Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-molecule quantum-transport phenomena in break junctions


Single-molecule junctions — devices in which a single molecule is electrically connected by two electrodes — enable the study of a broad range of quantum-transport phenomena even at room temperature. These quantum features are related to molecular orbital and spin degrees of freedom and are characterized by various energy scales that can be chemically and physically tuned: level spacings, charging energies, tunnel couplings, exchange energies, vibrational energies and Kondo correlation energies. The competition between these different energy scales leads to a rich variety of processes, which researchers are now starting to be able to control and tune experimentally. In this Technical Review, we present the status of the molecular electronics field from this quantum-transport perspective with a focus on recent experimental results obtained using break-junction devices, including scanning probe and mechanically controlled break junctions, as well as electromigrated gold and graphene break junctions.

Key points

  • Single-molecule junctions are model systems for the study of quantum mechanical aspects of charge transport at room temperature.

  • There are various break-junction techniques for measuring the conductance of single molecules; mechanical break junctions offer excellent statistics, requiring machine-learning analysis techniques, whereas electrical break junctions offer superior gate control for detailed spectroscopy.

  • By carefully designing molecular junctions, the energetics can be tuned to enable the construction of molecular diodes or quantum interference devices with conductance changes of several orders of magnitude.

  • Sharp resonances in the electrical conductance of a molecule result in high thermoelectric efficiencies, which can be higher than values achieved in bulk materials.

  • The electron spin in molecules can be electrically addressed and has applications in switches and qubits.

  • The challenge of this interdisciplinary field is to translate quantum-transport phenomena into robust electronic device functionality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Measurement techniques and transport regimes.
Fig. 2: Single-level model in the coherent transport regime.
Fig. 3: The two-level model.
Fig. 4: Quantum interference in molecular junctions.
Fig. 5: Thermoelectric effects in molecular junctions.
Fig. 6: Spin-dependent effects in molecular junctions.


  1. 1.

    Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2017).

  2. 2.

    Ratner, M. A. A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013).

    ADS  Google Scholar 

  3. 3.

    Tsutsui, M. & Taniguchi, M. Single molecule electronics and devices. Sensors 12, 7259–7298 (2012).

    Google Scholar 

  4. 4.

    Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 8, 381–384 (2013).

    ADS  Google Scholar 

  5. 5.

    Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

    Google Scholar 

  6. 6.

    Metzger, R. M. Unimolecular electronics. Chem. Rev. 115, 5056–5115 (2015).

    Google Scholar 

  7. 7.

    Su, T., Neupane, M., Steigerwald, M., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    ADS  Google Scholar 

  8. 8.

    Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Google Scholar 

  9. 9.

    Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Google Scholar 

  10. 10.

    Perrin, M. L., Burzurí, E. & van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    Google Scholar 

  11. 11.

    Van der Molen, S. J. & Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter. 22, 133001 (2010).

    ADS  Google Scholar 

  12. 12.

    Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    ADS  Google Scholar 

  13. 13.

    Trasobares, J., Vuillaume, D., Théron, D. & Clément, N. A 17 GHz molecular rectifier. Nat. Commun. 7, 12850 (2016).

    ADS  Google Scholar 

  14. 14.

    Aragonès, A. C. et al. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat. Commun. 8, 15056 (2017).

    ADS  Google Scholar 

  15. 15.

    Perrin, M. L., Doelman, M., Eelkema, R. & van der Zant, H. S. J. Design of an efficient multi-site single-molecule rectifier. Phys. Chem. Chem. Phys. 19, 29187–29194 (2017).

    Google Scholar 

  16. 16.

    Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    ADS  Google Scholar 

  17. 17.

    Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    ADS  Google Scholar 

  18. 18.

    Hybertsen, M. S. & Venkataraman, L. Structure–property relationships in atomic-scale junctions: histograms and beyond. Acc. Chem. Res. 49, 452–460 (2016).

    Google Scholar 

  19. 19.

    Van Ruitenbeek, J. M. et al. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 67, 108–111 (1996).

    ADS  Google Scholar 

  20. 20.

    Wang, L., Wang, L., Zhang, L. & Xiang, D. Advance of Mechanically controllable break junction for molecular electronics. Top. Curr. Chem. 375, 61 (2017).

    Google Scholar 

  21. 21.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    ADS  Google Scholar 

  22. 22.

    Huang, C., Rudnev, A. V., Hong, W. & Wandlowski, T. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).

    Google Scholar 

  23. 23.

    Martin, C. A., van Ruitenbeek, J. M. & van der Zant, H. S. J. Sandwich-type gated mechanical break junctions. Nanotechnology 21, 265201 (2010).

    ADS  Google Scholar 

  24. 24.

    Arima, A. et al. Fabrications of insulator-protected nanometer-sized electrode gaps. J. Appl. Phys. 115, 114310 (2014).

    ADS  Google Scholar 

  25. 25.

    Muthusubramanian, N. et al. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments. Appl. Phys. Lett. 109, 013102 (2016).

    ADS  Google Scholar 

  26. 26.

    Bellunato, A. et al. Dynamic tunneling junctions at the atomic intersection of two twisted graphene edges. Nano Lett. 18, 2505–2510 (2018).

    ADS  Google Scholar 

  27. 27.

    Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 13, 1126–1131 (2018).

    ADS  Google Scholar 

  28. 28.

    Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301 (1999).

    ADS  Google Scholar 

  29. 29.

    Strachan, D. R. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 86, 043109 (2005).

    ADS  Google Scholar 

  30. 30.

    O’Neill, K., Osorio, E. A. & van der Zant, H. S. J. Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes. Appl. Phys. Lett. 90, 133109 (2007).

    ADS  Google Scholar 

  31. 31.

    Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    ADS  Google Scholar 

  32. 32.

    Candini, A. et al. Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum. Beilstein J. Nanotechnol. 6, 711–719 (2015).

    Google Scholar 

  33. 33.

    Lau, C. S., Mol, J. A., Warner, J. H. & Briggs, G. A. D. Nanoscale control of graphene electrodes. Phys. Chem. Chem. Phys. 16, 20398–20401 (2014).

    Google Scholar 

  34. 34.

    El Abbassi, M. et al. From electroburning to sublimation: substrate and environmental effects in the electrical breakdown process of monolayer graphene. Nanoscale 9, 17312–17317 (2017).

    Google Scholar 

  35. 35.

    Barreiro, A., van der Zant, H. S. J. & Vandersypen, L. M. K. Quantum dots at room temperature carved out from few-layer graphene. Nano Lett. 12, 6096–6100 (2012).

    ADS  Google Scholar 

  36. 36.

    Gehring, P. et al. Quantum interference in graphene nanoconstrictions. Nano Lett. 16, 4210–4216 (2016).

    ADS  MathSciNet  Google Scholar 

  37. 37.

    Jia, C. & Guo, X. Molecule–electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 42, 5642–5660 (2013).

    Google Scholar 

  38. 38.

    Leary, E. et al. Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem. Soc. Rev. 44, 920–942 (2015).

    Google Scholar 

  39. 39.

    Dubois, V. et al. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat. Commun. 9, 3433 (2018).

    ADS  Google Scholar 

  40. 40.

    Ishii, H. et al. Energy level alignment and band bending at model interfaces of organic electroluminescent devices. J. Lumin. 61, 87–89 (2000).

    Google Scholar 

  41. 41.

    Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

  42. 42.

    Thijssen, J. M. & van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Status Solidi Rapid Res. Lett. 245, 1455–1470 (2008).

    ADS  Google Scholar 

  43. 43.

    Hanson, R. et al. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    ADS  Google Scholar 

  44. 44.

    Hou, J. G. et al. Nonclassical behavior in the capacitance of a nanojunction. Phys. Rev. Lett. 86, 5321–5324 (2001).

    ADS  Google Scholar 

  45. 45.

    Taylor, J. et al. Theory of rectification in tour wires: the role of electrode coupling. Phys. Rev. Lett. 89, 138301 (2002).

    ADS  Google Scholar 

  46. 46.

    Li, H. et al. Electric field breakdown in single molecule junctions. J. Am. Chem. Soc. 137, 5028–5033 (2015).

    Google Scholar 

  47. 47.

    Foti, G. & Vázquez, H. J. Origin of vibrational instabilities in molecular wires with separated electronic states. Phys. Chem. Lett. 9, 2791–2796 (2018).

    Google Scholar 

  48. 48.

    Beebe, J. M., Kim, B. S., Gadzuk, J., Frisbie, C. D. & Kushmerick, J. G. Transition from direct tunneling to field emission in metal–molecule–metal junctions. Phys. Rev. Lett. 97, 026801 (2006).

    ADS  Google Scholar 

  49. 49.

    Mirjani, F., Thijssen, J. M. & van der Molen, S. J. Advantages and limitations of transition voltage spectroscopy: a theoretical analysis. Phys. Rev. B. 84, 115402 (2011).

    ADS  Google Scholar 

  50. 50.

    Vilan, A. Revealing tunnelling details by normalized differential conductance analysis of transport across molecular junctions. Phys. Chem. Chem. Phys. 19, 27166–27172 (2017).

    Google Scholar 

  51. 51.

    Capozzi, B. et al. Mapping the transmission functions of single-molecule junctions. Nano Lett. 16, 3949–3954 (2016).

    ADS  Google Scholar 

  52. 52.

    Frisenda, R. & van der Zant, H. S. J. Transition from strong to weak electronic coupling in a single-molecule junction. Phys. Rev. Lett. 117, 126804 (2016).

    ADS  Google Scholar 

  53. 53.

    Lovat, G. et al. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 12, 1050–1054 (2017).

    ADS  Google Scholar 

  54. 54.

    Yuan, L. et al. Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating. Nat. Nanotechnol. 13, 322–329 (2018).

    ADS  Google Scholar 

  55. 55.

    Sowa, J. K. et al. Beyond Marcus theory and the Landauer–Büttiker approach in molecular junctions: a unified framework. J. Chem. Phys. 149, 154112 (2018).

    ADS  Google Scholar 

  56. 56.

    Perrin, M. L. et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 12, 830–834 (2014).

    ADS  Google Scholar 

  57. 57.

    Perrin, M. L. et al. Single-molecule resonant tunneling diode. J. Phys. Chem. C 119, 5697–5702 (2015).

    Google Scholar 

  58. 58.

    Perrin, M. L. et al. A gate-tunable single-molecule diode. Nanoscale 8, 8919–8923 (2016).

    ADS  Google Scholar 

  59. 59.

    Arroyo, C. et al. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 52, 3152–3155 (2013).

    Google Scholar 

  60. 60.

    Arroyo, C. et al. Quantum interference effects at room temperature in OPV-based single-molecule junctions. Nanoscale Res. Lett. 8, 234 (2013).

    ADS  Google Scholar 

  61. 61.

    Manrique, D. et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6, 6389 (2015).

    Google Scholar 

  62. 62.

    Geng, Y. et al. Magic ratios for connectivity-driven electrical conductance of graphene-like molecules. J. Am. Chem. Soc. 137, 4469–4476 (2015).

    Google Scholar 

  63. 63.

    Valkenier, H. et al. Cross-conjugation and quantum interference: a general correlation? Phys. Chem. Chem. Phys. 16, 653–662 (2014).

    Google Scholar 

  64. 64.

    Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    ADS  Google Scholar 

  65. 65.

    Garner, M. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018).

    ADS  Google Scholar 

  66. 66.

    Liu, X. et al. Gating of quantum interference in molecular junctions by heteroatom substitution. Angew. Chem. Int. Ed. 56, 173–176 (2016).

    Google Scholar 

  67. 67.

    Koole, M., Thijssen, J., Valkenier, H., Hummelen, J. & van der Zant, H. S. J. Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor. Nano Lett. 15, 5569–5573 (2015).

    ADS  Google Scholar 

  68. 68.

    Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Google Scholar 

  69. 69.

    Li, Y. et al. Gate controlled quantum interference: direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019).

    ADS  Google Scholar 

  70. 70.

    Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    ADS  Google Scholar 

  71. 71.

    Frisenda, R., Janssen, V. E. A. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    Google Scholar 

  72. 72.

    Stefani, D. et al. Large conductance variations in a mechanosensitive single-molecule junction. Nano Lett. 18, 5981–5988 (2018).

    ADS  Google Scholar 

  73. 73.

    Markussen, T. Phonon interference effects in molecular junctions. J. Chem. Phys. 139, 244101 (2013).

    ADS  Google Scholar 

  74. 74.

    Finch, C., García-Suárez, V. & Lambert, C. Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009).

    ADS  Google Scholar 

  75. 75.

    Lambert, C. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).

    Google Scholar 

  76. 76.

    Lambert, C., Sadeghi, H. & Al-Galiby, Q. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. C. R. Phys. 17, 1084–1095 (2016).

    ADS  Google Scholar 

  77. 77.

    Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003).

    ADS  Google Scholar 

  78. 78.

    Rincón-García, L., Evangeli, C., Rubio-Bollinger, G. & Agraït, N. Thermopower measurements in molecular junctions. Chem. Soc. Rev. 45, 4285–4306 (2016).

    Google Scholar 

  79. 79.

    Widawsky, J., Darancet, P., Neaton, J. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2011).

    ADS  Google Scholar 

  80. 80.

    Evangeli, C. et al. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13, 2141–2145 (2013).

    ADS  Google Scholar 

  81. 81.

    Morikawa, T., Arima, A., Tsutsui, M. & Taniguchi, M. Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. Nanoscale 6, 8235–8241 (2014).

    ADS  Google Scholar 

  82. 82.

    Reddy, P., Jang, S., Segalman, R. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    ADS  Google Scholar 

  83. 83.

    Malen, J. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).

    ADS  Google Scholar 

  84. 84.

    Baheti, K. et al. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008).

    ADS  Google Scholar 

  85. 85.

    Pauly, F., Viljas, J. K. & Cuevas, J. C. Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: a density functional study. Phys. Rev. B 78, 035315 (2008).

    ADS  Google Scholar 

  86. 86.

    Widawsky, J., Darancet, P., Neaton, J. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2011).

    ADS  Google Scholar 

  87. 87.

    Yee, S., Malen, J., Majumdar, A. & Segalman, R. Thermoelectricity in fullerene–metal heterojunctions. Nano Lett. 11, 4089–4094 (2011).

    ADS  Google Scholar 

  88. 88.

    Rincón-García, L. et al. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 15, 289–293 (2015).

    ADS  Google Scholar 

  89. 89.

    Kim, Y., Jeong, W., Kim, K., Lee, W. & Reddy, P. Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9, 881–885 (2014).

    ADS  Google Scholar 

  90. 90.

    Gehring, P. et al. Field-effect control of graphene–fullerene thermoelectric nanodevices. Nano. Lett. 17, 7055–7061 (2017).

    ADS  Google Scholar 

  91. 91.

    Lee, W. et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

    ADS  Google Scholar 

  92. 92.

    Cui, L. et al. Peltier cooling in molecular junctions. Nat. Nanotechnol. 13, 122–127 (2018).

    ADS  Google Scholar 

  93. 93.

    Cui, L. et al. Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017).

    ADS  Google Scholar 

  94. 94.

    Mosso, N. et al. Heat transport through atomic contacts. Nat. Nanotechnol. 12, 430–433 (2017).

    ADS  Google Scholar 

  95. 95.

    Lumbroso, O. S. et al. Electronic noise due to temperature differences in atomic-scale junctions. Nature 562, 240–244 (2018).

    ADS  Google Scholar 

  96. 96.

    Cornia, A. & Seneor, P. The molecular way. Nat. Mater. 16, 505–506 (2017).

    ADS  Google Scholar 

  97. 97.

    Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    ADS  Google Scholar 

  98. 98.

    Lefter, C. et al. Charge transport and electrical properties of spin crossover materials: towards nanoelectronic and spintronic devices. Magnetochemistry 2, 18 (2016).

    Google Scholar 

  99. 99.

    Meded, V. et al. Electric control over the Fe(ii) spin transition in a single molecule: theory and experiment. Phys. Rev. B 83, 245115 (2011).

    Google Scholar 

  100. 100.

    Burzurí, E. et al. Spin-state dependent conductance switching in single molecule–graphene junctions. Nanoscale 17, 7905–7911 (2018).

    Google Scholar 

  101. 101.

    Hayakawa, R. Large magnetoresistance in single-radical molecular junctions. Nano Lett. 16, 4960–4967 (2016).

    ADS  Google Scholar 

  102. 102.

    de Bruijckere, J. et al. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 122, 197701 (2019).

    ADS  Google Scholar 

  103. 103.

    Burzurí, E., Zyazin, A. S., Cornia, A. & van der Zant, H. S. J. Direct observation of magnetic anisotropy in an individual Fe4 single-molecule magnet. Phys. Rev. Lett. 109, 147203 (2012).

    ADS  Google Scholar 

  104. 104.

    Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    ADS  Google Scholar 

  105. 105.

    Vincent, R. et al. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    ADS  Google Scholar 

  106. 106.

    Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    ADS  Google Scholar 

  107. 107.

    Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    ADS  Google Scholar 

  108. 108.

    Liang, W. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    ADS  Google Scholar 

  109. 109.

    Parks, J. et al. Tuning the Kondo effect with a mechanically controllable break junction. Phys. Rev. Lett. 99, 026601 (2007).

    ADS  Google Scholar 

  110. 110.

    Temirov, R. et al. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2018).

    ADS  Google Scholar 

  111. 111.

    Rakhmilevitch, D. & Tal, O. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching. Beilstein J. Nanotechnol. 6, 2417–2422 (2015).

    Google Scholar 

  112. 112.

    Frisenda, R. et al. Kondo effect in a neutral and stable all-organic single-molecule break junction. Nano Lett. 15, 3109–3114 (2015).

    ADS  Google Scholar 

  113. 113.

    Appelt, W. H. et al. Predicting the conductance of strongly correlated molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions. Nanoscale 10, 17738–17750 (2018).

    Google Scholar 

  114. 114.

    Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    ADS  Google Scholar 

  115. 115.

    Roch, N. et al. Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett. 103, 197202 (2009).

    ADS  Google Scholar 

  116. 116.

    Roch, N. et al. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–637 (2008).

    ADS  Google Scholar 

  117. 117.

    Requist, R. et al. Metallic, magnetic and molecular nanocontacts. Nat. Nanotechnol. 11, 499–508 (2016).

    ADS  Google Scholar 

  118. 118.

    Scott, G. D. & Natelson, D. Kondo resonances in molecular devices. ACS Nano 4, 3560–3579 (2010).

    Google Scholar 

  119. 119.

    Pietsch, T. et al. Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co hetereojunctions. New J. Phys. 18, 093045 (2016).

    ADS  Google Scholar 

  120. 120.

    Vardimon, R., Matt, M., Nielaba, P., Cuevas, J. C. & Tal, O. Orbital origin of the electrical conduction in ferromagnetic atomic-size contacts: insights from shot noise measurements and theoretical simulations. Phys. Rev. B 93, 085439 (2016).

    ADS  Google Scholar 

  121. 121.

    Rakhmilevitch, D., Sarkar, S., Bitton, O., Kronik, L. & Tal, O. Enhanced magnetoresistance in molecular junctions by geometrical optimization of spin-selective orbital hybridization. Nano Lett. 16, 141–1745 (2016).

    Google Scholar 

  122. 122.

    Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    ADS  Google Scholar 

  123. 123.

    Yoshida, K. et al. Gate tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors. Nano Lett. 13, 481–485 (2013).

    ADS  Google Scholar 

  124. 124.

    Scott, G. D. & Hu, T. C. Gate-controlled Kondo effect in a single-molecule transistor with elliptical ferromagnetic leads. Phys. Rev. B 96, 144416 (2017).

    ADS  Google Scholar 

  125. 125.

    Brooke, R. J. et al. Single-molecule electrochemical transistor utilizing a nickel–pyridyl spinterface. Nano Lett. 15, 275–280 (2015).

    ADS  Google Scholar 

  126. 126.

    Naaman, R. & Waldeck, D. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    ADS  Google Scholar 

  127. 127.

    Aragonès, A. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2016).

    Google Scholar 

  128. 128.

    Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    ADS  Google Scholar 

  129. 129.

    Winkelmann, C. B. et al. Superconductivity in a single-C60 transistor. Nat. Phys. 5, 876–879 (2009).

    Google Scholar 

  130. 130.

    Island, J. O. et al. Proximity-induced Shiba states in a molecular junction. Phys. Rev. Lett. 118, 117001 (2017).

    ADS  Google Scholar 

  131. 131.

    Brunner, J., González, M. T., Schönenberger, C. & Calame, M. Random telegraph signals in molecular junctions. J. Phys. Condens. Matter 26, 474202 (2014).

    ADS  Google Scholar 

  132. 132.

    Puczkarski, P. et al. Low-frequency noise in graphene tunnel junctions. ACS Nano 12, 9451–9460 (2018).

    Google Scholar 

  133. 133.

    Osorio, E. A., Ruben, M., Seldenthuis, J. S., Lehn, J.-M. & van der Zant, H. S. J. Conductance switching and vibrational fine structure of a [2 × 2]CoII 4 grid-like single molecule contacted in a three-terminal configuration. Small 6, 174–178 (2010).

    Google Scholar 

  134. 134.

    Lemmer, M. et al. Unsupervised vector-based classification of single-molecule charge transport data. Nat. Commun. 7, 12922 (2016).

    ADS  Google Scholar 

  135. 135.

    Wu, B. H., Ivie, J. A., Johnson, T. K. & Monti Masel, O. L. A. Uncovering hierarchical data structure in single molecule transport. J. Chem. Phys. 146, 092321 (2017).

    ADS  Google Scholar 

  136. 136.

    Hamill, J. M., Zhao, X. T., Mészáros, G., Bryce, M. R. & Arenz, M. Fast data sorting with modified principal component analysis to distinguish unique single molecular break junction trajectories. Phys. Rev. Lett. 120, 016601 (2018).

    ADS  Google Scholar 

  137. 137.

    Ward, D. R. et al. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010).

    ADS  Google Scholar 

  138. 138.

    Zolotavin, P., Evans, C. & Natelson, D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps. J. Phys. Chem. Lett. 8, 1739–1744 (2017).

    Google Scholar 

  139. 139.

    Ittah, N. & Selzer, Y. Electrical detection of surface plasmon polaritons by 1G 0 gold quantum point contacts. Nano Lett. 11, 529–534 (2011).

    ADS  Google Scholar 

  140. 140.

    Benner, D. et al. Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons. Nano Lett. 14, 5218–5223 (2014).

    ADS  Google Scholar 

  141. 141.

    Vadai, M. et al. Plasmon-induced conductance enhancement in single-molecule junctions. J. Phys. Chem. Lett. 4, 2811–2816 (2013).

    Google Scholar 

  142. 142.

    Fung, E.-D. et al. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett. 17, 1255–1261 (2017).

    ADS  Google Scholar 

  143. 143.

    Du, S., Yosiha, K., Zhang, Y., Hamada, I. & Hirakawa, K. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics 12, 608–612 (2018).

    Google Scholar 

  144. 144.

    Amdursky, N. et al. Electronic transport via proteins. Adv. Mater. 26, 7142–7161 (2014).

    Google Scholar 

  145. 145.

    Wang, K. DNA-based single-molecule electronics: from concept to function. J. Funct. Biomater. 9, 8 (2018).

    Google Scholar 

  146. 146.

    Li, W.-Q. et al. Detecting electron transport of amino acids by using conductance measurement. Sensors 17, 811 (2017).

    Google Scholar 

  147. 147.

    Xiao, X., Xu, B. & Tao, N. Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126, 5370–5371 (2004).

    Google Scholar 

  148. 148.

    Brisendine, J. M. et al. Probing charge transport through peptide bonds. J. Phys. Chem. Lett. 9, 763–767 (2018).

    Google Scholar 

  149. 149.

    Artés, J. M. et al. Nanoscale charge transfer in redox proteins and DNA: towards biomolecular electronics. Electrochim. Acta 140, 83–95 (2014).

    Google Scholar 

  150. 150.

    Galperin, M., Ratner, M. A. & Nitzan, A. Molecular transport junctions: vibrational effects. J. Phys. Condens. Matter 19, 103201 (2007).

    ADS  Google Scholar 

  151. 151.

    Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    ADS  Google Scholar 

  152. 152.

    Koch, J., von Oppen, F. & Andreev, A. V. Theory of the Franck–Condon blockade regime. Phys. Rev. B 74, 205438 (2006).

    ADS  Google Scholar 

  153. 153.

    Burzurí, E. et al. Franck–Condon blockade in a single-molecule transistor. Nano Lett. 14, 3191–3196 (2014).

    ADS  Google Scholar 

  154. 154.

    Yu, L. H. et al. Inelastic electron tunneling via molecular vibrations in single-molecule transistors. Phys. Rev. Lett. 93, 266802 (2004).

    ADS  Google Scholar 

  155. 155.

    Isshiki, Y., Matsuzawa, Y., Fujii, S. & Kiguchi, M. Investigation on single-molecule junctions based on current–voltage characteristics. Micromachines 9, 67 (2018).

    Google Scholar 

  156. 156.

    Seldenthuis, J. S., van der Zant, H. J. S. & Tijssen, J. M. in Handbook of Single-Molecule Electronics 1st edn (ed. Moth-Poulsen, K.) 155–204 (Taylor & Francis, 2015).

  157. 157.

    Wang, Y.-H. et al. Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochim. Acta 123, 205–210 (2014).

    Google Scholar 

  158. 158.

    Prins, F. et al. Platinum-nanogaps for single-molecule electronics: room-temperature stability. Phys. Chem. Chem. Phys. 13, 14297–14301 (2011).

    Google Scholar 

  159. 159.

    Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012).

    ADS  Google Scholar 

Download references


The authors thank The Netherlands Organisation for Scientific Research (NWO) for financial support, including the NWO/OCW Nanofront programme, and acknowledge financial support from the European Union through an advanced European Research Council grant (Mols@Mols), a Future and Emerging Technologies open programme (QuiET (project no. 767187)), a European Cooperation in Science and Technology (COST) Action (MOLSPIN CA15128) and a Marie Curie fellowship (TherSpinMol (ID 748642)). The authors thank M. Perrin and R. Frisenda for discussions.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Herre S. J. van der Zant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Supplementary information


Coulomb blockade

A phenomenon in which the Coulomb interactions on a molecule in a junction are strong enough to prevent electrons from entering or leaving the molecule.

Incoherent transport

Transport in which the electronic wavefunction is perturbed (typically by the electrostatic field of the nuclei).

Coherent transport

Transport in which the electronic wavefunction is not perturbed by the environment.

Off-resonant transport

Transport via a molecular orbital with a chemical potential that does not lie between those of the left and right electrode.

Resonant transport

Transport via a molecular orbital with a chemical potential that lies between those of the left and right electrode.

Superconducting gap

Minimum excitation energy for electrons in a superconductor.


Coupling between a molecule and a solid through van der Waals interactions.


Coupling between a molecule and a solid through chemical bonding.

Orbital levels

Chemical potentials associated with the addition or removal of an electron to or from molecular orbitals.

Chemical potential

Energy difference between a molecule with a particular orbital filled by an electron and the same molecule in which that orbital is empty.

Fermi energy

Chemical potential (of the electrodes) at zero absolute temperature.

Fowler–Nordheim tunnelling

Tunnelling process in which electrons are extracted from a metal by a strong electric field.

Proximity effect

A phenomenon in which the proximity of a superconductor induces superconductivity in a material that by itself is not superconducting.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gehring, P., Thijssen, J.M. & van der Zant, H.S.J. Single-molecule quantum-transport phenomena in break junctions. Nat Rev Phys 1, 381–396 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing