Review Article | Published:

Concept and realization of Kitaev quantum spin liquids


The Kitaev model is an exactly solvable S = 1/2 spin model on a 2D honeycomb lattice, in which the spins fractionalize into Majorana fermions and form a topological quantum spin liquid (QSL) in the ground state. Several complex iridium oxides, as well as α-RuCl3, are magnetic insulators with a honeycomb structure, and it was noticed that they accommodate essential ingredients of the Kitaev model owing to the interplay of electron correlation and spin–orbit coupling. This has led to a race to realize the Kitaev QSL and detect signatures of Majorana fermions. We summarize the theoretical background of the Kitaev QSL ground state and its realization using spin–orbital entangled Jeff = 1/2 moments. We provide an overview of candidate materials and their electronic and magnetic properties, including Na2IrO3, α-Li2IrO3, β-Li2IrO3, γ-Li2IrO3, α-RuCl3 and H3LiIr2O6. Finally, we discuss experiments showing that H3LiIr2O6 and α-RuCl3 in an applied magnetic field exhibit signatures of the QSL state and that α-RuCl3 has unusual magnetic excitations and thermal transport properties consistent with spin fractionalization.

Key points

  • The quantum spin liquid is an exotic state of matter in which interacting spins avoid symmetry-breaking phase transitions and form a ground state exhibiting long-range entanglement and topological order.

  • In the exactly soluble Kitaev model, anisotropic spin-pair interactions on different honeycomb lattice bonds conflict, producing strong frustration and a spin-liquid ground state.

  • In some transition-metal-based Mott insulators, unquenched orbital moments and spin–orbit entangled wavefunctions can result in a low-energy Hamiltonian with bond-dependent interactions similar to the Kitaev model.

  • Quantum spin liquid behaviour was recently discovered in the hydrogenated iridate H3LiIr2O6, and signatures of the spin fractionalization and Majorana fermions predicted by the Kitaev model have been detected in α-RuCl3.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

  2. 2.

    Savary, L. & Balents, L. Quantum spin liquids. Rep. Prog. Phys. 80, 016502 (2017).

  3. 3.

    Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. (2019).

  4. 4.

    Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

  5. 5.

    Huse, D. A. & Elser, V. Simple variational wave functions for two-dimensional Heisenberg spin-1/2 antiferromagnets. Phys. Rev. Lett. 60, 2531 (1988).

  6. 6.

    Capriotti, L., Trumper, A. E. & Sorella, S. Long-range Néel order in the triangular Heisenberg model. Phys. Rev. Lett. 82, 3899 (1999).

  7. 7.

    Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

  8. 8.

    Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3. J. Phys. Soc. Jpn. 71, 2109–2112 (2002).

  9. 9.

    Zhu, Z. & White, S. R. Spin liquid phase of the S = 1/2 J1-J2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 041105 (2015).

  10. 10.

    Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. N. Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403 (2015).

  11. 11.

    Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin wave? Phys. Lett. A85, 375–377 (1981).

  12. 12.

    Ioffe, L. & Larkin, A. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988 (1989).

  13. 13.

    Nagaosa, N. & Lee, P. A. Normal-state properties of the uniform resonating-valence-bond state. Phys. Rev. Lett. 39, 2450 (1990).

  14. 14.

    Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

  15. 15.

    Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

  16. 16.

    Olariu, A. et al. 17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 100, 087202 (2008).

  17. 17.

    Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).

  18. 18.

    Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

  19. 19.

    Han, T. –H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

  20. 20.

    Fu, M., Imai, T., Han., T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome antiferromagnet. Science 350, 655–658 (2015).

  21. 21.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

  22. 22.

    Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

  23. 23.

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

  24. 24.

    Baskaran, G., Sen, D. & Shankar, R. Spin-S Kitaev model: classical ground states, order from disorder, and exact correlation functions. Phys. Rev. B 78, 115116 (2008).

  25. 25.

    Rousochatzakis, I., Sizyuk, Y. & Perkins, N. B. Quantum spin liquid in the semiclassical regime. Nat. Commun. 9, 1575 (2018).

  26. 26.

    Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. & Sindzingre, P. Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis. Phys. Rev. B 56, 2521 (1997).

  27. 27.

    Moessner, R. & Chalker, J. T. Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet. Phys. Rev. Lett. 80, 2929 (1998).

  28. 28.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  29. 29.

    Knolle, J., Kovrizhin, D. L., Chalker, J. T. & Moessner, R. Dynamics of a two-dimensional quantum spin liquid: Signature of emergent Majorana fermions and fluxes. Phys. Rev. Lett. 112, 207203 (2014).

  30. 30.

    Knolle, J., Chern, G. W., Kovrizhin, D. L., Moessner, R. & Perkins, N. B. Raman scattering signature of Kitaev spin liquid in A2IrO3 iridates with A = Na or Li. Phys. Rev. Lett. 113, 187201 (2014).

  31. 31.

    Nasu, J., Knolle, J., Kovrizhin, D. L., Motome, Y. & Moessner, R. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys. 12, 912–915 (2016).

  32. 32.

    Nasu, J., Udagawa, M. & Motome, Y. Thermal fractionalization of quantum spins in a Kitaev model: temperature-linear specific heat and coherent transport of Majorana fermions. Phys. Rev. B 92, 115122 (2015).

  33. 33.

    Nasu, J., Yoshitake, J. & Motome, Y. Thermal transport in the Kitaev model. Phys. Rev. Lett. 119, 127204 (2017).

  34. 34.

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

  35. 35.

    Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. (Clarendon Press: Oxford, 1970.

  36. 36.

    Kim, B. J. et al. Novel J eff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

  37. 37.

    Khaliullin, G. Orbital order and fluctuations in Mott insulators. Prog. Theor. Phys. Suppl. 160, 155–202 (2005).

  38. 38.

    Fujiyama, S. et al. Two-dimensional Heisenberg behavior of J eff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 108, 247212 (2012).

  39. 39.

    Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic x-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

  40. 40.

    Singh, Y. & Gegenwart, P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3. Phys. Rev. B 82, 064412 (2010).

  41. 41.

    O’Malley, M. J., Verweij, H. & Woodward, P. M. Structure and properties of ordered Li2IrO3 and Li2PtO3. J. Solid State Chem. 181, 1803–1809 (2008).

  42. 42.

    Abramchuk, M. et al. Cu2IrO3: a new magnetically frustrated honeycomb iridate. J. Am. Chem. Soc. 139, 15371–15376 (2017).

  43. 43.

    Kobayashi, H., Tabuchi, M., Shikano, M., Kageyama, H. & Kanno, R. Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3. J. Mater. Chem. 13, 957–962 (2003).

  44. 44.

    Singh, Y. et al. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. Phys. Rev. Lett. 108, 127203 (2012).

  45. 45.

    O’Malley, M. J., Woodward, P. M. & Verweij, H. Production and isolation of pH sensing materials by carbonate melt oxidation of iridium and platinum. J. Mater. Chem. 22, 7782–7790 (2012).

  46. 46.

    Kitagawa, K. et al. A spin-orbital-entangled quantum liquid on a honeycomb lattice. Nature 554, 341 (2018).

  47. 47.

    Bette, S. et al. Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6. Dalton Trans. 46, 15216–15227 (2017).

  48. 48.

    Todorova, V., Leineweber, A., Kienle, L., Duppel, V. & Jansen, M. On AgRhO2, and the new quaternary delafossites AgLi1/3M2/3O2 syntheses and analyses of real structures. J. Solid State Chem. 184, 1112–1119 (2011).

  49. 49.

    Roudebush, J. H., Ross, K. A. & Cava, R. J. Iridium containing honeycomb delafossites by topotactic cation exchange. Dalton Trans. 45, 8783–8789 (2016).

  50. 50.

    Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112(R) (2014).

  51. 51.

    Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

  52. 52.

    Takayama, T. et al. Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015).

  53. 53.

    Modic, K. A. et al. Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate. Nat. Commun. 5, 4023 (2014).

  54. 54.

    Mandal, S. & Surendran, N. Exactly solvable Kitaev model in three dimensions. Phys. Rev. B 79, 024426 (2009).

  55. 55.

    Choi, S. K. et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys. Rev. Lett. 108, 127204 (2012).

  56. 56.

    Freund, F. et al. Single crystal growth from separated educts and its application to lithium transition-metal oxides. Sci. Rep. 6, 35362 (2016).

  57. 57.

    Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α−RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

  58. 58.

    Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).

  59. 59.

    Comin, R. et al. Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. Phys. Rev. Lett. 109, 266406 (2012).

  60. 60.

    Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter 29, 493002 (2017).

  61. 61.

    Sandilands, L. J. et al. Optical probe of Heisenberg-Kitaev magnetism in α-RuCl3. Phys. Rev. B 94, 195156 (2016).

  62. 62.

    Gretarsson, H. et al. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3. Phys. Rev. Lett. 110, 076402 (2013).

  63. 63.

    Takayama, T. et al. Pressure-induced collapse of spin-orbital Mott state in the hyperhoneycomb iridate β-Li2IrO3. Preprint at arXiv (2018).

  64. 64.

    Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

  65. 65.

    Agrestini, S. et al. Electronically highly cubic conditions for Ru in α-RuCl3. Phys. Rev. B 96, 161107(R) (2017).

  66. 66.

    Yoshitake, J., Nasu, J. & Motome, Y. Fractional spin fluctuations as a precursor of quantum spin liquids: Majorana dynamical mean-field study for the Kitaev model. Phys. Rev. Lett. 117, 157203 (2016).

  67. 67.

    Lampen-Kelley, P. et al. Anisotropic susceptibilities in the honeycomb Kitaev system α-RuCl3. Phys. Rev. B 98, 100403(R) (2018).

  68. 68.

    Liu, X. et al. Long-range magnetic ordering in Na2IrO3. Phys. Rev. B 83, 220403(R) (2011).

  69. 69.

    Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and x-ray diffraction investigation of single-crystal Na2IrO3. Phys. Rev. B 85, 180403(R) (2012).

  70. 70.

    Sears, J. A. et al. Magnetic order in α-RuCl3: a honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015).

  71. 71.

    Williams, S. C. et al. Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li2IrO3. Phys. Rev. B 93, 195158 (2016).

  72. 72.

    Biffin, A. et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β-Li2IrO3: full solution via magnetic resonant x-ray diffraction. Phys. Rev. B 90, 205116 (2014).

  73. 73.

    Biffin, A. et al. Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li2IrO3. Phys. Rev. Lett. 113, 197201 (2014).

  74. 74.

    Lee, E. K. H. & Kim, Y. B. Theory of magnetic phase diagrams in hyperhoneycomb and harmonic-honeycomb iridates. Phys. Rev. B 91, 064407 (2015).

  75. 75.

    Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat. Phys. 11, 462–466 (2015).

  76. 76.

    Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

  77. 77.

    Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Phys. Rev. Lett. 105, 027204 (2010).

  78. 78.

    Rau, J. G., Lee, E. K. H. & Kee, H. Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

  79. 79.

    Katukuri, V. M. et al. Kitaev interactions between j = 1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations. New. J. Phys. 16, 013056 (2014).

  80. 80.

    Yamaji, Y., Nomura, Y., Kurita, M., Arita, R. & Imada, M. First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. Phys. Rev. Lett. 113, 107201 (2014).

  81. 81.

    Winter, S. M., Li, Y., Jeschke, H. O. & Valenti, R. Challenges in design of Kitaev materials: magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016).

  82. 82.

    Kimchi, I. & You, Y. Z. Kitaev-Heisenberg- J2- J3 model for the iridates A2IrO3. Phys. Rev. B 84, 180407(R) (2011).

  83. 83.

    Foyevtsova, K. et al. Ab initio analysis of the tight-binding parameters and magnetic interactions in Na2IrO3. Phys. Rev. B 88, 035107 (2013).

  84. 84.

    Rousochatzakis, I., Reuther, J., Thomale, R., Rachel, S. & Perkins, N. B. Phase diagram and quantum order by disorder in the Kitaev K 1K 2 honeycomb magnet. Phys. Rev. X 5, 041035 (2015).

  85. 85.

    Kimchi, I., Coldea, R. & Vishwanath, A. Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, and γ Li2IrO3. Phys. Rev. B 91, 245134 (2015).

  86. 86.

    Lee, E. K.-H., Rau, J. G. & Kim, Y.-B. Two iridates, two models, and two approaches: a comparative study on magnetism in three-dimensional honeycomb materials. Phys. Rev. B 93, 184420 (2016).

  87. 87.

    Yadav, R. et al. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep. 6, 37925 (2016).

  88. 88.

    Sears, J. A., Zhao, Y., Xu, Z., Lynn, J. W. & Kim, Y. J. Phase diagram of α-RuCl3 in an in-plane magnetic field. Phys. Rev. B 95, 180411(R) (2017).

  89. 89.

    Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

  90. 90.

    Baek, S. –H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017).

  91. 91.

    Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).

  92. 92.

    Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).

  93. 93.

    Ruiz, A. et al. Correlated states in β-Li2IrO3 driven by applied magnetic fields. Nat. Commun. 8, 961 (2017).

  94. 94.

    Modic, K. A. et al. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nat. Commun. 8, 180 (2017).

  95. 95.

    Hermann, V. et al. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α-Li2IrO3 under pressure. Phys. Rev. B 97, 020104(R) (2018).

  96. 96.

    Clancy, J. P. et al. Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate. npj Quantum Mater. 3, 35 (2018).

  97. 97.

    Bastien, G. et al. Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3. Phys. Rev. B 97, 241108(R) (2018).

  98. 98.

    Biesner, T. et al. Detuning the honeycomb of α−RuCl3: pressure-dependent optical studies reveal broken symmetry. Phys. Rev. B 97, 220401(R) (2018).

  99. 99.

    Veiga, L. S. I. et al. Pressure tuning of bond-directional exchange interactions and magnetic frustration in the hyperhoneycomb iridate β-Li2IrO3. Phys. Rev. B 96, 140402(R) (2018).

  100. 100.

    Miura, Y., Yasui, Y., Sato, M., Igawa, N. & Kakurai, K. New-type phase transition of Li2RuO3 with honeycomb structure. J. Phys. Soc. Jpn. 76, 033705 (2007).

  101. 101.

    Kimchi, I., Sheckelton, J. P., McQueen, T. M. & Lee, P. A. Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat. Commun. 9, 4367 (2018).

  102. 102.

    Slagle, K., Choi, W., Chern, L. E. & Kim, Y. B. Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6. Phys. Rev. B 97, 115159 (2018).

  103. 103.

    Song, X. Y., You, Y. Z. & Balents, L. Low-energy spin dynamics of the honeycomb spin liquid beyond the Kitaev limit. Phys. Rev. Lett. 117, 037209 (2016).

  104. 104.

    Yadav, R. et al. Strong effect of hydrogen order on magnetic Kitaev interactions in H3LiIr2O6. Phys. Rev. Lett. 121, 197203 (2018).

  105. 105.

    Li, Y., Winter, S. M. & Valentí, R. Role of hydrogen in the spin-orbital-entangled quantum liquid candidate H3LiIr2O6. Phys. Rev. Lett. 121, 247202 (2018).

  106. 106.

    Do, S.-H. et al. Majorana fermions in the Kitaev quantum spin system α-RuCl3. Nat. Phys. 13, 1079 (2017).

  107. 107.

    Ran, K. et al. Spin-wave excitations evidencing the Kitaev interaction in single crystalline α-RuCl3. Phys. Rev. Lett. 118, 107203 (2017).

  108. 108.

    Sandilands, L. J. et al. Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 114, 147201 (2015).

  109. 109.

    Glamazda, A. et al. Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β and γ-Li2IrO3. Nat. Commun. 7, 12286 (2016).

  110. 110.

    Ponomaryov, A. N. et al. Unconventional spin dynamics in the honeycomb-lattice material α-RuCl3: high-field electron spin resonance studies. Phys. Rev. B 96, 241107(R) (2017).

  111. 111.

    Zheng, J. et al. Gapless spin excitations in the field-induced quantum spin liquid phase of RuCl3. Phys. Rev. Lett. 119, 227208 (2017).

  112. 112.

    Janša, N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. 14, 786 (2018).

  113. 113.

    Little, A. et al. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Phys. Rev. Lett. 119, 227201 (2017).

  114. 114.

    Shi, L. Y. et al. Field induced magnon excitation and in gap absorption of Kitaev candidate α-RuCl3. Phys. Rev. B 98, 094414 (2018).

  115. 115.

    Wu, L. et al. Field evolution of magnons in α-RuCl3 by high-resolution polarized terahertz spectroscopy. Phys. Rev. B 98, 094425 (2018).

  116. 116.

    Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag magnetic order in the iridium oxide Na2IrO3. Phys. Rev. Lett. 110, 097204 (2013).

  117. 117.

    Winter, S. M. et al. Probing α−RuCl3 beyond magnetic order: effects of temperature and magnetic field. Phys. Rev. Lett. 120, 077203 (2018).

  118. 118.

    Lovesey, S. W Theory of Neutron Scattering from Condensed Matter Vol. 2 (Clarendon Press, Oxford, 1984).

  119. 119.

    Shultz, H. J. Dynamics of coupled quantum spin chains. Phys. Rev. Lett. 77, 2790 (1986).

  120. 120.

    Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329 (2005).

  121. 121.

    Knolle, J., Bhattacharjee, S. & Moessner, R. Dynamics of a quantum spin liquid beyond integrability: the Kitaev-Heisenberg-model in an augmented parton mean-field theory. Phys. Rev. B 97, 134432 (2018).

  122. 122.

    Suzuki, T. & Suga, S. Effective model with strong Kitaev interactions for α-RuCl3. Phys. Rev. B 97, 134424 (2018).

  123. 123.

    Winter, S. M. et al. Breakdown of magnons in a strongly spin-orbital coupled magnet. Nat. Commun. 8, 1152 (2017).

  124. 124.

    Hermanns, M., Kimchi, I. & Knolle, J. Physics of the Kitaev model: fractionalization, dynamical correlations, and material connections. Annu. Rev. Condens. Matter Phys. 9, 17–33 (2018).

  125. 125.

    Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α−RuCl3. Phys. Rev. Lett. 120, 217205 (2018).

  126. 126.

    Rau, J. G., Lee, E. K. H. & Kee, H. Y. Spin-orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).

  127. 127.

    Jiang, H. C., Gu, Z. C., Qi, X. L. & Trebst, S. Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: phase diagram of the Heisenberg-Kitaev model in a magnetic field. Phys. Rev. B 83, 245104 (2011).

  128. 128.

    Gohlke, M., Verresen, R., Moessner, R. & Pollmann, F. Dynamics of the Kitaev-Heisenberg model. Phys. Rev. Lett. 119, 157203 (2017).

  129. 129.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

  130. 130.

    Park, S.-Y. et al., Emergence of the isotropic Kitaev honeycomb lattice with two-dimensional Ising universality in α-RuCl3. Preprint at arXiv (2016).

Download references


The authors thank A. Smerald for his critical reading of this manuscript. H.T., T.T. and G.J. acknowledge support from the Alexander von Humboldt Foundation. The authors thank A. Banerjee, K. Kitagawa and Y. Matsuda for providing figures. H.T. was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (17H01140, JP15H05852, JP15K21717). S.E.N. was supported by the US Department of Energy, Basic Energy Sciences, Scientific User Facilities Division.

Author information

All authors contributed to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Hidenori Takagi or Tomohiro Takayama or George Jackeli or Giniyat Khaliullin or Stephen E. Nagler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: The Kitaev model.
Fig. 2: Local electronic states of octahedrally coordinated Ir4+ and Ru3+ ions and material realization of the Kitaev model.
Fig. 3: Kitaev candidate materials.
Fig. 4: Magnetic ordering in Kitaev candidate materials.
Fig. 5: Magnetic-field-induced paramagnetism and quantum spin liquid behaviour in Kitaev candidate materials.
Fig. 6: Signatures of fractional excitations and non-Kitaev interactions.
Fig. 7: Response functions in extended Kitaev models.