Topological quantum matter in synthetic dimensions

Abstract

In the field of quantum simulation of condensed matter phenomena by artificially engineering the Hamiltonian of an atomic, molecular or optical system, the concept of synthetic dimensions has recently emerged as a powerful way to emulate phenomena such as topological phases of matter, which are now of great interest across many areas of physics. The main idea of a synthetic dimension is to couple together suitable degrees of freedom, such as a set of internal atomic states, in order to mimic the motion of a particle along an extra spatial dimension. This approach provides a way to engineer lattice Hamiltonians and enables the realization of higher-dimensional topological models in platforms with lower dimensionality. We give an overview of the recent progress in studying topological matter in synthetic dimensions. After reviewing proposals and realizations in various set-ups, we discuss future prospects in many-body physics, applications and topological effects in three or more spatial dimensions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The concept of synthetic dimension.
Fig. 2: Main experimental set-ups used to realize synthetic dimension for atomic gases.
Fig. 3: Different approaches towards synthetic dimensions in photonics.
Fig. 4: Prospects of synthetic dimensions.

References

  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Klitzing, Kv, Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Article  Google Scholar 

  5. 5.

    Lu, L., Joannopoulos, J. D. & Soljačć, M. Topological photonics. Nat. Photonics 8, 821 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

    Article  Google Scholar 

  7. 7.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Ozawa, T. et al. Topological photonics. Preprint at arXiv https://arxiv.org/abs/1802.04173 (2018).

  9. 9.

    Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Progress. Phys. 77, 126401 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Goldman, N., Budich, J. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  Google Scholar 

  11. 11.

    Cooper, N., Dalibard, J. & Spielman, I. Topological bands for ultracold atoms. Preprint at arXiv https://arxiv.org/abs/1803.00249 (2018).

  12. 12.

    Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Tsomokos, D. I., Ashhab, S. & Nori, F. Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A 82, 052311 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Jukić, D. & Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A 87, 013814 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Kraus, Y. E. & Zilberberg, O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Verbin, M., Zilberberg, O., Kraus, Y. E., Lahini, Y. & Silberberg, Y. Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett. 110, 076403 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Kraus, Y. E., Ringel, Z. & Zilberberg, O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y. E. & Silberberg, Y. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350 (2016).

    Article  Google Scholar 

  24. 24.

    Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296 (2016).

    Article  Google Scholar 

  25. 25.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Article  Google Scholar 

  26. 26.

    Harper, P. G. Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. Sect. A 68, 874 (1955).

    ADS  MATH  Article  Google Scholar 

  27. 27.

    Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    ADS  Article  Google Scholar 

  28. 28.

    Arkani-Hamed, N., Cohen, A. G. & Georgi, H. (De)Constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Casati, G., Guarneri, I. & Shepelyansky, D. L. Anderson transition in a one-dimensional system with three incommensurate frequencies. Phys. Rev. Lett. 62, 345–348 (1989).

    ADS  Article  Google Scholar 

  30. 30.

    Edge, J. M., Tworzydlo, J. & Beenakker, C. W. J. Metallic phase of the quantum Hall effect in four-dimensional space. Phys. Rev. Lett. 109, 135701 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Moore, F. L., Robinson, J. C., Bharucha, C. F., Sundaram, B. & Raizen, M. G. Atom optics realization of the quantum δ-kicked rotor. Phys. Rev. Lett. 75, 4598–4601 (1995).

    ADS  Article  Google Scholar 

  32. 32.

    Manai, I. et al. Experimental observation of two-dimensional Anderson localization with the atomic kicked rotor. Phys. Rev. Lett. 115, 240603 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Chabé, J. et al. Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Stuhl, B., Lu, H.-I., Aycock, L., Genkina, D. & Spielman, I. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Livi, L. F. et al. Synthetic dimensions and spin-orbit coupling with an optical clock transition. Phys. Rev. Lett. 117, 220401 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature 542, 66 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Gadway, B. Atom-optics approach to studying transport phenomena. Phys. Rev. A 92, 043606 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Meier, E. J., An, F. A. & Gadway, B. Atom-optics simulator of lattice transport phenomena. Phys. Rev. A 93, 051602 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7, 13986 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    An, F. A., Meier, E. J. & Gadway, B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices. Sci. Adv. 3, e1602685 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    An, F. A., Meier, E. J., Ang’ong’a, J. & Gadway, B. Correlated dynamics in a synthetic lattice of momentum states. Phys. Rev. Lett. 120, 040407 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Price, H. M., Ozawa, T. & Goldman, N. Synthetic dimensions for cold atoms from shaking a harmonic trap. Phys. Rev. A 95, 023607 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Sundar, B., Gadway, B. & Hazzard, K. R. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    Martin, I., Refael, G. & Halperin, B. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X 7, 041008 (2017).

    Google Scholar 

  46. 46.

    Baum, Y. & Refael, G. Setting boundaries with memory: generation of topological boundary states in Floquet-induced synthetic crystals. Phys. Rev. Lett. 120, 106402 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Peng, Y. & Refael, G. Topological energy conversion through the bulk or the boundary of driven systems. Phys. Rev. B 97, 134303 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Andrijauskas, T., Spielman, I. B. & Juzeliūnas, G. Topological lattice using multi-frequency radiation. New J. Phys. 20, 055001 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Wall, M. L. et al. Synthetic spin-orbit coupling in an optical lattice clock. Phys. Rev. Lett. 116, 035301 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Genkina, D. et al. Imaging topology of Hofstadter ribbons. Preprint at arXiv https://arxiv.org/abs/1804.06345 (2018).

  51. 51.

    Mugel, S. et al. Measuring Chern numbers in Hofstadter strips. SciPost Phys. 3, 012 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Han, J. H., Kang, J. H. & Shin, Y.-i. Band gap closing in a synthetic Hall tube of neutral fermions. Preprint at arXiv https://arxiv.org/abs/1809.00444 (2018).

  53. 53.

    Li, C.-H. et al. A Bose-Einstein condensate on a synthetic Hall cylinder. Preprint at arXiv https://arxiv.org/abs/1809.02122 (2018).

  54. 54.

    Boada, O., Celi, A., Rodríguez-Laguna, J., Latorre, J. I. & Lewenstein, M. Quantum simulation of non-trivial topology. New J. Phys. 17, 045007 (2015).

    ADS  Article  Google Scholar 

  55. 55.

    Anisimovas, E. et al. Semisynthetic zigzag optical lattice for ultracold bosons. Phys. Rev. A 94, 063632 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Xu, J., Gu, Q. & Mueller, E. J. Realizing the Haldane phase with bosons in optical lattices. Phys. Rev. Lett. 120, 085301 (2018).

    ADS  Article  Google Scholar 

  57. 57.

    Suszalski, D. & Zakrzewski, J. Different lattice geometries with a synthetic dimension. Phys. Rev. A 94, 033602 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Cooper, N. R. & Moessner, R. Designing topological bands in reciprocal space. Phys. Rev. Lett. 109, 215302 (2012).

    ADS  Article  Google Scholar 

  59. 59.

    Ozawa, T., Price, H. M. & Carusotto, I. Momentum-space Harper-Hofstadter model. Phys. Rev. A 92, 023609 (2015).

    ADS  Article  Google Scholar 

  60. 60.

    Price, H. M., Ozawa, T. & Carusotto, I. Quantum mechanics with a momentum-space artificial magnetic field. Phys. Rev. Lett. 113, 190403 (2014).

    ADS  Article  Google Scholar 

  61. 61.

    Berceanu, A. C., Price, H. M., Ozawa, T. & Carusotto, I. Momentum-space Landau levels in driven-dissipative cavity arrays. Phys. Rev. A 93, 013827 (2016).

    ADS  Article  Google Scholar 

  62. 62.

    Ozawa, T., Price, H. M. & Carusotto, I. Quantum Hall effect in momentum space. Phys. Rev. B 93, 195201 (2016).

    ADS  Article  Google Scholar 

  63. 63.

    Claassen, M., Lee, C. H., Thomale, R., Qi, X.-L. & Devereaux, T. P. Position-momentum duality and fractional quantum Hall effect in Chern insulators. Phys. Rev. Lett. 114, 236802 (2015).

    ADS  Article  Google Scholar 

  64. 64.

    An, F. A., Meier, E. J. & Gadway, B. Diffusive and arrested transport of atoms under tailored disorder. Nat. Commun. 8, 325 (2017).

    ADS  Article  Google Scholar 

  65. 65.

    Meier, E. J. et al. Observation of the topological Anderson insulator in disordered atomic wires. Science 362, 929–933 (2018).

    ADS  Article  Google Scholar 

  66. 66.

    Cai, H. et al. Experimental observation of momentum-space chiral edge currents in room-temperature atoms. Phys. Rev. Lett. 122, 023601 (2018).

    ADS  Article  Google Scholar 

  67. 67.

    Wang, D.-W., Liu, R.-B., Zhu, S.-Y. & Scully, M. O. Superradiance lattice. Phys. Rev. Lett. 114, 043602 (2015).

    ADS  Article  Google Scholar 

  68. 68.

    Wang, D.-W., Cai, H., Yuan, L., Zhu, S.-Y. & Liu, R.-B. Topological phase transitions in superradiance lattices. Optica 2, 712–715 (2015).

    Article  Google Scholar 

  69. 69.

    Chen, L. et al. Experimental observation of one-dimensional superradiance lattices in ultracold atoms. Phys. Rev. Lett. 120, 193601 (2018).

    ADS  Article  Google Scholar 

  70. 70.

    Salerno, G. et al. The quantized Hall conductance of a single atomic wire: a proposal based on synthetic dimensions. Preprint at arXiv https://arxiv.org/abs/1811.00963 (2018).

  71. 71.

    Sundar, B., Thibodeau, M., Wang, Z., Gadway, B. & Hazzard, K. Strings of ultracold molecules in a synthetic dimension. Phys. Rev. A 99, 013624 (2018).

    ADS  Article  Google Scholar 

  72. 72.

    Signoles, A. et al. Coherent transfer between low-angular-momentum and circular rydberg states. Phys. Rev. Lett. 118, 253603 (2017).

    ADS  Article  Google Scholar 

  73. 73.

    Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018).

    Article  Google Scholar 

  74. 74.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  75. 75.

    Luo, X.-W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015).

    Article  Google Scholar 

  76. 76.

    Zhou, X.-F. et al. Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity. Phys. Rev. Lett. 118, 083603 (2017).

    ADS  Article  Google Scholar 

  77. 77.

    Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017).

    ADS  Article  Google Scholar 

  78. 78.

    Wang, B., Chen, T. & Zhang, X. Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk. Phys. Rev. Lett. 121, 100501 (2018).

    ADS  Article  Google Scholar 

  79. 79.

    Schwartz, A. & Fischer, B. Laser mode hyper-combs. Opt. Express 21, 6196–6204 (2013).

    ADS  Article  Google Scholar 

  80. 80.

    Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    ADS  Article  Google Scholar 

  81. 81.

    Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Yuan, L., Xiao, M., Lin, Q. & Fan, S. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018).

    ADS  Article  Google Scholar 

  83. 83.

    Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling. Optica 4, 1433–1436 (2017).

    Article  Google Scholar 

  84. 84.

    Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Preprint at arXiv https://arxiv.org/abs/1807.01983(2018).

  85. 85.

    Boyd, R. W. In Handbook of Laser Technology and Applications (Three-Volume Set) (eds Webb, C. E. & Jones, J. D. C.) 161–183 (Taylor & Francis, 2003).

  86. 86.

    Schreiber, A. et al. Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010).

    ADS  Article  Google Scholar 

  87. 87.

    Regensburger, A. et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011).

    ADS  Article  Google Scholar 

  88. 88.

    Schreiber, A. et al. Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011).

    ADS  Article  Google Scholar 

  89. 89.

    Vatnik, I. D., Tikan, A., Onishchukov, G., Churkin, D. V. & Sukhorukov, A. A. Anderson localization in synthetic photonic lattices. Sci. Rep. 7, 4301 (2017).

    ADS  Article  Google Scholar 

  90. 90.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167 (2012).

    ADS  Article  Google Scholar 

  91. 91.

    Regensburger, A. et al. Observation of defect states in ð’« ð’ˉ-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013).

    ADS  Article  Google Scholar 

  92. 92.

    Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015).

    Article  Google Scholar 

  93. 93.

    Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545 (2017).

    Article  Google Scholar 

  94. 94.

    Schreiber, A. et al. A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012).

    ADS  Article  Google Scholar 

  95. 95.

    Chen, C. et al. Observation of topologically protected edge states in a photonic two-dimensional quantum walk. Phys. Rev. Lett. 121, 100502 (2018).

    ADS  Article  Google Scholar 

  96. 96.

    Schmidt, M., Kessler, S., Peano, V., Painter, O. & Marquardt, F. Optomechanical creation of magnetic fields for photons on a lattice. Optica 2, 635–641 (2015).

    Article  Google Scholar 

  97. 97.

    Poshakinskiy, A. V. & Poddubny, A. N. Phonoritonic crystals with a synthetic magnetic field for an acoustic diode. Phys. Rev. Lett. 118, 156801 (2017).

    ADS  Article  Google Scholar 

  98. 98.

    Ozawa, T. & Carusotto, I. Synthetic dimensions with magnetic fields and local interactions in photonic lattices. Phys. Rev. Lett. 118, 013601 (2017).

    ADS  Article  Google Scholar 

  99. 99.

    Chang, M.-S., Qin, Q., Zhang, W., You, L. & Chapman, M. S. Coherent spinor dynamics in a spin-1 bose condensate. Nat. Phys. 1, 111 (2005).

    Article  Google Scholar 

  100. 100.

    Barbarino, S., Taddia, L., Rossini, D., Mazza, L. & Fazio, R. Magnetic crystals and helical liquids in alkaline-earth fermionic gases. Nat. Commun. 6, 8134 (2015).

    ADS  Article  Google Scholar 

  101. 101.

    Yan, Z., Wan, S. & Wang, Z. Topological superfluid and Majorana zero modes in synthetic dimension. Sci. Rep. 5, 15927 (2015).

    ADS  Article  Google Scholar 

  102. 102.

    Cornfeld, E. & Sela, E. Chiral currents in one-dimensional fractional quantum hall states. Phys. Rev. B 92, 115446 (2015).

    ADS  Article  Google Scholar 

  103. 103.

    Barbarino, S., Taddia, L., Rossini, D., Mazza, L. & Fazio, R. Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes. New J. Phys. 18, 035010 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  104. 104.

    Zeng, T.-S., Wang, C. & Zhai, H. Charge pumping of interacting fermion atoms in the synthetic dimension. Phys. Rev. Lett. 115, 095302 (2015).

    ADS  Article  Google Scholar 

  105. 105.

    Taddia, L. et al. Topological fractional pumping with alkaline-earth-like atoms in synthetic lattices. Phys. Rev. Lett. 118, 230402 (2017).

    ADS  Article  Google Scholar 

  106. 106.

    Jünemann, J. et al. Exploring interacting topological insulators with ultracold atoms: the synthetic Creutz-Hubbard model. Phys. Rev. X 7, 031057 (2017).

    Google Scholar 

  107. 107.

    Ghosh, S. K., Yadav, U. K. & Shenoy, V. B. Baryon squishing in synthetic dimensions by effective SU(m) gauge fields. Phys. Rev. A 92, 051602 (2015).

    ADS  Article  Google Scholar 

  108. 108.

    Ghosh, S. K. et al. Unconventional phases of attractive fermi gases in synthetic Hall ribbons. Phys. Rev. A 95, 063612 (2017).

    ADS  Article  Google Scholar 

  109. 109.

    Greschner, S. et al. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform abelian gauge field. Phys. Rev. A 94, 063628 (2016).

    ADS  Article  Google Scholar 

  110. 110.

    Greschner, S. & Vekua, T. Vortex-hole duality: a unified picture of weak- and strong-coupling regimes of bosonic ladders with flux. Phys. Rev. Lett. 119, 073401 (2017).

    ADS  Article  Google Scholar 

  111. 111.

    Bilitewski, T. & Cooper, N. R. Synthetic dimensions in the strong-coupling limit: supersolids and pair superfluids. Phys. Rev. A 94, 023630 (2016).

    ADS  Article  Google Scholar 

  112. 112.

    Calvanese Strinati, M. et al. Laughlin-like states in bosonic and fermionic atomic synthetic ladders. Phys. Rev. X 7, 021033 (2017).

    Google Scholar 

  113. 113.

    Łącki, M. et al. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A 93, 013604 (2016).

    ADS  Article  Google Scholar 

  114. 114.

    Saito, T. Y. & Furukawa, S. Devil’s staircases in synthetic dimensions and gauge fields. Phys. Rev. A 95, 043613 (2017).

    ADS  Article  Google Scholar 

  115. 115.

    An, F. A., Meier, E. J. & Gadway, B. Engineering a flux-dependent mobility edge in disordered zigzag chains. Phys. Rev. X 8, 031045 (2018).

    Google Scholar 

  116. 116.

    Luo, X.-W. et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, 16097 (2017).

    ADS  Article  Google Scholar 

  117. 117.

    Yuan, L. & Fan, S. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica 3, 1014–1018 (2016).

    Article  Google Scholar 

  118. 118.

    Sun, B. Y., Luo, X. W., Gong, M., Guo, G. C. & Zhou, Z. W. Weyl semimetal phases and implementation in degenerate optical cavities. Phys. Rev. A 96, 013857 (2017).

    ADS  Article  Google Scholar 

  119. 119.

    Lin, Q., Xiao, M., Yuan, L. & Fan, S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016).

    ADS  Article  Google Scholar 

  120. 120.

    Lin, Q., Sun, X.-Q., Xiao, M., Zhang, S.-C. & Fan, S. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv. 4, eaat2774 (2018).

    ADS  Article  Google Scholar 

  121. 121.

    Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009).

    ADS  MATH  Article  Google Scholar 

  122. 122.

    Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    ADS  Article  Google Scholar 

  123. 123.

    Fröhlich, J. & Pedrini, B. In Mathematical Physics 2000 (eds Fokas, A., Grigoryan, A., Kibble, T. & Zegarlinski, B.) 9–47 (Imperial College Press, 2000).

  124. 124.

    Zhang, S.-C. & Hu, J. A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001).

    ADS  Article  Google Scholar 

  125. 125.

    Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Article  Google Scholar 

  126. 126.

    Price, H. M., Zilberberg, O., Ozawa, T., Carusotto, I. & Goldman, N. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015).

    ADS  Article  Google Scholar 

  127. 127.

    Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55 (2018).

    ADS  Article  Google Scholar 

  128. 128.

    Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59 (2018).

    ADS  Article  Google Scholar 

  129. 129.

    Price, H. M., Zilberberg, O., Ozawa, T., Carusotto, I. & Goldman, N. Measurement of Chern numbers through center-of-mass responses. Phys. Rev. B 93, 245113 (2016).

    ADS  Article  Google Scholar 

  130. 130.

    Lian, B. & Zhang, S.-C. Five-dimensional generalization of the topological Weyl semimetal. Phys. Rev. B 94, 041105 (2016).

    ADS  Article  Google Scholar 

  131. 131.

    Lee, C. H., Wang, Y., Chen, Y. & Zhang, X. Electromagnetic response of quantum Hall systems in dimensions five and six and beyond. Phys. Rev. B 98, 094434 (2018).

    ADS  Article  Google Scholar 

  132. 132.

    Petrides, I., Price, H. M. & Zilberberg, O. Six-dimensional quantum hall effect and three-dimensional topological pumps. Phys. Rev. B 98, 125431 (2018).

    ADS  Article  Google Scholar 

  133. 133.

    Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).

    ADS  Article  Google Scholar 

  134. 134.

    Viebahn, K., Sbroscia, M., Carter, E., Yu, J.-C. & Schneider, U. Matter-wave diffraction from a quasicrystalline optical lattice. Phys. Rev. Lett. 122, 110404 (2019).

Download references

Acknowledgements

T.O. was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP18H05857, the RIKEN Incentive Research Project and the Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program at RIKEN. H.M.P. was supported by funding from the Royal Society.

Author information

Affiliations

Authors

Contributions

All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Tomoki Ozawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozawa, T., Price, H.M. Topological quantum matter in synthetic dimensions. Nat Rev Phys 1, 349–357 (2019). https://doi.org/10.1038/s42254-019-0045-3

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing