADS  Google Scholar 

  5. Harrison, C., Stafford, C. M., Zhang, W. & Karim, A. Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85, 4016 (2004).

    Article  ADS  Google Scholar 

  6. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).

    Article  Google Scholar 

  7. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  ADS  Google Scholar 

  8. Baek, C., Sageman-Furnas, A. O., Jawed, M. K. & Reis, P. M. Form finding in elastic gridshells. Proc. Natl Acad. Sci. USA. 115, 75–80 (2017).

    Article  ADS  Google Scholar 

  9. Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).

    Article  ADS  Google Scholar 

  10. Paulsen, J. D. et al. Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14, 1206–1209 (2015).

    Article  ADS  Google Scholar 

  11. Kumar, D., Paulsen, J. D., Russell, T. P. & Menon, N. Wrapping with a splash: high-speed encapsulation with ultrathin sheets. Science 359, 775–778 (2018).

    Article  ADS  Google Scholar 

  12. Liu, P. et al. Autoperforation of 2D materials for generating two-terminal memristive Janus particles. Nat. Mater. 17, 1005–1012 (2018).

    Article  ADS  Google Scholar 

  13. Landau, L. D. & Lifschitz, E. M. Theory of Elasticity 2nd edn, Ch. 2 (Pergamon, 1970).

  14. Rayleigh, J. W. S. The Theory of Sound Vol. 1, 396 (Dover, 1945).

  15. Wilson, P. M. H. Curved Spaces: From Classical Geometries to Elementary Differential Geometry 155 (Cambridge Univ. Press, 2008).

  16. Ben Amar, M. & Pomeau, Y. Crumpled paper. Proc. R. Soc. A 453, 729–755 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. Chaieb, S. & Melo, F. Experimental study of developable cones. Phys. Rev. Lett. 80, 2354–2357 (1998).

    Article  ADS  Google Scholar 

  18. Cerda, E. & Mahadevan, L. Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998).

    Article  ADS  Google Scholar 

  19. Cerda, E., Chaieb, S., Melo, F. & Mahadevan, L. Conical dislocations in crumpling. Nature 401, 46–50 (1999).

    Article  ADS  Google Scholar 

  20. Efrati, E., Pocivavsek, L., Meza, R., Lee, K. Y. C. & Witten, T. A. Confined disclinations: exterior versus material constraints in developable thin elastic sheets. Phys. Rev. E 91, 022404 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. Pogorelov, A. V. Bending of Surfaces and Stability of Shells (American Mathematical Society, 1988).

  22. Neek-Amal, M. et al. Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnel microscopy. Nat. Commun. 5, 4962 (2014).

    Article  ADS  Google Scholar 

  23. Bende, N. P. et al. Geometrically controlled snapping transitions in shells with curved creases. Proc. Natl Acad. Sci. USA. 112, 11175–11180 (2015).

    Article  ADS  Google Scholar 

  24. Gomez, M., Moulton, D. E. & Vella, D. The shallow shell approach to ‘Pogorelov’s problem’ and the breakdown of ‘mirror buckling’. Proc. R. Soc. A 472, 20150732 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Taffetani, M., Jiang, X., Holmes, D. P. & Vella, D. Static bistability of spherical caps. Proc. R. Soc. A 474, 20170910 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liang, T. & Witten, T. A. Crescent singularities in crumpled sheets. Phys. Rev. E. 71, 016612 (2005).

    Article  ADS  Google Scholar 

  27. Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Barois, T., Tadrist, L., Quilliet, C. & Forterre, Y. How a curved elastic strip opens. Phys. Rev. Lett. 113, 214301 (2014).

    Article  ADS  Google Scholar 

  29. Fuentealba, J. F., Albarrán, O., Hamm, E. & Cerda, E. Transition from isometric to stretching ridges. Phys. Rev. E. 91, 032407 (2015).

    Article  ADS  Google Scholar 

  30. Guven, J., Hanna, J. A., Kahraman, O. & Müller, M. M. Dipoles in thin sheets. Eur. Phys. J. E 36, 106 (2013).

    Article  Google Scholar 

  31. Gottesman, O., Efrati, E. & Rubinstein, S. M. Furrows in the wake of propagating ‘d’-cones. Nat. Commun. 6, 7232 (2015).

    Article  ADS  Google Scholar 

  32. Hamm, E., Reis, P. M., Le Blanc, M., Roman, B. & Cerda, E. Tearing as a test for mechanical characterization of thin adhesive films. Nat. Mater. 7, 386–390 (2008).

    Article  ADS  Google Scholar 

  33. Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012).

    Article  ADS  Google Scholar 

  34. Liang, H. & Mahadevan, L. The shape of a long leaf. Proc. Natl Acad. Sci. USA 106, 22049–22054 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Liang, L. & Mahadevan, L. Growth, geometry and mechanics of a blooming lily. Proc. Natl Acad. Sci. USA 108, 5516–5521 (2011).

    Article  ADS  Google Scholar 

  36. Chirat, R., Moulton, D. E. & Goriely, A. The mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc. Natl Acad. Sci. USA 110, 6015–6020 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  37. Goriely, A. The Mathematics and Mechanics of Biological Growth Ch. 10 (Springer, 2017).

  38. Huang, C., Wang, Z., Quinn, D., Suresh, S. & Hsia, K. J. Differential growth and shape formation in plant organs. Proc. Natl Acad. Sci. USA 115, 12359–12364 (2018).

    Article  ADS  Google Scholar 

  39. Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    Article  Google Scholar 

  41. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  ADS  Google Scholar 

  42. Aharoni, H., Xia, Y., Zhang, X., Kamien, R. D. & Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl Acad. Sci. USA 115, 7206–7211 (2018).

    Article  ADS  Google Scholar 

  43. Kowalski, B. A., Mostajeran, C., Godman, N. P., Warner, M. & White, T. J. Curvature by design and on demand in liquid crystal elastomers. Phys. Rev. E 97, 012504 (2018).

    Article  ADS  Google Scholar 

  44. Hippler, M. et al. Controlling the shape of 3D microstructures by temperature and light. Nat. Comm. 10, 232 (2019).

    Article  ADS  Google Scholar 

  45. Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).

    Article  ADS  Google Scholar 

  46. Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2018).

    Article  ADS  Google Scholar 

  47. Dervaux, J. & Ben Amar, M. Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068101 (2008).

    Article  ADS  Google Scholar 

  48. Müller, M. M., Ben Amar, M. & Guven, J. Conical defects in growing sheets. Phys. Rev. Lett. 101, 156104 (2008).

    Article  ADS  Google Scholar 

  49. van Rees, W. M., Vouga, E. & Mahadevan, L. Growth patterns for shape-shifting elastic bilayers. Proc. Natl Acad. Sci. USA 114, 11597–11602 (2017).

    Article  ADS  Google Scholar 

  50. Cerda, E., Mahadevan, L. & Pasini, J. M. The elements of draping. Proc. Natl Acad. Sci. USA 101, 1806–1810 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Paulsen, J. D. Wrapping liquids, solids and gases in thin sheets. Annu. Rev. Cond. Matter Phys. 10, 431–450 (2019).

    Article  ADS  Google Scholar 

  52. Badalucco, L. Kirigami: The Art of 3-Dimensional Paper Cutting (Sterling, 2000).

  53. Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).

    Article  ADS  Google Scholar 

  54. Cho, Y. et al. Engineering the shape and structure of materials by fractal cut. Proc. Natl Acad. Sci. USA 111, 17390–17395 (2014).

    Article  ADS  Google Scholar 

  55. Konacovic, M. et al. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans. Graph. 35, 89 (2016).

    Google Scholar 

  56. Castle, T. et al. Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).

    Article  ADS  Google Scholar 

  57. Sussman, D. M. et al. Algorithmic lattice kirgiami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).

    Article  ADS  Google Scholar 

  58. Castle, T., Sussman, D. M., Tanis, M. & Kamien, R. D. Additive lattice kirigami. Sci. Adv. 2, e1601258 (2016).

    Article  ADS  Google Scholar 

  59. Gladfelter, W. G. A comparative analysis of the locomotory systems of medusoid Cnidaria. Helgol. Wiss. Meeresunters. 25, 228–272 (1973).

    Article  Google Scholar 

  60. Nawroth, J. C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792–797 (2012).

    Article  Google Scholar 

  61. Guo, X. et al. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc. Natl Acad. Sci. USA 106, 20149–20154 (2009).

    Article  ADS  Google Scholar 

  62. Py, C. et al. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007).

    Article  ADS  Google Scholar 

  63. Reis, P. M., Hure, J., Jung, S., Bush, J. W. M. & Clanet, C. Grabbing water. Soft Matter 6, 5705–5708 (2010).

    Article  ADS  Google Scholar 

  64. Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

    Article  ADS  Google Scholar 

  65. Yang, Y., Dias, M. A. & Holmes, D. P. Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).

    Article  Google Scholar 

  66. Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article  ADS  Google Scholar 

  67. Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

    Article  Google Scholar 

  68. Callens, S. J. P. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).

    Article  Google Scholar 

  69. Lacour, S. P., Chan, D., Wagner, S., Li, T. & Suo, Z. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).

    Article  ADS  Google Scholar 

  70. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  ADS  Google Scholar 

  71. Gerratt, A. P., Michaud, H. O. & Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Func. Mater. 25, 2287–2295 (2015).

    Article  Google Scholar 

  72. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  ADS  Google Scholar 

  73. Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).

    Article  ADS  Google Scholar 

  74. Ning, X. et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv. Mater. Interfaces 5, 1800284 (2018).

    Article  Google Scholar 

  75. Xu, R. et al. Kirigami-inspired highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng. 4, 36 (2018).

    Article  ADS  Google Scholar 

  76. Zhang, Y. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

    Article  ADS  Google Scholar 

  77. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    Article  ADS  Google Scholar 

  78. Nan, K. et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv. Funct. Mater. 27, 1604281 (2017).

    Article  Google Scholar 

  79. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  ADS  Google Scholar 

  80. Jang, K.-I. et al. Self-assembled three-dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).

    Article  ADS  Google Scholar 

  81. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  ADS  Google Scholar 

  82. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    Article  ADS  Google Scholar 

  83. Ko, H. C. et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009).

    Article  Google Scholar 

  84. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  ADS  Google Scholar 

  85. Park, S.-I. et al. Theoretical and experimental studies of inorganic metals on plastic substrates. Adv. Func. Mater. 18, 2673–2684 (2008).

    Article  Google Scholar 

  86. Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).

    Article  ADS  Google Scholar 

  87. Wang, S. et al. Mechanics of curvilinear electronics. Soft Matter 6, 5757–5763 (2010). Presents detailed modelling of curvilinear electronics, including the determination of conditions for local versus global buckling.

    Article  ADS  Google Scholar 

  88. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

    Article  ADS  Google Scholar 

  89. Vella, D., Bico, J., Boudaoud, A., Roman, B. & Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl Acad. Sci. USA 106, 10901–10906 (2009).

    Article  ADS  Google Scholar 

  90. Nolte, A. J., Chung, J. Y., Davis, C. S. & Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter 13, 7930–7937 (2017).

    Article  ADS  Google Scholar 

  91. Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 24, 1424 (1953).

    Google Scholar 

  92. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).

    Article  Google Scholar 

  93. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  Google Scholar 

  94. Parton, R. G. & del Pozo, M. A. Caveolae as plasma membrane sensors, protectors and organisers. Nat. Rev. Cell. Biol. 14, 98–112 (2013).

    Article  Google Scholar 

  95. Parton, R. G., Tillu, V. A. & Collins, B. M. Caveolae. Curr. Biol. 28, R402–R405 (2018).

    Article  Google Scholar 

  96. Nassoy, P. & Lamaze, C. Stressing caveolae new role in cell mechanics. Trends Cell Biol. 22, 381–389 (2012). Discusses the importance of the flattening of caveolae in the buffering of membrane tension.

    Article  Google Scholar 

  97. Dulhunty, A. F. & Franzini-Armstrong, C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250, 513–539 (1975).

    Article  Google Scholar 

  98. Prescott, L. & Brightman, M. W. The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell. 8, 241–258 (1976).

    Article  Google Scholar 

  99. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of Caveolae. Cell 144, 402–413 (2011).

    Article  Google Scholar 

  100. Kozera, L., White, E. & Callaghan, S. Caveolae act as membrane reserves which limit mechanosensitive I Cl,swell channel activation during swelling in the rat ventricular myocyte. PLoS One 4, e8312 (2009).

    Article  ADS  Google Scholar 

  101. Sens, P. & Turner, M. S. Budded membrane microdomains as tension regulators. Phys. Rev. E 73, 031918 (2006).

    Article  ADS  Google Scholar 

  102. Mayor, S. Need tension relief fast? Try caveolae. Cell 144, 323–324 (2011).

    Article  Google Scholar 

  103. Mahadevan, L. & Rica, S. Self-organized origami. Science 307, 1740 (2005).

    Article  Google Scholar 

  104. Audoly, B. & Boudaoud, A. Buckling of a stiff film bound to a compliant substrate. Part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Vollrath, F. & Edmonds, D. T. Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 304–307 (1989).

    Article  ADS  Google Scholar 

  106. Elettro, H., Neukirch, S., Vollrath, F. & Antkowiak, A. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties. Proc. Natl Acad. Sci. USA 113, 6143 (2016).

    Article  ADS  Google Scholar 

  107. Elettro, H., Vollrath, F., Antkowiak, A. & Neukirch, S. Coiling of an elastic beam inside a disk: a model for spider-capture silk. Int. J. Nonlin. Mech. 75, 59–66 (2015).

    Article  Google Scholar 

  108. Grandgeorge, P., Antkowiak, A. & Neukirch, S. Auxiliary soft beam for the amplification of elasto-capillary coiling: towards stretchable electronics. Adv. Colloid Interf. Sci. 225, 2–9 (2018).

    Article  Google Scholar 

  109. Grandgeorge, P. et al. Capillarity-induced folds fuel extreme shape changes in thin wicked membranes. Science 360, 296 (2018). Introduces buffering of area in wicked membranes.

    Article  Google Scholar 

  110. Müller, I. & Strehlow, P. Rubber and Rubber Balloons (Springer, 2004)

  111. Erikson, C. A. & Trinkhaus, J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp. Cell Res. 99, 375–384 (1976).

    Article  Google Scholar 

  112. Huang, J. et al. Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2012).

    Article  ADS  Google Scholar 

  113. Holmes, D. P. & Crosby, A. J. Draping films: a wrinkle to fold transition. Phys. Rev. Lett. 105, 038303 (2010).

    Article  ADS  Google Scholar 

  114. Vella, D., Huang, J., Menon, N., Russell, T. P. & Davidovitch, B. Indentation of ultrathin elastic films and the emergence of asymptotic isometry. Phys. Rev. Lett. 114, 104301 (2015).

    Article  ADS  Google Scholar 

  115. Vella, D. & Davidovitch, B. Regimes of wrinkling in an indented floating elastic sheet. Phys. Rev. E 98, 013003 (2018).

    Article  ADS  Google Scholar 

  116. Ripp, M. M., Démery, V., Zhang, T. & Paulsen, J. D. Geometry underlies the mechanical stiffening and softening of thin sheets. Preprint at https://arxiv.org/abs/1804.02421 (2018).

  117. Paulsen, J. D. et al. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl Acad. Sci. USA 113, 1144 (2016).

    Article  ADS  Google Scholar 

  118. Vaziri, A. & Mahadevan, L. Localized and extended deformations of elastic shells. Proc. Natl Acad. Sci. USA 105, 7913–7918 (2008). A detailed numerical study of the breakdown of mirror buckling in indented shells.

    Article  ADS  Google Scholar 

  119. Vaziri, A. Mechanics of highly deformed elastic shells. Thin Wall. Struct. 47, 692–700 (2009).

    Article  Google Scholar 

  120. Datta, S. S. et al. Delayed buckling and guided folding of inhomogeneous capsules. Phys. Rev. Lett. 109, 134302 (2012).

    Article  ADS  Google Scholar 

  121. Knoche, S. & Kierfeld, J. The secondary buckling transition: wrinkling of buckled spherical shells. Eur. Phys. J. E 37, 62 (2014).

    Article  Google Scholar 

  122. Hutchinson, J. W. & Thompson, J. M. T. Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples. Philos. Trans. R. Soc. A 375, 20160154 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Szyszkowski, W. & Glockner, P. G. Spherical membranes subject to vertical concentrated loads: an experimental study. Eng. Struct. 9, 183–192 (1987).

    Article  Google Scholar 

  124. Li, X. & Steigmann, D. J. Point loads on a hemispherical elastic membrane. Int. J. Nonlin. Mech. 30, 569–581 (1995).

    Article  MATH  Google Scholar 

  125. Gordon, V. D. et al. Self-assembled polymer membrane capsules inflated by osmotic pressure. J. Am. Chem. Soc. 126, 14117–14122 (2004).

    Article  Google Scholar 

  126. Vella, D., Ajdari, A., Vaziri, A. & Boudaoud, A. Wrinkling of pressurized elastic shells. Phys. Rev. Lett. 107, 174301 (2011).

    Article  ADS  Google Scholar 

  127. Vella, D., Ebrahimi, H., Vaziri, A. & Davidovitch, B. Wrinkling reveals a new isometry of pressurized elastic shells. EPL 112, 24007 (2015).

    Article  ADS  Google Scholar 

  128. Hohlfeld, E. & Davidovitch, B. Wrinkle patterns on a sphere: wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91, 012407 (2015). Provides a detailed analysis of the asymptotic state of a flat sheet adhered to a soft sphere and how wrinkling enables the sheet to avoid strain.

    Article  ADS  Google Scholar 

  129. Chopin, J. & Kudrolli, A. Helicoids, loops and wrinkles in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013).

    Article  ADS  Google Scholar 

  130. Chopin, J., Démery, V. & Davidovitch, B. Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119, 137–189 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  131. Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M. & Cerda, E. A prototypical model for tensional wrinkling in thin sheets. Proc. Natl Acad. Sci. USA 108, 18227–18232 (2011).

    Article  ADS  MATH  Google Scholar 

  132. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  133. Stafford, C. M. et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004).

    Article  ADS  Google Scholar 

  134. Taffetani, M. & Vella, D. Regimes of wrinkling in pressurized elastic shells. Philos. Trans. R. Soc. A 375, 20160330 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  136. Lu, Q., Arroyo, M. & Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. D. 42, 102002 (2009).

    Article  ADS  Google Scholar 

  137. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).

    Article  ADS  Google Scholar 

  138. Ghorbanfekr-Kalashami, H., Vasu, K. S., Nair, R. R., Peeters, F. M. & Neek-Amal, M. Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017).

    Article  ADS  Google Scholar 

  139. Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).

    Article  ADS  Google Scholar 

  140. Aharoni, H. et al. The smectic order of wrinkles. Nat. Commun. 8, 15809 (2017).

    Article  ADS  Google Scholar 

  141. Mitchell, N. P. et al. Conforming nanoparticle sheets to surfaces with Gaussian curvature. Soft Matter 14, 9107–9117 (2018).

    Article  ADS  Google Scholar 

  142. Davidovitch, B., Sun, Y. & Grason, G. M. Geometrically incompatible confinement of solids. Proc. Natl Acad. Sci. USA 116, 1483–1488 (2019). Discusses how a thin flat sheet can adopt a curved gross shape even in the absence of applied tension.

    Article  MathSciNet  MATH  Google Scholar 

  143. Ebrahimi, H., Ajdari, A., Vella, D., Boudaoud, A. & Vaziri, A. Anisotropic blistering instability of highly ellipsoidal shells. Phys. Rev. Lett. 112, 094302 (2014).

    Article  ADS  Google Scholar 

  144. Stoeber, M. et al. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc. Natl Acad. Sci. USA 113, E8069–E8078 (2016).

    Article  Google Scholar 

  145. Bende, N. P. et al. Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’ holds its shape. Soft Matter 14, 8636–8642 (2018).

    Article  ADS  Google Scholar 

  146. Seffen, K. A. Compliant shell mechanisms. Philos. Trans. R. Soc. A 370, 2010–2026 (2012).

    Article  ADS  Google Scholar 

  147. Schenk, M. & Guest, S. D. Geometry of Miura-folded materials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).

    Article  ADS  Google Scholar 

  148. Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).

    Article  ADS  Google Scholar 

  149. Yang, W. et al. On the tear resistance of skin. Nat. Commun. 6, 6649 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks B. Davidovitch and A. Goriely for various discussions and B. Davidovitch, M. Liu and J. Paulsen for comments on an earlier version of this Review. This work is supported by funding from the Leverhulme Trust through a Philip Leverhulme Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Vella.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Buckling

Bending or giving way under compression.

Pure bending

Bending without stretching of the centre-line of a surface.

Euler buckling

The buckling of a 1D structure over its whole length and confined to a single plane.

Isometries

Deformations of a surface that preserve distances between points, as measured within the surface.

Gaussian curvature

The product of the principal curvatures of a surface; Gaussian curvature is an intrinsic property of a surface, depending only on distances measured in the surface itself.

Gross shape

The large-scale shape of a thin object, which may be decorated by fine-scale structure such as wrinkles.

Tension-field theory

A limit of the equations of elasticity theory in which objects resist only tensile, not compressive, forces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vella, D. Buffering by buckling as a route for elastic deformation. Nat Rev Phys 1, 425–436 (2019). https://doi.org/10.1038/s42254-019-0063-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0063-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing