Abstract
Although the partial differential equations that describe the physical climate system are deterministic, there is an important reason why the computational representations of these equations should be stochastic: such representations better respect the scaling symmetries of these underlying differential equations, as described in this Perspective. This Perspective also surveys the ways in which introducing stochasticity into the parameterized representations of subgrid processes in comprehensive weather and climate models has improved the skill of forecasts and has reduced systematic model error, notably in simulating persistent flow anomalies. The pertinence of stochasticity is also discussed in the context of the question of how many bits of useful information are contained in the numerical representations of variables, a question that is critical for the design of next-generation climate models. The accuracy of fluid simulation may be further increased if future-generation supercomputer hardware becomes partially stochastic.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Analytical Properties for a Stochastic Rotating Shallow Water Model Under Location Uncertainty
Journal of Mathematical Fluid Mechanics Open Access 20 February 2023
-
The stochastic primitive equations with transport noise and turbulent pressure
Stochastics and Partial Differential Equations: Analysis and Computations Open Access 27 October 2022
-
Discovery of Slow Variables in a Class Of Multiscale Stochastic Systems Via Neural Networks
Journal of Nonlinear Science Open Access 26 May 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
Shepherd, J. G. et al. Geoengineering the Climate: Science, Governance and Uncertainty (The Royal Society Publishing, 2009).
Sutton, R. B. et al. Attributing extreme weather to climate change is not a done deal. Nature 561, 177 (2018).
Suckling, E. in Weather and Climate Services for the Energy Industry (ed. Troccoli, A.) 123–137 (Palgrave Macmillan, 2018).
Cantelaube, P. & Terres, J.-M. Seasonal weather forecasts for crop yield modelling in Europe. Tellus 57A, 476–487 (2004).
Thomson, M. C. et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439, 576–579 (2006).
Palmer, T. N. The prediction of uncertainty in weather and climate forecasting. Rep. Prog. Phys. 63, 71–116 (2000).
Palmer, T. N. The ECMWF ensemble prediction system: looking back (more than) 25 years and projecting forward 25 years. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3383 (2018).
Wilks, D. Statistical Methods in the Atmospheric Sciences (Academic Press, 2011).
Weisheimer, A. & Palmer, T. N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 11, 20131162 (2014).
Houghton, J. The Physics of Atmospheres (Cambridge Univ. Press, 2002).
Hasselmann, K. Stochastic climate models. Part I. Theory. Tellus 28, 473–485 (1976).
Clement, A. K. et al. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350, 320–324 (2015).
Zhang, R. et al. Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 352, 1527 (2016).
Palmer, T. N. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction. Q. J. R. Meteorol. Soc. 127, 279–304 (2001).
Palmer, T. N., Doering, A. & Seregin, G. The real butterfly effect. Nonlinearity 27, R123–R141 (2014).
Arakawa, A. The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004).
Palmer, T. N., Shutts, G. J. & Swinbank, R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q. J. R. Meteorol. Soc. 112, 1001–1031 (1986).
Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).
Neelin, J. D., Peters, O., Lin, J. W.-B., Hales, K. & Holloway, C. E. Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models. Phil. Trans. R. Soc. A 366, 2579–2602 (2008).
Majda, A. J. & Bertozzi, A. L. Vorticity and Incompressible Flow (Cambridge Univ. Press, 2002).
Nastrom, G. D. & Gage, K. S. A climatology of atmospheric wavenumber spectra observed by commercial aircraft. J. Atmos. Sci. 42, 950–960 (1985).
Lovejoy, S. & Schertzer, D. The Weather and Climate (Cambridge Univ. Press, 2013).
Zhang, X., Liu, H. & Zhang, M. Double ITCZ in coupled ocean–atmosphere models: from CMIP3 to CMIP5. Geophys. Res. Lett. 42, 8651–8659 (2015).
Masato, G., Hoskins, B. J. & Woollings, T. Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Clim. 26, 7044–7059 (2013).
Palmer, T. N. A personal perspective on modelling the climate system. Proc. R. Soc. A 472, 20150772 (2016).
Buizza, R., Miller, M. & Palmer, T. N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999).
Palmer, T. N. et al. Stochastic Parametrization and Model Uncertainty ECMWF Technical Memoranda (ECMWF, 2009); http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf
Majda, A. J., Timofeyev, I. & Vanden Eijnden, E. A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001).
Palmer, T. N. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138, 841–861 (2012).
Holm, D. D. Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471, 20140963 (2015).
Plant, R. S. & Craig, G. C. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci. 65, 87–105 (2008).
Bengtsson, L., Steinheimer, M., Bechtold, P. & Geleyn, J.-F. A stochastic parametrization for deep convection using cellular automata. Q. J. R. Meteorol. Soc. 139, 1533–1543 (2013).
Gottwald, G. A., Peters, K. & Davies, L. A data-driven method for the stochastic parametrisation of subgrid-scale tropical convective area fraction. Q. J. R. Meteorol. Soc. 142, 349–359 (2016).
Khouider, B., Biello, J. & Majda, A. J. A stochastic multicloud model for tropical convection. Commun. Math. Sci. 8, 187–216 (2010).
Tompkins, A. M. & Berner, J. A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res. 113, D18101 (2008).
Berner, J. et al. Stochastic parameterization: toward new view of weather and climate models. Bull. Am. Meteorol. Soc. 98, 565–587 (2017).
Mason, P. J. & Thomson, D. J. Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid. Mech. 242, 51–78 (1992).
Shutts, G. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3102 (2005).
Berner, J., Shutts, G. J., Leutbecher, M. & Palmer, T. N. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66, 603–626 (2009).
Palmer, T. N. & Williams, P. Stochastic Physics and Climate Modelling (Cambridge Univ. Press, 2017).
Wouters, J. & Lucarini, V. Disentangling multi-level systems: averaging, correlations and memory. J. Stat. Mech. 3, P03003 (2012).
Wouters, J. & Lucarini, V. Multi-level dynamical systems: connecting the Ruelle response theory and the Mori–Zwanzig approach. J. Stat. Phys. 151, 850–860 (2013).
Franzke, C. L., O’Kane, T. J., Berner, J., Williams, P. D. & Lucarini, V. Stochastic climate theory and modeling. WIREs Clim. Change 6, 63–78 (2015).
Vissio, G. & Lucarini, V. A proof of concept for scale-adaptive parametrizations: the case of the Lorenz ‘96 model. Q. J. R. Meteorol. Soc. 144, 63–75 (2018).
Bengtsson, L.et al. A model framework for stochastic representation of uncertainties associated with physical processes in NOAA’s Next Generation Global Prediction System (NGGPS). Mon. Weather Rev., https://doi.org/10.1175/MWR-D-18-0238.1 (2019).
Shutts, G. J. & Palmer, T. N. Convective forcing fluctuations in a cloud-resolving model: relevance to the stochastic parameterization problem. J. Clim. 20, 187–202 (2007).
Shutts, G. J. & Callado Pallarès, A. Assessing parameterization uncertainty associated with horizontal resolution in numerical weather prediction models. Phil. Trans. R. Soc. Lond. A 372, 20130284 (2014).
Christensen, H. M. Constraining stochastic parametrisation schemes using high-resolution simulations. Preprint at arXiv https://arxiv.org/abs/1904.04503 (2019).
Christensen, H. M., Lock, S. J., Moroz, I. M. & Palmer, T. N. Introducing independent patterns into the stochastically perturbed parametrization tendencies (SPPT) scheme. Q. J. R. Meteorol. Soc. 143, 2168–2181 (2017).
Chevallier, F., Chéruy, F., Scott, N. A. & Chédin, A. A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteorol. 37, 1385–1397 (1998).
Krasnopolsky, V. M. The Aapplication of Neural Networks in the Earth-system Sciences Atmospheric and Oceanographic Sciences Library, Vol. 46 (Springer, 2013).
Andrejczuk, M. et al. Oceanic stochastic parameterizations in a seasonal forecast system. Mon. Weather Rev. 144, 1867–1875 (2016).
Porta Mana, P. G. L. & Zanna, L. Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Model. 79, 1–20 (2014).
MacLeod, D. A., Cloke, H. L., Pappenberger, F. & Weisheimer, A. Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Q. J. R. Meteorol. Soc. 142, 79–90 (2016).
Juricke, S. & Jung, T. Influence of stochastic sea ice parameterization on climate and the role of atmosphere–sea ice–ocean interaction. Phil. Trans. R. Soc. Lond. A 372, 20130283 (2014).
Williams, P. D. Climatic impacts of stochastic fluctuations in air–sea fluxes. Geophys. Res. Lett. 39, L10705 (2012).
Murphy, A. H. A note on the utility of probabilistic predictions and the probability score in the cost-loss ratio decision situation. J. Appl. Meteorol. 5, 534–537 (1966).
Palmer, T. N. & Richardson, D. Decisions, decisions…! In ECMWF Newsletter 12–14 (ECMWF, 2014); https://www.ecmwf.int/sites/default/files/elibrary/2014/14584-newsletter-no141-autumn-2014.pdf
Weisheimer, A., Corti, S., Palmer, T. & Vitart, F. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system. Phil. Trans. R. Soc. A 372, 20130290 (2014).
Subramanian, A., Weisheimer, A., Palmer, T., Vitart, F. & Bechtold, P. Impact of stochastic physics on tropical precipitation in the coupled ECMWF model. Q. J. R. Meteorol. Soc. 143, 852–865 (2017).
Christensen, H. M., Berner, J., Coleman, D. & Palmer, T. N. Stochastic parameterization and the El Niño–Southern Oscillation. J. Clim. 30, 17–38 (2017).
Strommen, K., Christensen, H. M., Berner, J. & Palmer, T. N. The impact of stochastic parametrisations on the representation of the Asian summer monsoon. Clim. Dyn. 50, 2269–2282 (2018).
Mo, K. & Ghil, M. Cluster analysis of multiple planetary flow regimes. J. Geophys. Res. 93, 10927–10952 (1988).
Weaver, M. Summer 2018 was UK’s joint hottest on record, Met Office says. The Guardian https://www.theguardian.com/uk-news/2018/sep/03/summer-2018-uk-joint-hottest-on-record-met-office-says (2018).
King, A. & Henley, B. It’s a savage summer in the Northern Hemisphere — and climate change is slashing the odds of more heatwaves. The Conversation https://theconversation.com/its-a-savage-summer-in-the-northern-hemisphere-and-climate-change-is-slashing-the-odds-of-more-heatwaves-100582 (2018).
Heatwave in northern Europe, summer 2018. World Weather Attribution https://www.worldweatherattribution.org/attribution-of-the-2018-heat-in-northern-europe/ (2018).
de la Hamaide, S., Devitt, P. & Hogan, M. Heatwave ravages European fields, sending wheat prices soaring. Reuters https://www.reuters.com/article/us-europe-wheat-harvest/heatwave-ravages-european-fields-sending-wheat-prices-soaring-idUSKBN1KN0L9 (2018).
Vaughan, A. UK summer ‘wind drought’ puts green revolution into reverse. The Guardian https://www.theguardian.com/environment/2018/aug/27/uk-summer-wind-drought-puts-green-revolution-into-reverse (2018).
Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).
Schiemann, R., Demory, M.-E., Shaffrey, L. C., Strachan, J. & Vidale, P.-L. The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Clim. 30, 337–358 (2017).
Green, J. S. A. The weather during July 1976: some dynamical considerations of the drought. Weather 32, 120–126 (1977).
Dawson, A. & Palmer, T. N. Simulating weather regimes: impact of model resolution and stochastic parameterization. Clim. Dyn. 44, 2177–2193 (2015).
Lorenz, E. N. Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963).
Kwasniok, F. Enhanced regime predictability in atmospheric low-order models due to stochastic forcing. Phil. Trans. R. Soc. A 372, 20130286 (2014).
Charney, J. G. & DeVore, J. G. Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205–1216 (1979).
Kondrashov, D., Ide, K. & Ghil, M. Weather regimes and preferred transition paths in a three-level quasigeostrophic model. J. Atmos. Sci. 61, 568–587 (2004).
Lorenz, E. N. in Predictability of Weather and Climate (eds Palmer, T. N. & Hagedorn, R.) 40–58 (Cambridge Univ. Press, 1996).
Christensen, H. M., Moroz, I. M. & Palmer, T. N. Simulating weather regimes: impact of stochastic and perturbed parameter schemes in a simple atmospheric model. Clim. Dyn. 44, 2195–2214 (2015).
Strommen, K. & Palmer, T. N. Signal and noise in regime systems: a hypothesis on the predictability of the North Atlantic Oscillation. Q. J. R. Meteorol. Soc. 145, 147–163 (2019).
Eade, R. et al. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?. Geophys. Res. Lett. 41, 5620–5628 (2014).
Palmer, T. N. Build high-resolution global climate models. Nature 515, 338–339 (2014).
Palmer, T. N. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators. Phil. Trans. R. Soc. A 372, 20130391 (2014).
Váňa, F. et al. Single precision in weather forecasting models: an evaluation with the IFS. Mon. Weather Rev. 145, 495–502 (2017).
Dueben, P. D. & Palmer, T. N. Benchmark tests for numerical weather forecasts on inexact hardware. Mon. Weather Rev. 142, 3809–3829 (2014).
Hatfield, S., Subramanian, A., Palmer, T. & Düben, P. Improving weather forecast skill through reduced-precision data assimilation. Mon. Weather Rev. 146, 49–62 (2018).
Dawson, A., Düben, P. D., MacLeod, D. A. & Palmer, T. N. Reliable low precision simulations in land surface models. Clim. Dyn. 51, 2658–2666 (2018).
Jeffress, S., Düben, P. & Palmer, T. Bitwise efficiency in chaotic models. Proc. R. Soc. A 473, 20170144 (2017).
Thornes, T., Düben, P. & Palmer, T. A power law for reduced precision at small spatial scales: experiments with an SQG model. Q. J. R. Meteorol. Soc. 144, 1179–1188 (2018).
Chantry, M., Thornes, T. & Palmer, T. N. Scale-selective precision for weather and climate forecasting. Mon. Weather Rev. 147, 645–655 (2019).
Dueben, P. D., Russell, F. P., Niu, X., Luk, W. & Palmer, T. N. On the use of programmable hardware and reduced numerical precision in earth-system modeling. J. Adv. Model. Earth Syst. 7, 1393–1408 (2015).
Subramanian, A., Juricke, S., Dueben, P. & Palmer, T. N. A stochastic representation of sub-grid uncertainty for dynamical core development. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-17-0040.1 (2019).
Palem, K. V. Energy aware computing through probabilistic switching: a study of limits. IEEE Trans. Comput. 54, 1123–1137 (2005).
Palem, K. V. Inexactness and a future of computing. Phil. Trans. R. Soc. A 372, 20130281 (2014).
Palmer, T. N. Modelling: build imprecise supercomputers. Nature 526, 32–33 (2015).
Palmer, T. N. & O’Shea, M. Solving difficult problems creatively: a role for energy optimised deterministic/stochastic hybrid computing. Front. Comput. Neurosci. 9, 124 (2015).
Acknowledgements
The author thanks H. Christensen for helpful input on and improvements to this paper. This work was supported by the ERC Advanced Grant ITHACA grant number DCR00620.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Albedo
-
A non-dimensional measure of the diffuse reflection of sunlight from a surface. More specifically, the ratio of radiosity to irradiance.
- Biosphere
-
The regions of the Earth system occupied by living organisms.
- Cryosphere
-
Those portions of Earth’s surface where water is in solid form.
- Madden–Julian oscillation
-
A planetary-scale eastward-propagating oscillation in surface pressure (and related variables), primarily located in the tropics, with a periodicity of about 30–60 days.
- Orographic
-
Related to the topography of mountains.
- Outset
-
In dynamical systems theory, a saddle-point instability has both a stable and unstable manifold in state space, corresponding to the saddle point’s attractor and repeller, respectively. The outset corresponds to the unstable manifold.
- Rossby waves
-
Planetary-scale wavelike disturbances in surface pressure (and related variables) whose existence and properties are dependent on the rotation of the Earth.
- Skill
-
A measure of the practical value of weather forecasts. For probabilistic forecasts, the skill combines the reliability of the forecast probabilities and the sharpness of the forecast probability distributions.
Rights and permissions
About this article
Cite this article
Palmer, T.N. Stochastic weather and climate models. Nat Rev Phys 1, 463–471 (2019). https://doi.org/10.1038/s42254-019-0062-2
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0062-2
This article is cited by
-
Analytical Properties for a Stochastic Rotating Shallow Water Model Under Location Uncertainty
Journal of Mathematical Fluid Mechanics (2023)
-
The stochastic primitive equations with transport noise and turbulent pressure
Stochastics and Partial Differential Equations: Analysis and Computations (2022)
-
Spontaneously Stochastic Arnold’s Cat
Arnold Mathematical Journal (2022)
-
Discovery of Slow Variables in a Class Of Multiscale Stochastic Systems Via Neural Networks
Journal of Nonlinear Science (2022)
-
Ensemble forecasting greatly expands the prediction horizon for ocean mesoscale variability
Communications Earth & Environment (2021)