Abstract
The production of pairs of entangled photons simply by focusing a laser beam onto a crystal with a nonlinear optical response was used to test quantum mechanics and to open new approaches in imaging. The development of the latter was enabled by the emergence of single-photon-sensitive cameras that are able to characterize spatial correlations and high-dimensional entanglement. Thereby, new techniques emerged, such as ghost imaging of objects — in which the quantum correlations between photons reveal the image from photons that have never interacted with the object — or imaging with undetected photons by using nonlinear interferometers. In addition, quantum approaches in imaging can also lead to an improvement in the performance of conventional imaging systems. These improvements can be obtained by means of image contrast, resolution enhancement that exceeds the classical limit and acquisition of sub-shot-noise phase or amplitude images. In this Review, we discuss the application of quantum states of light for advanced imaging techniques.
Key points
-
Improvements in available camera technologies have enabled the efficient detection and characterization of quantum behaviours in continuous spatial variables.
-
The use of cameras in the context of quantum optics allows the detection and use of high-dimensional quantum states.
-
Quantum states of light can be harnessed to implement quantum imaging protocols that allow improved imaging over classical techniques; such protocols can lead to improved estimation of the transmission, reflectance and phase of an imaged object, in addition to offering improved resolution images of the object.
-
Quantum imaging techniques allow new types of imaging, such as ghost imaging, quantum imaging with undetected photons or the implementation of interaction-free measurements in the context of imaging.
-
Sources of pairs of photons with different wavelengths allow the lack of high-fidelity detectors at exotic wavelengths to be overcome through ghost imaging techniques and quantum nonlinear interferometric imaging techniques.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).
Wang, C. C. & Racette, G. W. Measurement of parametric gain accompanying optical difference frequency generation. Appl. Phys. Lett. 6, 169–171 (1965).
Giordmaine, J. & Miller, R. C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965).
Kocher, C. A. & Commins, E. D. Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575–577 (1967).
Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
Louisell, W., Yariv, A. & Siegman, A. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).
Haus, H. A. & Mullen, J. Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962).
Klyshko, D. Scattering of light in a medium with nonlinear polarizability. Sov. Phys. JETP 28, 522–526 (1969).
Harris, S., Oshman, M. & Byer, R. Observation of tunable optical parametric fluorescence. Phys. Rev. Lett. 18, 732–734 (1967).
Akhmanov, S., Fadeev, V., Khokhlov, R. & Chunaev, O. Quantum noise in parametric light amplifiers. ZhETF Pisma Redaktsiiu 6, 575–578 (1967).
Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).
Ghosh, R. & Mandel, L. Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett. 59, 1903–1905 (1987).
Ou, Z. & Mandel, L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Shih, Y. Entangled biphoton source-property and preparation. Rep. Prog. Phys. 66, 1009–1044 (2003).
Genovese, M. Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005).
Hong, C.-K., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y. & Scully, M. O. Delayed “choice” quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000).
Ma, X.-S., Kofler, J. & Zeilinger, A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016).
Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).
Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).
Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).
Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. Realization of the Einstein–Podolsky–Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Klyshko, D. Photons and Nonlinear Optics (CRC Press, 1988).
Jost, B. M., Sergienko, A. V., Abouraddy, A. F., Saleh, B. E. & Teich, M. C. Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera. Opt. Express 3, 81–88 (1998).
Basden, A. G., Haniff, C. & Mackay, C. Photon counting strategies with low-light-level CCDs. Mon. Not. R. Astron. Soc. 345, 985–991 (2003).
Rarity, J. & Tapster, P. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990).
Pittman, T., Shih, Y., Strekalov, D. & Sergienko, A. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).
Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of two-photon ghost interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995).
Devaux, F. & Lantz, E. Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal. Eur. Phys. J. D 8, 117–124 (2000).
Couteau, C. Spontaneous parametric down-conversion. Contemp. Phys. 59, 291–304 (2018).
Boyd, R. W. Nonlinear Optics (Elsevier, 2003).
Jakeman, E. & Walker, J. Analysis of a method for the generation of light with sub-poissonian photon statistics. Opt. Commun. 55, 219–222 (1985).
Jakeman, E. & Rarity, J. The use of pair production processes to reduce quantum noise in transmission measurements. Opt. Commun. 59, 219–223 (1986).
Rarity, J., Tapster, P. & Jakeman, E. Observation of sub-Poissonian light in parametric downconversion. Opt. Commun. 62, 201–206 (1987).
Heidmann, A. et al. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987).
Nabors, C. & Shelby, R. Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric oscillators. Phys. Rev. A 42, 556–559 (1990).
Tapster, P., Seward, S. & Rarity, J. Sub-shot-noise measurement of modulated absorption using parametric down-conversion. Phys. Rev. A 44, 3266–3269 (1991).
Ribeiro, P. S. & C. Schwob, A. Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams. Opt. Lett. 22, 1893–1895 (1997).
Bondani, M., Allevi, A., Zambra, G., Paris, M. G. & Andreoni, A. Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light. Phys. Rev. A 76, 013833 (2007).
Iskhakov, T., Chekhova, M. V. & Leuchs, G. Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum. Phys. Rev. Lett. 102, 183602 (2009).
Jedrkiewicz, O. et al. Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. Phys. Rev. Lett. 93, 243601 (2004).
Jedrkiewicz, O. et al. Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera. J. Mod. Opt. 53, 575–595 (2006).
Blanchet, J.-L., Devaux, F., Furfaro, L. & Lantz, E. Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. Phys. Rev. Lett. 101, 233604 (2008).
Brambilla, E., Caspani, L., Jedrkiewicz, O., Lugiato, L. & Gatti, A. High-sensitivity imaging with multi-mode twin beams. Phys. Rev. A 77, 053807 (2008).
Brida, G. et al. Measurement of sub-shot-noise spatial correlations without background subtraction. Phys. Rev. Lett. 102, 213602 (2009).
Brida, G., Genovese, M. & Berchera, I. R. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).
Jerram, P. et al. in Proceedings of SPIE Vol. 4306 (eds Sampat, N. et al.) 178–187 (International Society for Optics and Photonics, 2001).
Lantz, E., Blanchet, J.-L., Furfaro, L. & Devaux, F. Multi-imaging and Bayesian estimation for photon counting with EMCCDs. Mon. Not. R. Astron. Soc. 386, 2262–2270 (2008).
Zhang, L., Neves, L., Lundeen, J. S. & Walmsley, I. A. A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device. J. Phys. B 42, 114011 (2009).
Blanchet, J.-L., Devaux, F., Furfaro, L. & Lantz, E. Purely spatial coincidences of twin photons in parametric spontaneous down-conversion. Phys. Rev. A 81, 043825 (2010).
Toninelli, E. et al. Sub-shot-noise shadow sensing with quantum correlations. Opt. Express 25, 21826–21840 (2017).
Reichert, M., Defienne, H., Sun, X. & Fleischer, J. W. Biphoton transmission through non-unitary objects. J. Opt. 19, 044004 (2017).
Reichert, M., Defienne, H. & Fleischer, J. W. Massively parallel coincidence counting of high-dimensional entangled states. Sci. Rep. 8, 7925 (2018).
Devaux, F., Mougin-Sisini, J., Moreau, P.-A. & Lantz, E. Towards the evidence of a purely spatial Einstein–Podolsky–Rosen paradox in images: measurement scheme and first experimental results. Eur. Phys. J. D 66, 192 (2012).
Moreau, P.-A., Mougin-Sisini, J., Devaux, F. & Lantz, E. Realization of the purely spatial Einstein–Podolsky–Rosen paradox in full-field images of spontaneous parametric down-conversion. Phys. Rev. A 86, 010101 (2012).
Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).
Moreau, P.-A., Devaux, F. & Lantz, E. Einstein–Podolsky–Rosen paradox in twin images. Phys. Rev. Lett. 113, 160401 (2014).
Lantz, E., Denis, S., Moreau, P.-A. & Devaux, F. Einstein–Podolsky–Rosen paradox in single pairs of images. Opt. Express 23, 26472–26478 (2015).
Takhar, D. et al. in Proceedings of SPIE Vol. 6065 (eds Bouman, C. A., Miller, E. L. & Pollak, I.) 606509 (International Society for Optics and Photonics, 2006).
Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).
Howland, G. A. & Howell, J. C. Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera. Phys. Rev. X 3, 011013 (2013).
Schneeloch, J., Dixon, P. B., Howland, G. A., Broadbent, C. J. & Howell, J. C. Violation of continuous-variable Einstein–Podolsky–Rosen steering with discrete measurements. Phys. Rev. Lett. 110, 130407 (2013).
Lampton, M. The microchannel image intensifier. Sci. Am. 245, 62–71 (1981).
Abouraddy, A. F., Nasr, M., Saleh, B. E., Sergienko, A. V. & Teich, M. C. Demonstration of the complementarity of one-and two-photon interference. Phys. Rev. A 63, 063803 (2001).
Pires, H. D. L., Monken, C. H. & van Exter, M. P. Direct measurement of transverse-mode entanglement in two-photon states. Phys. Rev. A 80, 022307 (2009).
Aspden, R. S., Tasca, D. S., Boyd, R. W. & Padgett, M. J. EPR-based ghost imaging using a single-photon-sensitive camera. New J. Phys. 15, 073032 (2013).
Fickler, R., Krenn, M., Lapkiewicz, R., Ramelow, S. & Zeilinger, A. Real-time imaging of quantum entanglement. Sci. Rep. 3, 1914 (2013).
Jachura, M. & Chrapkiewicz, R. Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified sCMOS camera. Opt. Lett. 40, 1540–1543 (2015).
Chrapkiewicz, R., Wasilewski, W. & Banaszek, K. High-fidelity spatially resolved multiphoton counting for quantum imaging applications. Opt. Lett. 39, 5090–5093 (2014).
Chrapkiewicz, R., Jachura, M., Banaszek, K. & Wasilewski, W. Hologram of a single photon. Nat. Photon. 10, 576–579 (2016).
Jachura, M., Chrapkiewicz, R., Demkowicz-Dobrzański, R., Wasilewski, W. & Banaszek, K. Mode engineering for realistic quantum-enhanced interferometry. Nat. Commun. 7, 11411 (2016).
Parniak, M. et al. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection. Nat. Commun. 8, 2140 (2017).
Guerrieri, F., Tisa, S., Tosi, A. & Zappa, F. Two-dimensional spad imaging camera for photon counting. IEEE Photon. J. 2, 759–774 (2010).
Guerrieri, F. et al. Sub-Rayleigh imaging via N-photon detection. Phys. Rev. Lett. 105, 163602 (2010).
Veerappan, C. et al. A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International 312–314 (IEEE, 2011).
Gariepy, G. et al. Single-photon sensitive light-in-fight imaging. Nat. Commun. 6, 6021 (2015).
Miki, S., Yamashita, T., Wang, Z. & Terai, H. A 64-pixel nbtin superconducting nanowire single-photon detector array for spatially resolved photon detection. Opt. Express 22, 7811–7820 (2014).
Allman, M. S. et al. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett. 106, 192601 (2015).
Ma, J., Masoodian, S., Starkey, D. A. & Fossum, E. R. Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica 4, 1474–1481 (2017).
Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).
Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1–51 (2017).
Mandel, L. Physical significance of operators in quantum optics. Phys. Rev. 136, B1221 (1964).
Stoler, D. Photon antibunching and possible ways to observe it. Phys. Rev. Lett. 33, 1397–1400 (1974).
Hollenhorst, J. N. Quantum limits on resonant-mass gravitational-radiation detectors. Phys. Rev. D 19, 1669–1679 (1979).
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).
Snyder, J. J., Giacobino, E., Fabre, C., Heidmann, A. & Ducloy, M. Sub-shot-noise measurements using the beat note between quantum-correlated photon beams. J. Opt. Soc. Am. B 7, 2132–2136 (1990).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Caves, C. M., Thorne, K. S., Drever, R. W., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).
Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).
Aasi, J. et al. Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).
Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016).
Wolfgramm, F., Vitelli, C., Beduini, F. A., Godbout, N. & Mitchell, M. W. Entanglement-enhanced probing of a delicate material system. Nat. Photon. 7, 28–32 (2013).
Davidovich, L. Sub-poissonian processes in quantum optics. Rev. Mod. Phys. 68, 127–173 (1996).
Xiao, M., Wu, L.-A. & Kimble, H. Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit. Opt. Lett. 13, 476–478 (1988).
Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).
Kolobov, M. I. & Fabre, C. Quantum limits on optical resolution. Phys. Rev. Lett. 85, 3789 (2000).
Treps, N. et al. Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002).
Treps, N. et al. A quantum laser pointer. Science 301, 940–943 (2003).
Boyer, V., Marino, A. M., Pooser, R. C. & Lett, P. D. Entangled images from four-wave mixing. Science 321, 544–547 (2008).
Lassen, M., Leuchs, G. & Andersen, U. L. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett. 102, 163602 (2009).
Wagner, K. et al. Entangling the spatial properties of laser beams. Science 321, 541–543 (2008).
Sabines-Chesterking, J. et al. Sub-shot-noise transmission measurement enabled by active feed-forward of heralded single photons. Phys. Rev. Appl. 8, 014016 (2017).
Samantaray, N., Ruo-Berchera, I., Meda, A. & Genovese, M. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl. 6, e17005 (2017).
Moreau, P.-A. et al. Demonstrating an absolute quantum advantage in direct absorption measurement. Sci. Rep. 7, 6256 (2017).
Losero, E., Ruo-Berchera, I., Meda, A., Avella, A. & Genovese, M. Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams. Sci. Rep. 8, 7431 (2018).
Iskhakov, T. S. et al. Heralded source of bright multi-mode mesoscopic sub-Poissonian light. Opt. Lett. 41, 2149–2152 (2016).
Nagata, T. et al. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).
Jacobson, J., Björk, G., Chuang, I. & Yamamoto, Y. Photonic de Broglie waves. Phys. Rev. Lett. 74, 4835–4838 (1995).
Fonseca, E., Monken, C. & Pádua, S. Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999).
Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 3426 (2013).
Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).
Leonhardt, U. Quantum statistics of a two-mode SU(1,1) interferometer. Phys. Rev. A 49, 1231–1242 (1994).
Plick, W. N., Dowling, J. P. & Agarwal, G. S. Coherent-light-boosted, sub-shot noise, quantum interferometry. New J. Phys. 12, 083014 (2010).
Marino, A. M., Trejo, N. C. & Lett, P. D. Effect of losses on the performance of an SU(1,1) interferometer. Phys. Rev. A 86, 023844 (2012).
Ou, Z. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A 85, 023815 (2012).
Jing, J., Liu, C., Zhou, Z., Ou, Z. & Zhang, W. Realization of a nonlinear interferometer with parametric amplifiers. Appl. Phys. Lett. 99, 011110 (2011).
Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014).
Manceau, M., Leuchs, G., Khalili, F. & Chekhova, M. Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer. Phys. Rev. Lett. 119, 223604 (2017).
Morris, P. A., Aspden, R. S., Bell, J. E., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).
Lanzagorta, M. Quantum radar. Synth. Lect. Quantum Comput. 3, 1–139 (2011).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Giovannetti, V., Lloyd, S., Maccone, L. & Shapiro, J. H. Sub-Rayleigh-diffraction-bound quantum imaging. Phys. Rev. A 79, 013827 (2009).
Mouradian, S., Wong, F. N. & Shapiro, J. H. Achieving sub-Rayleigh resolution via thresholding. Opt. Express 19, 5480–5488 (2011).
Schwartz, O. & Oron, D. Improved resolution in fluorescence microscopy using quantum correlations. Phys. Rev. A 85, 033812 (2012).
Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).
Israel, Y., Tenne, R., Oron, D. & Silberberg, Y. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017).
Monticone, D. G. et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett. 113, 143602 (2014).
Classen, A., von Zanthier, J., Scully, M. O. & Agarwal, G. S. Superresolution via structured illumination quantum correlation microscopy. Optica 4, 580–587 (2017).
Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).
Tsang, M., Nair, R. & Lu, X.-M. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033 (2016).
Toninelli, E. et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica 6, 347–353 (2019).
Tsang, M. Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).
D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).
Chang, H. J., Shin, H., O’Sullivan-Hale, M. N. & Boyd, R. W. Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber. J. Mod. Opt. 53, 2271–2277 (2006).
Shin, H., Chan, K. W. C., Chang, H. J. & Boyd, R. W. Quantum spatial superresolution by optical centroid measurements. Phys. Rev. Lett. 107, 083603 (2011).
Rozema, L. A. et al. Scalable spatial superresolution using entangled photons. Phys. Rev. Lett. 112, 223602 (2014).
Matthews, J. C. Scalable imaging of superresolution. Physics 7, 59 (2014).
Thiel, C. et al. Quantum imaging with incoherent photons. Phys. Rev. Lett. 99, 133603 (2007).
Oppel, S., Büttner, T., Kok, P. & von Zanthier, J. Superresolving multiphoton interferences with independent light sources. Phys. Rev. Lett. 109, 233603 (2012).
Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Ghost imaging using optical correlations. Laser Photon. Rev. 12, 1700143 (2018).
Klyshko, D. N. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Sov. Phys. Uspekhi 31, 74–85 (1988).
Pittman, T. B. et al. Two-photon geometric optics. Phys. Rev. A 53, 2804–2815 (1996).
Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049–1052 (2015).
Bennink, R. S., Bentley, S. J. & Boyd, R. W. Two-photon coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002).
Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Ghost imaging with thermal light: comparing entanglement and classicalcorrelation. Phys. Rev. Lett. 93, 093602 (2004).
Gatti, A., Brambilla, E. & Lugiato, L. Quantum imaging. Prog. Opt. 51, 251–348 (2008).
Moreau, P.-A. et al. Resolution limits of quantum ghost imaging. Opt. Express 26, 7528–7536 (2018).
Brida, G. et al. Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light. Phys. Rev. A 83, 063807 (2011).
Baleine, E., Dogariu, A. & Agarwal, G. S. Correlated imaging with shaped spatially partially coherent light. Opt. Lett. 31, 2124–2126 (2006).
Pepe, F. V. et al. Diffraction-limited plenoptic imaging with correlated light. Phys. Rev. Lett. 119, 243602 (2017).
Altmann, Y. et al. Quantum-inspired computational imaging. Science 361, eaat2298 (2018).
Shapiro, J. H. & Boyd, R. W. The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2012).
Genovese, M. Real applications of quantum imaging. J. Opt. 18, 073002 (2016).
Magana-Loaiza, O. S., Howland, G. A., Malik, M., Howell, J. C. & Boyd, R. W. Compressive object tracking using entangled photons. Appl. Phys. Lett. 102, 231104 (2013).
Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049–1052 (2015).
Jansen, C. et al. Terahertz imaging: applications and perspectives. Appl. Opt. 49, E48–E57 (2010).
Rubin, M. H. & Shih, Y. Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion. Phys. Rev. A 78, 033836 (2008).
Chan, K. W. C., O’Sullivan, M. N. & Boyd, R. W. Two-color ghost imaging. Phys. Rev. A 79, 033808 (2009).
Denis, S., Moreau, P.-A., Devaux, F. & Lantz, E. Temporal ghost imaging with twin photons. J. Opt. 19, 034002 (2017).
Schori, A., Borodin, D., Tamasaku, K. & Shwartz, S. Ghost imaging with paired X-ray photons. Phys. Rev. A 97, 063804 (2018).
Khakimov, R. I. et al. Ghost imaging with atoms. Nature 540, 100–103 (2016).
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).
Lahiri, M., Lapkiewicz, R., Lemos, G. B. & Zeilinger, A. Theory of quantum imaging with undetected photons. Phys. Rev. A 92, 013832 (2015).
Zou, X. Y., Wang, L. J. & Mandel, L. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991).
Wang, L. J., Zou, X. Y. & Mandel, L. Induced coherence without induced emission. Phys. Rev. A 44, 4614–4622 (1991).
Ou, Z. Y., Wang, L. J., Zou, X.-B. & Mandel, L. Coherence in two-photon down-conversion induced by a laser. Phys. Rev. A 41, 1597–1601 (1990).
Kalashnikov, D. A., Paterova, A. V., Kulik, S. P. & Krivitsky, L. A. Infrared spectroscopy with visible light. Nat. Photon. 10, 98–101 (2016).
Hochrainer, A., Lahiri, M., Lapkiewicz, R., Lemos, G. B. & Zeilinger, A. Quantifying the momentum correlation between two light beams by detecting one. Proc. Natl Acad. Sci. USA 114, 1508–1511 (2017).
Elitzur, A. C. & Vaidman, L. Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993).
Vaidman, L. On the realization of interaction-free measurements. Quantum Opt. J. Eur. Opt. Soc. B 6, 119–126 (1994).
Kwiat, P. G. Experimental and theoretical progress in interaction-free measurements. Phys. Scr. 1998, 115–121 (1998).
Vaidman, L. Are interaction-free measurements interaction free? Opt. Spectrosc. 91, 352–357 (2001).
Geszti, T. Interaction-free measurement and forward scattering. Phys. Rev. A 58, 4206–4209 (1998).
Misra, B. & Sudarshan, E. C. G. The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977).
Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A. & Kasevich, M. A. Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995).
Tsegaye, T. et al. Efficient interaction-free measurements in a high-finesse interferometer. Phys. Rev. A 57, 3987–3990 (1998).
Kwiat, P. G. et al. High-efficiency quantum interrogation measurements via the quantum Zeno effect. Phys. Rev. Lett. 83, 4725–4728 (1999).
White, A. G., Mitchell, J. R., Nairz, O. & Kwiat, P. G. Interaction-free imaging. Phys. Rev. A 58, 605–613 (1998).
Zhang, Y. et al. Interaction-free ghost-imaging of structured objects. Opt. Express 27, 2212–2224 (2019).
Yan, F., Iliyasu, A. M. & Le, P. Q. Quantum image processing: a review of advances in its security technologies. Int. J Quantum Inf. 15, 1730001 (2017).
Di Lena, F., Pepe, F., Garuccio, A. & D'Angelo, M. Correlation plenoptic imaging: an overview. Appl. Sci. 8, 1958 (2018).
Schleich, W. P. et al. Quantum technology: from research to application. Appl. Phys. B 122, 130 (2016).
Barnett, S. M. Journeys from quantum optics to quantum technology. Prog. Quantum Electron. 54, 19–45 (2017).
Mohseni, M. Commercialize quantum technologies in five years. Nature 543, 171–175 (2017).
Lantz, E., Moreau, P.-A. & Devaux, F. Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays. Phys. Rev. A 90, 063811 (2014).
Tasca, D. S., Edgar, M. P., Izdebski, F., Buller, G. S. & Padgett, M. J. Optimizing the use of detector arrays for measuring intensity correlations of photon pairs. Phys. Rev. A 88, 013816 (2013).
Acknowledgements
This work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC; QuantIC EP/M01326X/1) and the European Research Council (TWISTS, 340507, grant no. 192382). P.-A.M. acknowledges the support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie fellowship grant agreement no. 706410, of the Leverhulme Trust through the Research Project Grant ECF-2018-634 and of the Lord Kelvin/Adam Smith Leadership Fellowship scheme. E.T. acknowledges the financial support from the EPSRC Centre for Doctoral Training Intelligent Sensing and Measurement (EP/L016753/1). T.G. acknowledges the financial support from the EPSRC (EP/N509668/1) and the Professor Jim Gatheral quantum technology studentship.
Author information
Authors and Affiliations
Contributions
P.-A.M. and M.J.P. made substantial contributions to discussions of the content. P.-A.M., T.G. and M.J.P. researched data for the article. P.-A.M., E.T., T.G. and M.J.P. wrote the article and reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Quantum decoherence
-
The loss of quantum coherence of a quantum system through its interaction with the environment. This loss of coherence leads to the collapse of the system wavefunction, which leads to loose quantum superposition or entanglement.
- Sub-shot-noise
-
A variable exhibits sub-shot-noise statistics if the noise on that variable is smaller than the shot noise. The shot noise is due to the discrete and independent arrival of photons, which exhibits Poisson statistics.
- Quantum squeezing
-
A state is said to be squeezed if the noise of one observable measured on that state is below the symmetric Heisenberg limit; this implies that the conjugate variable noise is itself above that limit, as imposed by the Heisenberg uncertainty principle.
- Field quadratures
-
Operators that correspond to the real and imaginary parts of the amplitude of the quantized electromagnetic field. They compose a basis for the phase space of the quantized field.
- Quantum non-demolition measurement
-
A type of measurement of a quantum system that preserves the uncertainty of the measured observable. This implies, in particular, that the system is not destroyed by the measurement, for example, a measured photon would not be absorbed during the measurement process.
- Homodyne detectors
-
A detector used to measure different components of the quantized electromagnetic phase space. It is based on detecting the interference occurring on the two outputs of a beam splitter that mixes a controlled bright local oscillator and the state of light that is to be measured.
- Thermal light
-
Light whose statistic is similar to that of thermal radiation. As a result, such light is subject to super-Poissonian intensity fluctuations.
- NOON states
-
A state composed of N particles in a superposition of being all in one mode or all in a second mode.
- LiDAR systems
-
A system that emits light pulses and measures the time-of-flight of their echoes to assess the distance to reflecting objects. It is based on the same principle as a RADAR system but uses light instead of radio waves.
- Photon anti-bunching
-
A property of light in which photons are more evenly spaced in time than in an ideal laser beam (coherent state). Anti-bunched light will exhibit sub-shot-noise statistics over time.
- Hanbury Brown–Twiss effect
-
A correlation effect observed between the intensities detected by two detectors when each receive light from two independent sources. It requires the interference of two photons to occur to be explained at a quantum level.
- Weak measurements
-
Measurements for which the measuring device is weakly coupled with the measured system. Weak measurements disturb the measured system less than conventional projective measurements.
Rights and permissions
About this article
Cite this article
Moreau, PA., Toninelli, E., Gregory, T. et al. Imaging with quantum states of light. Nat Rev Phys 1, 367–380 (2019). https://doi.org/10.1038/s42254-019-0056-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0056-0
This article is cited by
-
Learning quantum systems
Nature Reviews Physics (2023)
-
Far-field super-resolution chemical microscopy
Light: Science & Applications (2023)
-
Activating cavity by electrons
Communications Physics (2023)
-
Fundamental quantum limits of magnetic nearfield measurements
npj Quantum Information (2023)
-
A superconducting nanowire single-photon camera with 400,000 pixels
Nature (2023)