Quantifying transmission electron microscopy irradiation effects using two-dimensional materials

Abstract

Recent advances in transmission electron microscopy instrumentation have made it an indispensable technique for atomic-scale materials characterization. Concurrently, the availability of 2D materials has provided ideal samples in which each atom or vacancy can be resolved. New possibilities for the application of focused electron irradiation are being revealed, namely, the controlled manipulation of structures and even individual atoms. Evaluating the full range of possibilities for this method requires precise understanding of the electron–matter interactions, which is becoming feasible owing to advances in both experimental techniques and theoretical models. In this Perspective, we summarize the state of knowledge of the underlying physical processes on the basis of the latest results on 2D materials, with a focus on the physical principles of electron–matter interactions rather than material-specific irradiation-induced defects. Two-dimensional materials could provide the experimental guidance for the development of quantitative models applicable to a wide range of materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Energy transfer in elastic backscattering from a moving nucleus.
Fig. 2: Electron irradiation damage cross sections.

Change history

  • 31 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

  2. 2.

    Meyer, J. C. et al. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).

  3. 3.

    Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2008).

  4. 4.

    Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

  5. 5.

    Egerton, R. F., McLeod, R., Wang, F. & Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991–997 (2010).

  6. 6.

    Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

  7. 7.

    Ugurlu, O. et al. Radiolysis to knock-on damage transition in zeolites under electron beam irradiation. Phys. Rev. B 83, 113408 (2011).

  8. 8.

    Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2016).

  9. 9.

    Egerton, R. F. Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 75, 1550–1556 (2012).

  10. 10.

    Leijten, Z. J. W. A., Keizer, A. D. A., de With, G. & Friedrich, H. Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017).

  11. 11.

    Egerton, R. F., Wang, F. & Crozier, P. A. Beam-induced damage to thin specimens in an intense electron probe. Microsc. Microanal. 12, 65–71 (2006).

  12. 12.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  13. 13.

    Susi, T. et al. Isotope analysis in the transmission electron microscope. Nat. Commun. 7, 13040 (2016).

  14. 14.

    Nordlund, K. et al. Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018).

  15. 15.

    Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

  16. 16.

    Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O. & Kaiser, U. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene. Appl. Phys. Lett. 103, 203107 (2013).

  17. 17.

    Lehnert, T., Lehtinen, O., Algara-Siller, G. & Kaiser, U. Electron radiation damage mechanisms in 2D MoSe2. Appl. Phys. Lett. 110, 033106 (2017).

  18. 18.

    Mittelberger, A., Kramberger, C. & Meyer, J. C. Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Sci. Rep. 8, 4813 (2018).

  19. 19.

    Kaiser, U. et al. Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 1239–1246 (2011).

  20. 20.

    Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).

  21. 21.

    Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015).

  22. 22.

    Lin, J. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9, 436–442 (2014).

  23. 23.

    Ryu, G. H. et al. Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600–10605 (2015).

  24. 24.

    Wang, S. et al. Atomic structure and formation mechanism of sub-nanometer pores in 2D monolayer MoS2. Nanoscale 9, 6417–6426 (2017).

  25. 25.

    Gilbert, S. M. et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride. Sci. Rep. 7, 15096 (2017).

  26. 26.

    Clark, N. et al. Scalable patterning of encapsulated black phosphorus. Nano Lett. 18, 5373–5381 (2018).

  27. 27.

    Zhao, X. et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 30, e1707281 (2018).

  28. 28.

    Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

  29. 29.

    Lin, J., Pantelides, S. T. & Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189–5197 (2015).

  30. 30.

    Liu, Z. et al. Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo2C with sharp interface by electron beam irradiation. Nanoscale 9, 7501–7507 (2017).

  31. 31.

    Patra, T. K. et al. Defect dynamics in 2-D MoS2 probed by using machine learning, atomistic simulations, and high-resolution microscopy. ACS Nano 12, 8006–8016 (2018).

  32. 32.

    Eder, F. R., Kotakoski, J., Kaiser, U. & Meyer, J. C. A journey from order to disorder — atom by atom transformation from graphene to a 2D carbon glass. Sci. Rep. 4, 4060 (2014).

  33. 33.

    Su, J. & Zhu, X. In situ TEM observation of preferential amorphization in single crystal Si nanowire. Nanotechnology 29, 235703 (2018).

  34. 34.

    Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11, 5895–5900 (2015).

  35. 35.

    Bayer, B. C. et al. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 12, 8758–8769 (2018).

  36. 36.

    Susi, T. et al. Silicon–carbon bond inversions driven by 60-keV electrons in graphene. Phys. Rev. Lett. 113, 115501 (2014).

  37. 37.

    Susi, T., Meyer, J. C. & Kotakoski, J. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 180, 163–172 (2017).

  38. 38.

    Dyck, O., Kim, S., Kalinin, S. V. & Jesse, S. Placing single atoms in graphene with a scanning transmission electron microscope. Appl. Phys. Lett. 111, 113104 (2017).

  39. 39.

    Tripathi, M. et al. Electron-beam manipulation of silicon dopants in graphene. Nano Lett. 18, 5319–5323 (2018).

  40. 40.

    Hudak, B. M. et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano 12, 5873–5879 (2018).

  41. 41.

    Dyck, O. et al. Building structures atom by atom via electron beam manipulation. Small 14, e1801771 (2018).

  42. 42.

    McKinley, W. A. & Feshbach, H. The Coulomb scattering of relativistic electrons by nuclei. Phys. Rev. 74, 1759–1763 (1948).

  43. 43.

    García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

  44. 44.

    Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

  45. 45.

    Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

  46. 46.

    Yoshimura, A., Lamparski, M., Kharche, N. & Meunier, V. First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. Nanoscale 10, 2388–2397 (2018).

  47. 47.

    Despoja, V., Mowbray, D. J., Vlahović, D. & Marušić, L. TDDFT study of time-dependent and static screening in graphene. Phys. Rev. B 86, 195429 (2012).

  48. 48.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013).

  49. 49.

    Iglesias, J. M., Martín, M. J., Pascual, E. & Rengel, R. Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene. Appl. Phys. Lett. 108, 043105 (2016).

  50. 50.

    Nie, Z. et al. Ultrafast electron and hole relaxation pathways in few-layer MoS2. J. Phys. Chem. C 119, 20698–20708 (2015).

  51. 51.

    Li, J. et al. Nature of exciton transitions in hexagonal boron nitride. Appl. Phys. Lett. 108, 122101 (2016).

  52. 52.

    Brydson, R. Aberration-Corrected Analytical Transmission Electron Microscopy (John Wiley & Sons, 2011).

  53. 53.

    Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction 2nd edn (World Scientific Publishing, 2015).

  54. 54.

    Hawkes, P. W. Aberration correction past and present. Phil. Trans. R. Soc. Lond. A 367, 3637–3664 (2009).

  55. 55.

    Rose, H. H. Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85 (2009).

  56. 56.

    Phillipp, F., Höschen, R., Osaki, M., Möbus, G. & Rühle, M. New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart. Ultramicroscopy 56, 1–10 (1994).

  57. 57.

    Erni, R., Rossell, M. D., Kisielowski, C. & Dahmen, U. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

  58. 58.

    Ricolleau, C. et al. High resolution imaging and spectroscopy using Cs-corrected TEM with cold FEG JEM-ARM200F. JEOL News 47, 2–8 (2012).

  59. 59.

    Linck, M. et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys. Rev. Lett. 117, 076101 (2016).

  60. 60.

    Allen, L. J., McBride, W., O’Leary, N. L. & Oxley, M. P. Exit wave reconstruction at atomic resolution. Ultramicroscopy 100, 91–104 (2004).

  61. 61.

    Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

  62. 62.

    Vanacore, G. M., Fitzpatrick, A. W. P. & Zewail, A. H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today 11, 228–249 (2016).

  63. 63.

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

  64. 64.

    Piazza, L. et al. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem. Phys. 423, 79–84 (2013).

  65. 65.

    Kotakoski, J., Mangler, C. & Meyer, J. C. Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).

  66. 66.

    Ramasse, Q. M. Twenty years after: how “aberration correction in the STEM” truly placed a “a synchrotron in a microscope”. Ultramicroscopy 180, 41–51 (2017).

  67. 67.

    Robertson, A. W. et al. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144 (2012).

  68. 68.

    Leuthner, G. T. et al. Scanning transmission electron microscopy under controlled low-pressure atmospheres. Ultramicroscopy. https://doi.org/10.1016/j.ultramic.2019.02.002 (2019).

  69. 69.

    Jung, P. in Atomic Defects in Metals: Landolt-Börnstein — Group III Condensed Matter Vol. 25 (ed. Ullmaier, H.) 6–7 (Springer, 1991).

  70. 70.

    Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

  71. 71.

    Kotakoski, J., Jin, C. H., Lehtinen, O., Suenaga, K. & Krasheninnikov, A. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404 (2010).

  72. 72.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  73. 73.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  74. 74.

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

  75. 75.

    Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

  76. 76.

    Cretu, O., Lin, Y.-C. & Suenaga, K. Inelastic electron irradiation damage in hexagonal boron nitride. Micron 72, 21–27 (2015).

  77. 77.

    Mott, N. F. The polarisation of electrons by double scattering. Proc. R. Soc. Lond. A 135, 429–458 (1932).

  78. 78.

    Seitz, F. & Koehler, J. S. Displacement of atoms during irradiation. Solid State Phys. 2, 305–448 (1956).

  79. 79.

    Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

  80. 80.

    Egerton, R. F. Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19, 479–486 (2013).

  81. 81.

    Su, C. et al. Engineering single-atom dynamics with electron irradiation. Sci. Adv. (in the press).

  82. 82.

    Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACS Nano 6, 8837–8846 (2012).

  83. 83.

    Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G. & Colliex, C. Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 75, 245402 (2007).

  84. 84.

    Lin, Y.-C. et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett. 15, 7408–7413 (2015).

  85. 85.

    Susi, T. et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 4, 042004 (2017).

  86. 86.

    Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018).

  87. 87.

    Wu, Y., Li, G. & Camden, J. P. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 118, 2994–3031 (2018).

  88. 88.

    Egerton, R. F. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2007).

  89. 89.

    Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

  90. 90.

    Vager, Z., Naaman, R. & Kanter, E. P. Coulomb explosion imaging of small molecules. Science 244, 426–431 (1989).

  91. 91.

    Börner, P., Kaiser, U. & Lehtinen, O. Evidence against a universal electron-beam-induced virtual temperature in graphene. Phys. Rev. B 93, 134104 (2016).

  92. 92.

    Møller, C. Zur Theorie des Durchgangs schneller Elektronen durch Materie. [German]. Ann. Phys. 406, 531–585 (1932).

  93. 93.

    Fontes, C. J., Bostock, C. J. & Bartschat, K. Annotation of Hans Bethe’s paper, Zeitschrift für Physik 76, 293 (1932), “braking formula for electrons of relativistic speed”. Eur. Phys. J. A 39, 517–536 (2014).

  94. 94.

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science 2nd edn 58 (Springer, 2009).

  95. 95.

    Shin, H. et al. Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J. Chem. Phys. 140, 114702 (2014).

  96. 96.

    Ataca, C., Topsakal, M., Aktürk, E. & Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 115, 16354–16361 (2011).

  97. 97.

    Slotman, G. J. & Fasolino, A. Structure, stability and defects of single layer hexagonal BN in comparison to graphene. J. Phys. Condens. Matter 25, 045009 (2013).

  98. 98.

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science 1st edn 49–65 (Springer, 1996).

  99. 99.

    Hobbs, L. W. Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339–344 (1987).

  100. 100.

    Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014).

  101. 101.

    Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

  102. 102.

    Skowron, S. T. et al. Reaction kinetics of bond rotations in graphene. Carbon 105, 176–182 (2016).

  103. 103.

    Gan, Y., Kotakoski, J., Krasheninnikov, A. V., Nordlund, K. & Banhart, F. The diffusion of carbon atoms inside carbon nanotubes. New J. Phys. 10, 023022 (2008).

  104. 104.

    Chen, J. et al. Self healing of defected graphene. Appl. Phys. Lett. 102, 103107 (2013).

  105. 105.

    Garcia, A. et al. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014).

  106. 106.

    Merrill, A., Cress, C. D., Rossi, J. E., Cox, N. D. & Landi, B. J. Threshold displacement energies in graphene and single-walled carbon nanotubes. Phys. Rev. B 92, 4314 (2015).

  107. 107.

    Yan, Q., Wang, J., Chen, D., Gigax, J. & Shao, L. Displacement cross sections of electron irradiated graphene and carbon nanotubes. Nucl. Instrum. Methods Phys. Res. B 350, 20–25 (2015).

  108. 108.

    Kumar, R., Parashar, A. & Mertiny, P. Displacement thresholds and knock-on cross sections for hydrogenated h-BN monolayers. Comput. Mater. Sci. 142, 82–88 (2018).

  109. 109.

    Kotakoski, J. et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

  110. 110.

    Loponen, T., Krasheninnikov, A. V., Kaukonen, M. & Nieminen, R. M. Nitrogen-doped carbon nanotubes under electron irradiation simulated with a tight-binding model. Phys. Rev. B 74, 073409 (2006).

  111. 111.

    Tohei, T., Kuwabara, A., Oba, F. & Tanaka, I. Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73, 064304 (2006).

  112. 112.

    Jiang, L. & Tsai, H.-L. Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transf. 127, 1167–1173 (2005).

  113. 113.

    Osmani, O., Medvedev, N., Schleberger, M. & Rethfeld, B. Energy dissipation in dielectrics after swift heavy-ion impact: a hybrid model. Phys. Rev. B 84, 214105 (2011).

  114. 114.

    Chirita, A. I., Susi, T. & Kotakoski, J. Influence of temperature on the displacement threshold energy in graphene. Preprint at arXiv https://arxiv.org/abs/1811.04011 (2018).

  115. 115.

    Yang, S.-Z. et al. Direct cation exchange in monolayer MoS2 via recombination-enhanced migration. Phys. Rev. Lett. 122, 106101 (2019).

  116. 116.

    Woicik, J. C. et al. Revealing excitonic processes and chemical bonding in MoS2 by X-ray spectroscopy. Phys. Rev. B 98, 115149 (2018).

  117. 117.

    Lin, W. et al. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 3, 33–40 (2017).

  118. 118.

    Cai, Y., Lan, J., Zhang, G. & Zhang, Y.-W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014).

  119. 119.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

Download references

Acknowledgements

The authors thank T. Lehnert, U. Kaiser and W. Zhou for providing MoS2 data, and A. Krasheninnikov, Q. Ramasse, O. Cretu, A. Yoshimura, C. Su, A. Chirita, A. Markevich and G. Leuthner for helpful discussions. T.S. was supported by the European Research Council (ERC) Grant 756277-ATMEN and the Austrian Science Fund (FWF) project P 28322-N36. J.C.M. was supported by the ERC Grant 336453-PICOMAT. J.K. was supported by the FWF projects I 3181 and P 31605, and the Wiener Wissenschafts-, Forschungs-, und Technologiefonds (WWTF) project MA14-009.

Author information

T.S. conceived the Perspective article and drafted the manuscript with contributions from J.C.M. and J.K. All authors edited and revised the text before submission.

Correspondence to Toma Susi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks R. Egerton, S. Kalinin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Susi, T., Meyer, J.C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat Rev Phys 1, 397–405 (2019). https://doi.org/10.1038/s42254-019-0058-y

Download citation

Further reading