Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantifying transmission electron microscopy irradiation effects using two-dimensional materials

A Publisher Correction to this article was published on 31 July 2019

This article has been updated

Abstract

Recent advances in transmission electron microscopy instrumentation have made it an indispensable technique for atomic-scale materials characterization. Concurrently, the availability of 2D materials has provided ideal samples in which each atom or vacancy can be resolved. New possibilities for the application of focused electron irradiation are being revealed, namely, the controlled manipulation of structures and even individual atoms. Evaluating the full range of possibilities for this method requires precise understanding of the electron–matter interactions, which is becoming feasible owing to advances in both experimental techniques and theoretical models. In this Perspective, we summarize the state of knowledge of the underlying physical processes on the basis of the latest results on 2D materials, with a focus on the physical principles of electron–matter interactions rather than material-specific irradiation-induced defects. Two-dimensional materials could provide the experimental guidance for the development of quantitative models applicable to a wide range of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy transfer in elastic backscattering from a moving nucleus.
Fig. 2: Electron irradiation damage cross sections.

Similar content being viewed by others

Change history

  • 31 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    ADS  Google Scholar 

  2. Meyer, J. C. et al. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).

    ADS  Google Scholar 

  3. Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2008).

    ADS  Google Scholar 

  4. Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    ADS  Google Scholar 

  5. Egerton, R. F., McLeod, R., Wang, F. & Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991–997 (2010).

    Google Scholar 

  6. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Google Scholar 

  7. Ugurlu, O. et al. Radiolysis to knock-on damage transition in zeolites under electron beam irradiation. Phys. Rev. B 83, 113408 (2011).

    ADS  Google Scholar 

  8. Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2016).

    ADS  MathSciNet  Google Scholar 

  9. Egerton, R. F. Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 75, 1550–1556 (2012).

    Google Scholar 

  10. Leijten, Z. J. W. A., Keizer, A. D. A., de With, G. & Friedrich, H. Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017).

    Google Scholar 

  11. Egerton, R. F., Wang, F. & Crozier, P. A. Beam-induced damage to thin specimens in an intense electron probe. Microsc. Microanal. 12, 65–71 (2006).

    ADS  Google Scholar 

  12. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  13. Susi, T. et al. Isotope analysis in the transmission electron microscope. Nat. Commun. 7, 13040 (2016).

    ADS  Google Scholar 

  14. Nordlund, K. et al. Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018).

    ADS  Google Scholar 

  15. Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

    Google Scholar 

  16. Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O. & Kaiser, U. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene. Appl. Phys. Lett. 103, 203107 (2013).

    ADS  Google Scholar 

  17. Lehnert, T., Lehtinen, O., Algara-Siller, G. & Kaiser, U. Electron radiation damage mechanisms in 2D MoSe2. Appl. Phys. Lett. 110, 033106 (2017).

    ADS  Google Scholar 

  18. Mittelberger, A., Kramberger, C. & Meyer, J. C. Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Sci. Rep. 8, 4813 (2018).

    ADS  Google Scholar 

  19. Kaiser, U. et al. Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 1239–1246 (2011).

    Google Scholar 

  20. Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).

    Google Scholar 

  21. Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015).

    ADS  Google Scholar 

  22. Lin, J. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9, 436–442 (2014).

    ADS  Google Scholar 

  23. Ryu, G. H. et al. Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600–10605 (2015).

    ADS  Google Scholar 

  24. Wang, S. et al. Atomic structure and formation mechanism of sub-nanometer pores in 2D monolayer MoS2. Nanoscale 9, 6417–6426 (2017).

    Google Scholar 

  25. Gilbert, S. M. et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride. Sci. Rep. 7, 15096 (2017).

    ADS  Google Scholar 

  26. Clark, N. et al. Scalable patterning of encapsulated black phosphorus. Nano Lett. 18, 5373–5381 (2018).

    ADS  Google Scholar 

  27. Zhao, X. et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 30, e1707281 (2018).

    Google Scholar 

  28. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    ADS  Google Scholar 

  29. Lin, J., Pantelides, S. T. & Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189–5197 (2015).

    Google Scholar 

  30. Liu, Z. et al. Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo2C with sharp interface by electron beam irradiation. Nanoscale 9, 7501–7507 (2017).

    Google Scholar 

  31. Patra, T. K. et al. Defect dynamics in 2-D MoS2 probed by using machine learning, atomistic simulations, and high-resolution microscopy. ACS Nano 12, 8006–8016 (2018).

    Google Scholar 

  32. Eder, F. R., Kotakoski, J., Kaiser, U. & Meyer, J. C. A journey from order to disorder — atom by atom transformation from graphene to a 2D carbon glass. Sci. Rep. 4, 4060 (2014).

    ADS  Google Scholar 

  33. Su, J. & Zhu, X. In situ TEM observation of preferential amorphization in single crystal Si nanowire. Nanotechnology 29, 235703 (2018).

    ADS  Google Scholar 

  34. Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11, 5895–5900 (2015).

    Google Scholar 

  35. Bayer, B. C. et al. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 12, 8758–8769 (2018).

    Google Scholar 

  36. Susi, T. et al. Silicon–carbon bond inversions driven by 60-keV electrons in graphene. Phys. Rev. Lett. 113, 115501 (2014).

    ADS  Google Scholar 

  37. Susi, T., Meyer, J. C. & Kotakoski, J. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 180, 163–172 (2017).

    Google Scholar 

  38. Dyck, O., Kim, S., Kalinin, S. V. & Jesse, S. Placing single atoms in graphene with a scanning transmission electron microscope. Appl. Phys. Lett. 111, 113104 (2017).

    ADS  Google Scholar 

  39. Tripathi, M. et al. Electron-beam manipulation of silicon dopants in graphene. Nano Lett. 18, 5319–5323 (2018).

    ADS  Google Scholar 

  40. Hudak, B. M. et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano 12, 5873–5879 (2018).

    Google Scholar 

  41. Dyck, O. et al. Building structures atom by atom via electron beam manipulation. Small 14, e1801771 (2018).

    Google Scholar 

  42. McKinley, W. A. & Feshbach, H. The Coulomb scattering of relativistic electrons by nuclei. Phys. Rev. 74, 1759–1763 (1948).

    ADS  Google Scholar 

  43. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    ADS  Google Scholar 

  44. Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

    ADS  Google Scholar 

  45. Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    ADS  Google Scholar 

  46. Yoshimura, A., Lamparski, M., Kharche, N. & Meunier, V. First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. Nanoscale 10, 2388–2397 (2018).

    Google Scholar 

  47. Despoja, V., Mowbray, D. J., Vlahović, D. & Marušić, L. TDDFT study of time-dependent and static screening in graphene. Phys. Rev. B 86, 195429 (2012).

    ADS  Google Scholar 

  48. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013).

    ADS  Google Scholar 

  49. Iglesias, J. M., Martín, M. J., Pascual, E. & Rengel, R. Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene. Appl. Phys. Lett. 108, 043105 (2016).

    ADS  Google Scholar 

  50. Nie, Z. et al. Ultrafast electron and hole relaxation pathways in few-layer MoS2. J. Phys. Chem. C 119, 20698–20708 (2015).

    Google Scholar 

  51. Li, J. et al. Nature of exciton transitions in hexagonal boron nitride. Appl. Phys. Lett. 108, 122101 (2016).

    ADS  Google Scholar 

  52. Brydson, R. Aberration-Corrected Analytical Transmission Electron Microscopy (John Wiley & Sons, 2011).

  53. Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction 2nd edn (World Scientific Publishing, 2015).

  54. Hawkes, P. W. Aberration correction past and present. Phil. Trans. R. Soc. Lond. A 367, 3637–3664 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  55. Rose, H. H. Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85 (2009).

    Google Scholar 

  56. Phillipp, F., Höschen, R., Osaki, M., Möbus, G. & Rühle, M. New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart. Ultramicroscopy 56, 1–10 (1994).

    Google Scholar 

  57. Erni, R., Rossell, M. D., Kisielowski, C. & Dahmen, U. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

    ADS  Google Scholar 

  58. Ricolleau, C. et al. High resolution imaging and spectroscopy using Cs-corrected TEM with cold FEG JEM-ARM200F. JEOL News 47, 2–8 (2012).

    Google Scholar 

  59. Linck, M. et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys. Rev. Lett. 117, 076101 (2016).

    ADS  Google Scholar 

  60. Allen, L. J., McBride, W., O’Leary, N. L. & Oxley, M. P. Exit wave reconstruction at atomic resolution. Ultramicroscopy 100, 91–104 (2004).

    Google Scholar 

  61. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    ADS  Google Scholar 

  62. Vanacore, G. M., Fitzpatrick, A. W. P. & Zewail, A. H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today 11, 228–249 (2016).

    Google Scholar 

  63. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    ADS  Google Scholar 

  64. Piazza, L. et al. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem. Phys. 423, 79–84 (2013).

    Google Scholar 

  65. Kotakoski, J., Mangler, C. & Meyer, J. C. Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).

    ADS  Google Scholar 

  66. Ramasse, Q. M. Twenty years after: how “aberration correction in the STEM” truly placed a “a synchrotron in a microscope”. Ultramicroscopy 180, 41–51 (2017).

    Google Scholar 

  67. Robertson, A. W. et al. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144 (2012).

    ADS  Google Scholar 

  68. Leuthner, G. T. et al. Scanning transmission electron microscopy under controlled low-pressure atmospheres. Ultramicroscopy. https://doi.org/10.1016/j.ultramic.2019.02.002 (2019).

    Google Scholar 

  69. Jung, P. in Atomic Defects in Metals: Landolt-Börnstein — Group III Condensed Matter Vol. 25 (ed. Ullmaier, H.) 6–7 (Springer, 1991).

  70. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    ADS  Google Scholar 

  71. Kotakoski, J., Jin, C. H., Lehtinen, O., Suenaga, K. & Krasheninnikov, A. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404 (2010).

    ADS  Google Scholar 

  72. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  73. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  74. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    ADS  Google Scholar 

  75. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    ADS  Google Scholar 

  76. Cretu, O., Lin, Y.-C. & Suenaga, K. Inelastic electron irradiation damage in hexagonal boron nitride. Micron 72, 21–27 (2015).

    Google Scholar 

  77. Mott, N. F. The polarisation of electrons by double scattering. Proc. R. Soc. Lond. A 135, 429–458 (1932).

    ADS  MATH  Google Scholar 

  78. Seitz, F. & Koehler, J. S. Displacement of atoms during irradiation. Solid State Phys. 2, 305–448 (1956).

    Google Scholar 

  79. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    ADS  Google Scholar 

  80. Egerton, R. F. Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19, 479–486 (2013).

    ADS  Google Scholar 

  81. Su, C. et al. Engineering single-atom dynamics with electron irradiation. Sci. Adv. (in the press).

  82. Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACS Nano 6, 8837–8846 (2012).

    Google Scholar 

  83. Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G. & Colliex, C. Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 75, 245402 (2007).

    ADS  Google Scholar 

  84. Lin, Y.-C. et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett. 15, 7408–7413 (2015).

    ADS  Google Scholar 

  85. Susi, T. et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 4, 042004 (2017).

    Google Scholar 

  86. Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018).

    Google Scholar 

  87. Wu, Y., Li, G. & Camden, J. P. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 118, 2994–3031 (2018).

    Google Scholar 

  88. Egerton, R. F. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2007).

    Google Scholar 

  89. Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    ADS  Google Scholar 

  90. Vager, Z., Naaman, R. & Kanter, E. P. Coulomb explosion imaging of small molecules. Science 244, 426–431 (1989).

    ADS  Google Scholar 

  91. Börner, P., Kaiser, U. & Lehtinen, O. Evidence against a universal electron-beam-induced virtual temperature in graphene. Phys. Rev. B 93, 134104 (2016).

    ADS  Google Scholar 

  92. Møller, C. Zur Theorie des Durchgangs schneller Elektronen durch Materie. [German]. Ann. Phys. 406, 531–585 (1932).

    MATH  Google Scholar 

  93. Fontes, C. J., Bostock, C. J. & Bartschat, K. Annotation of Hans Bethe’s paper, Zeitschrift für Physik 76, 293 (1932), “braking formula for electrons of relativistic speed”. Eur. Phys. J. A 39, 517–536 (2014).

    Google Scholar 

  94. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science 2nd edn 58 (Springer, 2009).

  95. Shin, H. et al. Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J. Chem. Phys. 140, 114702 (2014).

    ADS  Google Scholar 

  96. Ataca, C., Topsakal, M., Aktürk, E. & Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 115, 16354–16361 (2011).

    Google Scholar 

  97. Slotman, G. J. & Fasolino, A. Structure, stability and defects of single layer hexagonal BN in comparison to graphene. J. Phys. Condens. Matter 25, 045009 (2013).

    ADS  Google Scholar 

  98. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science 1st edn 49–65 (Springer, 1996).

  99. Hobbs, L. W. Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339–344 (1987).

    Google Scholar 

  100. Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014).

    ADS  Google Scholar 

  101. Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

    Google Scholar 

  102. Skowron, S. T. et al. Reaction kinetics of bond rotations in graphene. Carbon 105, 176–182 (2016).

    Google Scholar 

  103. Gan, Y., Kotakoski, J., Krasheninnikov, A. V., Nordlund, K. & Banhart, F. The diffusion of carbon atoms inside carbon nanotubes. New J. Phys. 10, 023022 (2008).

    ADS  Google Scholar 

  104. Chen, J. et al. Self healing of defected graphene. Appl. Phys. Lett. 102, 103107 (2013).

    ADS  Google Scholar 

  105. Garcia, A. et al. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014).

    Google Scholar 

  106. Merrill, A., Cress, C. D., Rossi, J. E., Cox, N. D. & Landi, B. J. Threshold displacement energies in graphene and single-walled carbon nanotubes. Phys. Rev. B 92, 4314 (2015).

    Google Scholar 

  107. Yan, Q., Wang, J., Chen, D., Gigax, J. & Shao, L. Displacement cross sections of electron irradiated graphene and carbon nanotubes. Nucl. Instrum. Methods Phys. Res. B 350, 20–25 (2015).

    ADS  Google Scholar 

  108. Kumar, R., Parashar, A. & Mertiny, P. Displacement thresholds and knock-on cross sections for hydrogenated h-BN monolayers. Comput. Mater. Sci. 142, 82–88 (2018).

    Google Scholar 

  109. Kotakoski, J. et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

    ADS  Google Scholar 

  110. Loponen, T., Krasheninnikov, A. V., Kaukonen, M. & Nieminen, R. M. Nitrogen-doped carbon nanotubes under electron irradiation simulated with a tight-binding model. Phys. Rev. B 74, 073409 (2006).

    ADS  Google Scholar 

  111. Tohei, T., Kuwabara, A., Oba, F. & Tanaka, I. Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73, 064304 (2006).

    ADS  Google Scholar 

  112. Jiang, L. & Tsai, H.-L. Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transf. 127, 1167–1173 (2005).

    Google Scholar 

  113. Osmani, O., Medvedev, N., Schleberger, M. & Rethfeld, B. Energy dissipation in dielectrics after swift heavy-ion impact: a hybrid model. Phys. Rev. B 84, 214105 (2011).

    ADS  Google Scholar 

  114. Chirita, A. I., Susi, T. & Kotakoski, J. Influence of temperature on the displacement threshold energy in graphene. Preprint at arXiv https://arxiv.org/abs/1811.04011 (2018).

  115. Yang, S.-Z. et al. Direct cation exchange in monolayer MoS2 via recombination-enhanced migration. Phys. Rev. Lett. 122, 106101 (2019).

    ADS  Google Scholar 

  116. Woicik, J. C. et al. Revealing excitonic processes and chemical bonding in MoS2 by X-ray spectroscopy. Phys. Rev. B 98, 115149 (2018).

    ADS  Google Scholar 

  117. Lin, W. et al. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 3, 33–40 (2017).

    Google Scholar 

  118. Cai, Y., Lan, J., Zhang, G. & Zhang, Y.-W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014).

    ADS  Google Scholar 

  119. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Lehnert, U. Kaiser and W. Zhou for providing MoS2 data, and A. Krasheninnikov, Q. Ramasse, O. Cretu, A. Yoshimura, C. Su, A. Chirita, A. Markevich and G. Leuthner for helpful discussions. T.S. was supported by the European Research Council (ERC) Grant 756277-ATMEN and the Austrian Science Fund (FWF) project P 28322-N36. J.C.M. was supported by the ERC Grant 336453-PICOMAT. J.K. was supported by the FWF projects I 3181 and P 31605, and the Wiener Wissenschafts-, Forschungs-, und Technologiefonds (WWTF) project MA14-009.

Author information

Authors and Affiliations

Authors

Contributions

T.S. conceived the Perspective article and drafted the manuscript with contributions from J.C.M. and J.K. All authors edited and revised the text before submission.

Corresponding author

Correspondence to Toma Susi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks R. Egerton, S. Kalinin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susi, T., Meyer, J.C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat Rev Phys 1, 397–405 (2019). https://doi.org/10.1038/s42254-019-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0058-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing