Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From mechanical resilience to active material properties in biopolymer networks

Abstract

The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials.

Key points

  • Cells and tissues are supported by biopolymer scaffolds that are mechanically resilient yet dynamic. There is a growing realization that biopolymer networks acquire these unique features from their hierarchical structure combined with internal mechanochemical activity.

  • Biopolymer networks are embedded in water and therefore experience a strong coupling with the solvent, resulting in poroelastic effects.

  • Fibrous networks respond to cyclic mechanical loading with plastic effects, self-healing and fracture. These responses originate from all structural levels — from molecule to fibre to network.

  • Non-equilibrium activity causes biopolymer networks to undergo active stiffening, fluidization or self-driven flow, enabling a cell to deform.

  • Composite biopolymer systems, in which all these mechanisms act together, endow cells and tissues with their adaptive mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components of biopolymer networks.
Fig. 2: Mechanisms of biopolymer network formation.
Fig. 3: Nonlinear elasticity in biopolymer networks.
Fig. 4: Poroelasticity of biopolymer networks.
Fig. 5: Mechanisms of biopolymer stretching arising from the hierarchical structure.
Fig. 6: Time-dependent rheology.
Fig. 7: Active control over biopolymer network mechanics by contractility.
Fig. 8: Mechanical synergy in multicomponent biopolymer networks.

Similar content being viewed by others

References

  1. Freedman, B. R. et al. The (dys)functional extracellular matrix. Biochim. Biophys. Acta 1853, 3153–3164 (2015).

    Google Scholar 

  2. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    ADS  Google Scholar 

  3. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    Google Scholar 

  4. Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17, 1577–1587 (2015).

    Google Scholar 

  5. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    ADS  Google Scholar 

  6. Discher, D. E. et al. Matrix mechanosensing: from scaling concepts in ‘omics data to mechanisms in the nucleus, regeneration, and cancer. Annu. Rev. Biophys. 46, 295–315 (2017).

    Google Scholar 

  7. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Google Scholar 

  8. Muncie, J. M. & Weaver, V. M. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr. Top. Dev. Biol. 130, 1–37 (2018).

    Google Scholar 

  9. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    Google Scholar 

  10. Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).

    Google Scholar 

  11. van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    Google Scholar 

  12. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    ADS  Google Scholar 

  13. Fernandez, P., Pullarkat, P. A. & Ott, A. A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys. J. 90, 3796–3805 (2006).

    ADS  Google Scholar 

  14. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    ADS  Google Scholar 

  15. Perepelyuk, M. et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PloS One 11, e0146588 (2016).

    Google Scholar 

  16. Ingber, D. E., Wang, N. & Stamenovic, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014).

    ADS  MathSciNet  Google Scholar 

  17. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13, 264–269 (2003).

    Google Scholar 

  18. Lanir, Y. Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131, 044506 (2009).

    Google Scholar 

  19. Kreis, T. & Vale, R. (eds) Guidebook to the Cytoskeletal and Motor Proteins (Oxford Univ. Press, 1993).

  20. Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014).

    ADS  Google Scholar 

  21. Pritchard, R. H., Huang, Y. Y. & Terentjev, E. M. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10, 1864–1884 (2014).

    ADS  Google Scholar 

  22. Kagan, H. M. & Li, W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 88, 660–672 (2003).

    Google Scholar 

  23. van Mameren, J., Vermeulen, K. C., Gittes, F. & Schmidt, C. F. Leveraging single protein polymers to measure flexural rigidity. J. Phys. Chem. B 113, 3837–3844 (2009).

    Google Scholar 

  24. Bartsch, T. F., Kochanczyk, M. D., Lissek, E. N., Lange, J. R. & Florin, E. L. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution. Nat. Commun. 7, 12729 (2016).

    ADS  Google Scholar 

  25. Block, J. et al. Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain. Phys. Rev. Lett. 118, 048101 (2017). A pioneering experimental study of the stress–strain response of single intermediate filaments, demonstrating that monomer unfolding explains their remarkable extensibility.

    ADS  Google Scholar 

  26. Berezney, J. P. & Saleh, O. A. Electrostatic effects on the conformation and elasticity of hyaluronic acid, a moderately flexible polyelectrolyte. Macromolecules 50, 1085–1089 (2017).

    ADS  Google Scholar 

  27. De Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    ADS  Google Scholar 

  28. Doi, M. & Edwards, S. F. Dynamics of concentrated polymer systems. Part 1. — Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 2 74, 1789–1801 (1978).

    Google Scholar 

  29. Kas, J., Strey, H. & Sackmann, E. Direct imaging of reptation for semiflexible actin filaments. Nature 368, 226–229 (1994).

    ADS  Google Scholar 

  30. Lang, P. & Frey, E. Disentangling entanglements in biopolymer solutions. Nat. Commun. 9, 494 (2018).

    ADS  Google Scholar 

  31. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Google Scholar 

  32. Basnet, N. et al. Direct induction of microtubule branching by microtubule nucleation factor SSNA1. Nat. Cell Biol. 20, 1172–1180 (2018).

    Google Scholar 

  33. Lin, Y. C. et al. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. J. Mol. Biol. 399, 637–644 (2010).

    Google Scholar 

  34. Licup, A. J. et al. Stress controls the mechanics of collagen networks. Proc. Natl Acad. Sci. USA 112, 9573–9578 (2015).

    ADS  Google Scholar 

  35. Sharma, A. et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016). A combined experimental and theoretical study showing that the nonlinear elasticity of fibrous networks such as collagen corresponds to a strain-controlled continuous phase transition.

    Google Scholar 

  36. Holmes, D. F., Lu, Y., Starborg, T. & Kadler, K. E. Collagen fibril assembly and function. Curr. Top. Dev. Biol. 130, 107–142 (2018).

    Google Scholar 

  37. Gostynska, N. et al. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomed. Mater. 12, 055002 (2017).

    Google Scholar 

  38. Valero, C., Amaveda, H., Mora, M. & Garcia-Aznar, J. M. Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PloS One 13, e0195820 (2018).

    Google Scholar 

  39. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    ADS  Google Scholar 

  40. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    ADS  Google Scholar 

  41. Vos, B. E. et al. Programming the mechanics of cohesive fiber networks by compression. Soft Matter 13, 8886–8893 (2017).

    ADS  Google Scholar 

  42. van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).

    ADS  Google Scholar 

  43. Xu, X. & Safran, S. A. Compressive elasticity of polydisperse biopolymer gels. Phys. Rev. E 95, 052415 (2017).

    ADS  Google Scholar 

  44. MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    ADS  Google Scholar 

  45. Liu, J., Koenderink, G. H., Kasza, K. E., Mackintosh, F. C. & Weitz, D. A. Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels. Phys. Rev. Lett. 98, 198304 (2007).

    ADS  Google Scholar 

  46. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    ADS  Google Scholar 

  47. Lin, Y. C. et al. Origins of elasticity in intermediate filament networks. Phys. Rev. Lett. 104, 058101 (2010).

    ADS  Google Scholar 

  48. Kouwer, P. H. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    ADS  Google Scholar 

  49. Fernandez-Castano Romera, M. et al. Strain stiffening hydrogels through self-assembly and covalent fixation of semi-flexible fibers. Angew. Chem. Int. Ed. 56, 8771–8775 (2017).

    Google Scholar 

  50. Yan, B. et al. Duplicating dynamic strain-stiffening behavior and nanomechanics of biological tissues in a synthetic self-healing flexible network hydrogel. ACS Nano 11, 11074–11081 (2017).

    Google Scholar 

  51. Maxwell, J. C. L. On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27, 294–299 (1864).

    Google Scholar 

  52. Broedersz, C. P., Xiaoming, M., Lubensky, T. C. & MacKintosh, F. C. Criticality and isostaticity in fibre networks. Nat. Phys. 7, 983–988 (2011).

    Google Scholar 

  53. Onck, P. R., Koeman, T., van Dillen, T. & van der Giessen, E. Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005).

    ADS  Google Scholar 

  54. Licup, A. J., Sharma, A. & MacKintosh, F. C. Elastic regimes of subisostatic athermal fiber networks. Phys. Rev. E 93, 012407 (2016).

    ADS  Google Scholar 

  55. Jansen, K. A. et al. The role of network architecture in collagen mechanics. Biophys. J. 114, 2665–2678 (2018).

    ADS  Google Scholar 

  56. Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).

    Google Scholar 

  57. Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    ADS  MATH  Google Scholar 

  58. Knapp, D. M. et al. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41, 971–993 (1997).

    ADS  Google Scholar 

  59. De Gennes, P. G. Dynamics of entangled polymer solutions (I&II). Macromolecules 9, 587–598 (1976).

    ADS  Google Scholar 

  60. de Cagny, H. C. et al. Porosity governs normal stresses in polymer gels. Phys. Rev. Lett. 117, 217802 (2016).

    ADS  Google Scholar 

  61. Nia, H. T., Han, L., Li, Y., Ortiz, C. & Grodzinsky, A. Poroelasticity of cartilage at the nanoscale. Biophys. J. 101, 2304–2313 (2011).

    ADS  Google Scholar 

  62. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).

    ADS  Google Scholar 

  63. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013). A study providing direct evidence of the importance of poroelasticity in cell rheology on the basis of microindentation and microrheology experiments.

    ADS  Google Scholar 

  64. Hu, J. et al. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc. Natl Acad. Sci. USA 114, 9529–9534 (2017).

    Google Scholar 

  65. Tao, J., Li, Y., Vig, D. K. & Sun, S. X. Cell mechanics: a dialogue. Rep. Prog. Phys. 80, 036601 (2017).

    ADS  Google Scholar 

  66. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Google Scholar 

  67. Ruprecht, V. et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160, 673–685 (2015).

    Google Scholar 

  68. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    ADS  Google Scholar 

  69. Guo, M. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl Acad. Sci. USA 114, E8618–E8627 (2017).

    Google Scholar 

  70. Janmey, P. A. et al. Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007).

    ADS  Google Scholar 

  71. Poynting, J. H. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. A 82, 546–559 (1909).

    ADS  MATH  Google Scholar 

  72. Taber, L. A., Yang, M. & Podszus, W. W. Mechanics of ventricular torsion. J. Biomech. 29, 745–752 (1996).

    Google Scholar 

  73. Baumgarten, K. & Tighe, B. P. Normal stresses, contraction, and stiffening in sheared elastic networks. Phys. Rev. Lett. 120, 148004 (2018).

    ADS  Google Scholar 

  74. Taute, K. M., Pampaloni, F., Frey, E. & Florin, E. L. Microtubule dynamics depart from the wormlike chain model. Phys. Rev. Lett. 100, 028102 (2008).

    ADS  Google Scholar 

  75. Yang, L. et al. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys. J. 94, 2204–2211 (2008).

    ADS  Google Scholar 

  76. Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R. & Eppell, S. J. In vitro fracture testing of submicron diameter collagen fibril specimens. Biophys. J. 99, 1986–1995 (2010).

    ADS  Google Scholar 

  77. Wu, Y. T. & Adnan, A. Damage and failure of axonal microtubule under extreme high strain rate: an in-silico molecular dynamics study. Sci. Rep. 8, 12260 (2018).

    ADS  Google Scholar 

  78. Schnauss, J. et al. Transition from a linear to a harmonic potential in collective dynamics of a multifilament actin bundle. Phys. Rev. Lett. 116, 108102 (2016).

    ADS  Google Scholar 

  79. Ward, A. et al. Solid friction between soft filaments. Nat. Mater. 14, 583–588 (2015).

    ADS  Google Scholar 

  80. Kreplak, L., Herrmann, H. & Aebi, U. Tensile properties of single desmin intermediate filaments. Biophys. J. 94, 2790–2799 (2008).

    Google Scholar 

  81. Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C. & Gosline, J. M. The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys. J. 85, 2015–2027 (2003).

    Google Scholar 

  82. Kreplak, L., Doucet, J., Dumas, P. & Briki, F. New aspects of the alpha-helix to beta-sheet transition in stretched hard alpha-keratin fibers. Biophys. J. 87, 640–647 (2004).

    ADS  Google Scholar 

  83. Brown, A. E., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009). An impressive multiscale experimental study of the role of structural hierarchy in increasing the mechanical strength of fibrin.

    ADS  Google Scholar 

  84. Fleissner, F., Bonn, M. & Parekh, S. H. Microscale spatial heterogeneity of protein structural transitions in fibrin matrices. Sci. Adv. 2, e1501778 (2016).

    ADS  Google Scholar 

  85. Portale, G. & Torbet, J. Complex strain induced structural changes observed in fibrin assembled in human plasma. Nanoscale 10, 10063–10072 (2018).

    Google Scholar 

  86. Brown, A. E., Litvinov, R. I., Discher, D. E. & Weisel, J. W. Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophys. J. 92, L39–41 (2007).

    Google Scholar 

  87. Zhmurov, A. et al. Mechanical transition from alpha-helical coiled coils to beta-sheets in fibrin(ogen). J. Am. Chem. Soc. 134, 20396–20402 (2012).

    Google Scholar 

  88. Protopopova, A. D. et al. Visualization of fibrinogen alphaC regions and their arrangement during fibrin network formation by high-resolution AFM. J. Thromb. Haemos. 13, 570–579 (2015).

    Google Scholar 

  89. Piechocka, I. K., Bacabac, R. G., Potters, M., Mackintosh, F. C. & Koenderink, G. H. Structural hierarchy governs fibrin gel mechanics. Biophys. J. 98, 2281–2289 (2010).

    ADS  Google Scholar 

  90. Houser, J. R. et al. Evidence that alphaC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers. Biophys. J. 99, 3038–3047 (2010).

    ADS  Google Scholar 

  91. Hudson, N. E. et al. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics. Biophys. J. 104, 2671–2680 (2013).

    ADS  Google Scholar 

  92. Averett, R. D. et al. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers. Biophys. J. 103, 1537–1544 (2012).

    ADS  Google Scholar 

  93. Elvin, C. M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005).

    ADS  Google Scholar 

  94. Baldock, C. et al. Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc. Natl Acad. Sci. USA 108, 4322–4327 (2011).

    ADS  Google Scholar 

  95. Reichheld, S. E., Muiznieks, L. D., Keeley, F. W. & Sharpe, S. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl Acad. Sci. USA 114, E4408–E4415 (2017).

    Google Scholar 

  96. Amuasi, H. E. & Storm, C. Off-lattice Monte Carlo simulation of supramolecular polymer architectures. Phys. Rev. Lett. 105, 248105 (2010).

    ADS  Google Scholar 

  97. Giesa, T., Pugno, N. M. & Buehler, M. J. Natural stiffening increases flaw tolerance of biological fibers. Phys. Rev. E 86, 041902 (2012).

    ADS  Google Scholar 

  98. Aghaei-Ghareh-Bolagh, B., Mithieux, S. M. & Weiss, A. S. Elastic proteins and elastomeric protein alloys. Curr. Opin. Biotechnol. 39, 56–60 (2016).

    Google Scholar 

  99. Pinto, N. et al. Self-assembly enhances the strength of fibers made from vimentin intermediate filament proteins. Biomacromolecules 15, 574–581 (2014).

    Google Scholar 

  100. Rombouts, W. H., Giesbers, M., van Lent, J., de Wolf, F. A. & van der Gucht, J. Synergistic stiffening in double-fiber networks. Biomacromolecules 15, 1233–1239 (2014).

    Google Scholar 

  101. Wu, J. et al. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 620 (2018).

    ADS  Google Scholar 

  102. Schuldt, C. et al. Tuning synthetic semiflexible networks by bending stiffness. Phys. Rev. Lett. 117, 197801 (2016).

    ADS  Google Scholar 

  103. Bonakdar, N. et al. Mechanical plasticity of cells. Nat. Mater. 15, 1090–1094 (2016). A single-cell rheology study demonstrating that cells exhibit a reversible viscoelastic deformation response and additive plastic deformation that originates from bond ruptures within the cytoskeleton.

    ADS  Google Scholar 

  104. Fischer-Friedrich, E. et al. Rheology of the active cell cortex in mitosis. Biophys. J. 111, 589–600 (2016).

    ADS  Google Scholar 

  105. Clement, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27, 3132–3142.e4 (2017).

    Google Scholar 

  106. Ferrer, J. M. et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105, 9221–9226 (2008).

    ADS  Google Scholar 

  107. Courson, D. S. & Rock, R. S. Actin cross-link assembly and disassembly mechanics for alpha-actinin and fascin. J. Biol. Chem. 285, 26350–26357 (2010).

    Google Scholar 

  108. Lieleg, O., Schmoller, K. M., Claessens, M. M. & Bausch, A. R. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links. Biophys. J. 96, 4725–4732 (2009).

    ADS  Google Scholar 

  109. Broedersz, C. P. et al. Cross-link-governed dynamics of biopolymer networks. Phys. Rev. Lett. 105, 238101 (2010).

    ADS  Google Scholar 

  110. Muller, K. W. et al. Rheology of semiflexible bundle networks with transient linkers. Phys. Rev. Lett. 112, 238102 (2014).

    ADS  Google Scholar 

  111. Wolff, L., Fernandez, P. & Kroy, K. Resolving the stiffening-softening paradox in cell mechanics. PloS One 7, e40063 (2012).

    ADS  Google Scholar 

  112. Maier, M. et al. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network. Eur. Phys. J. E 38, 50 (2015).

    ADS  Google Scholar 

  113. Gralka, M. & Kroy, K. Inelastic mechanics: a unifying principle in biomechanics. Biochim. Biophys. Acta 1853, 3025–3037 (2015).

    Google Scholar 

  114. Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260–263 (2011).

    ADS  Google Scholar 

  115. Huang, D. L., Bax, N. A., Buckley, C. D., Weis, W. I. & Dunn, A. R. Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357, 703–706 (2017).

    ADS  Google Scholar 

  116. Weins, A. et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc. Natl Acad. Sci. USA 104, 16080–16085 (2007).

    ADS  Google Scholar 

  117. Yao, N. Y. et al. Stress-enhanced gelation: a dynamic nonlinearity of elasticity. Phys. Rev. Lett. 110, 018103 (2013).

    ADS  Google Scholar 

  118. Falzone, T. T., Lenz, M., Kovar, D. R. & Gardel, M. L. Assembly kinetics determine the architecture of alpha-actinin crosslinked F-actin networks. Nat. Commun. 3, 861 (2012).

    ADS  Google Scholar 

  119. Foffano, G., Levernier, N. & Lenz, M. The dynamics of filament assembly define cytoskeletal network morphology. Nat. Commun. 7, 13827 (2016).

    ADS  Google Scholar 

  120. Schmoller, K. M., Lieleg, O. & Bausch, A. R. Internal stress in kinetically trapped actin bundle networks. Soft Matter 4, 2365–2367 (2008).

    ADS  Google Scholar 

  121. Lieleg, O., Kayser, J., Brambilla, G., Cipelletti, L. & Bausch, A. R. Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat. Mater. 10, 236–242 (2011).

    ADS  Google Scholar 

  122. Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

    ADS  Google Scholar 

  123. Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    Google Scholar 

  124. Gong, Z. et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl Acad. Sci. USA 115, E2686–E2695 (2018).

    Google Scholar 

  125. Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. Proc. Natl Acad. Sci. USA 115, 1192–1197 (2018).

    ADS  Google Scholar 

  126. Schmoller, K. M., Fernandez, P., Arevalo, R. C., Blair, D. L. & Bausch, A. R. Cyclic hardening in bundled actin networks. Nat. Commun. 1, 134 (2010).

    ADS  Google Scholar 

  127. Majumdar, S., Foucard, L. C., Levine, A. J. & Gardel, M. L. Mechanical hysteresis in actin networks. Soft Matter 14, 2052–2058 (2018).

    ADS  Google Scholar 

  128. Kasza, K. E. et al. Actin filament length tunes elasticity of flexibly cross-linked actin networks. Biophys. J. 99, 1091–1100 (2010).

    ADS  Google Scholar 

  129. Wagner, B., Tharmann, R., Haase, I., Fischer, M. & Bausch, A. R. Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proc. Natl Acad. Sci. USA 103, 13974–13978 (2006).

    ADS  Google Scholar 

  130. Gardel, M. L. et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103, 1762–1767 (2006).

    ADS  Google Scholar 

  131. Mulla, Y., Oliveri, G., Overvelde, J. T. B. & Koenderink, G. H. Crack initiation in viscoelastic materials. Phys. Rev. Lett. 120, 268002 (2018). Theoretical modelling reveals that transient networks are susceptible to spontaneous crack initiation, with a critical crack length that can be predicted from the nonlinear local bond dynamics.

    ADS  Google Scholar 

  132. Mulla, Y. & Koenderink, G.H. Crosslinker mobility weakens transient polymer networks. Phys. Rev. E. 6, 062503 (2018).

  133. Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS  Google Scholar 

  134. Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).

    ADS  Google Scholar 

  135. Noding, B., Herrmann, H. & Koster, S. Direct observation of subunit exchange along mature vimentin intermediate filaments. Biophys. J. 107, 2923–2931 (2014).

    Google Scholar 

  136. Sano, K. et al. Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12, 4173–4177 (2011).

    Google Scholar 

  137. Jegou, A., Carlier, M. F. & Romet-Lemonne, G. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun. 4, 1883 (2013).

    Google Scholar 

  138. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Google Scholar 

  139. Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    Google Scholar 

  140. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    ADS  Google Scholar 

  141. Kurniawan, N. A. et al. Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales. Biophys. J. 111, 1026–1034 (2016).

    ADS  Google Scholar 

  142. Ban, E. et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114, 450–461 (2018).

    ADS  Google Scholar 

  143. Munster, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl Acad. Sci. USA 110, 12197–12202 (2013). Confocal imaging directly reveals that fibrin and collagen networks exhibit plasticity owing to a combination of network-level and fibre-level remodelling in response to cyclic shear.

    ADS  Google Scholar 

  144. Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).

    ADS  Google Scholar 

  145. Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016). A study highlighting the importance of nonlinear elasticity in cellular mechanosensing.

    Google Scholar 

  146. Gnesotto, F. S., Mura, F., Gladrow, J. & Broedersz, C. P. Broken detailed balance and non-equilibrium dynamics in living systems: a review. Rep. Prog. Phys. 81, 066601 (2018).

    ADS  Google Scholar 

  147. Kollmannsberger, P., Mierke, C. T. & Fabry, B. Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7, 3127–3132 (2011).

    ADS  Google Scholar 

  148. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Kas, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    ADS  Google Scholar 

  149. Chan, C. J. et al. Myosin II activity softens cells in suspension. Biophys. J. 108, 1856–1869 (2015).

    ADS  Google Scholar 

  150. Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors. Proc. Natl Acad. Sci. USA 106, 15192–15197 (2009).

    ADS  Google Scholar 

  151. Alvarado, J., Sheinman, M., Abhinav, S., MacKintosh, F. C. & Koenderink, G. H. Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9, 591–597 (2013).

    Google Scholar 

  152. Koenderink, G. H. & Paluch, E. K. Architecture shapes contractility in actomyosin networks. Curr. Opin. Cell Biol. 50, 79–85 (2018).

    Google Scholar 

  153. Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA 109, 20820–20825 (2012).

    ADS  Google Scholar 

  154. Ronceray, P., Broedersz, C. P. & Lenz, M. Fiber networks amplify active stress. Proc. Natl Acad. Sci. USA 113, 2827–2832 (2016).

    ADS  Google Scholar 

  155. Zemel, A., Bischofs, I. B. & Safran, S. A. Active elasticity of gels with contractile cells. Phys. Rev. Lett. 97, 128103 (2006).

    ADS  Google Scholar 

  156. Jansen, K. A., Bacabac, R. G., Piechocka, I. K. & Koenderink, G. H. Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105, 2240–2251 (2013).

    ADS  Google Scholar 

  157. Wollrab, V. et al. Polarity sorting drives remodeling of actin-myosin networks. J. Cell Sci. 132, 219717 (2018).

    Google Scholar 

  158. MacKintosh, F. C. & Levine, A. J. Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100, 018104 (2008).

    ADS  Google Scholar 

  159. Sheinman, M., Broedersz, C. P. & MacKintosh, F. C. Actively stressed marginal networks. Phys. Rev. Lett. 109, 238101 (2012).

    ADS  Google Scholar 

  160. Mizuno, D., Tardin, C., Schmidt, C. F. & Mackintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007). A seminal study unveiling the effects of stresses generated by molecular motor activity on cytoskeletal mechanics.

    ADS  Google Scholar 

  161. Foster, P. J., Furthauer, S., Shelley, M. J. & Needleman, D. J. Active contraction of microtubule networks. eLife 4, e10837 (2015).

    Google Scholar 

  162. Gao, T., Blackwell, R., Glaser, M. A., Betterton, M. D. & Shelley, M. J. Multiscale polar theory of microtubule and motor-protein assemblies. Phys. Rev. Lett. 114, 048101 (2015).

    ADS  Google Scholar 

  163. Stam, S. et al. Filament rigidity and connectivity tune the deformation modes of active biopolymer networks. Proc. Natl Acad. Sci. USA 114, E10037–E10045 (2017).

    ADS  Google Scholar 

  164. Zenker, J. et al. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173, 776–791.e17 (2018).

    Google Scholar 

  165. Carlier, M. F. & Shekhar, S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat. Rev. Mol. Cell Biol. 18, 389–401 (2017).

    Google Scholar 

  166. Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).

    Google Scholar 

  167. Wioland, H. et al. ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27, 1956–1967 (2017).

    Google Scholar 

  168. Hiraiwa, T. & Salbreux, G. Role of turnover in active stress generation in a filament network. Phys. Rev. Lett. 116, 188101 (2016).

    ADS  Google Scholar 

  169. Mak, M., Zaman, M. H., Kamm, R. D. & Kim, T. Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks. Nat. Commun. 7, 10323 (2016).

    ADS  Google Scholar 

  170. McFadden, W. M., McCall, P. M., Gardel, M. L. & Munro, E. M. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput. Biol. 13, e1005811 (2017).

    ADS  Google Scholar 

  171. McCall, P. M., MacKintosh, F. C., Kovar, D. R. & Gardel, M. L. Cofilin drives rapid turnover and fluidization of entangled F-actin. Preprint at biorXiv https://www.biorxiv.org/content/10.1101/156224v1 (2017)..

  172. Tan, T. H. et al. Self-organized stress patterns drive state transitions in actin cortices. Sci. Adv. 4, eaar2847 (2018).

    Google Scholar 

  173. Wuhr, M. et al. Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Curr. Biol. 24, 1467–1475 (2014).

    Google Scholar 

  174. Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    ADS  Google Scholar 

  175. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    ADS  Google Scholar 

  176. Bertrand, O. J., Fygenson, D. K. & Saleh, O. A. Active, motor-driven mechanics in a DNA gel. Proc. Natl Acad. Sci. USA 109, 17342–17347 (2012).

    ADS  Google Scholar 

  177. Han, E. H., Chen, S. S., Klisch, S. M. & Sah, R. L. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage. Biophys. J. 101, 916–924 (2011).

    ADS  Google Scholar 

  178. Huber, F., Boire, A., Lopez, M. P. & Koenderink, G. H. Cytoskeletal crosstalk: when three different personalities team up. Curr. Opin. Cell Biol. 32, 39–47 (2015).

    Google Scholar 

  179. van Doorn, J. M., Lageschaar, L., Sprakel, J. & van der Gucht, J. Criticality and mechanical enhancement in composite fiber networks. Phys. Rev. E 95, 042503 (2017).

    ADS  Google Scholar 

  180. Das, M. & Mackintosh, F. C. Poisson’s ratio in composite elastic media with rigid rods. Phys. Rev. Lett. 105, 138102 (2010).

    ADS  Google Scholar 

  181. Esue, O., Carson, A. A., Tseng, Y. & Wirtz, D. A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J. Biol. Chem. 281, 30393–30399 (2006).

    Google Scholar 

  182. Golde, T. et al. Glassy dynamics in composite biopolymer networks. Soft Matter 14, 7970–7978 (2018).

    ADS  Google Scholar 

  183. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006). A combined in vivo and in vitro study showing the importance of the composite architecture of the cytoskeleton for cell mechanics.

    Google Scholar 

  184. Bouchet, B. P. et al. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell 39, 708–723 (2016).

    Google Scholar 

  185. Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208 (2018).

    ADS  Google Scholar 

  186. Kreger, S. T. & Voytik-Harbin, S. L. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biol. 28, 336–346 (2009).

    Google Scholar 

  187. Lai, V. K. et al. Swelling of collagen-hyaluronic acid co-gels: an in vitro residual stress model. Ann. Biomed. Eng. 44, 2984–2993 (2016).

    Google Scholar 

  188. Burla, F., Tauber, J., Dussi, S., van der Gucht, J. & Koenderink, G.H. Stress management in composite biopolymer networks. Nat. Phys. https://doi.org/10.1038/s41567-019-0443-6 (2019).

  189. Huisman, E. M., Heussinger, C., Storm, C. & Barkema, G. T. Semiflexible filamentous composites. Phys. Rev. Lett. 105, 118101 (2010).

    ADS  Google Scholar 

  190. Wada, H. & Tanaka, Y. Mechanics and size-dependent elasticity of composite networks. Europhys. Lett. 87, 58001 (2009).

    ADS  Google Scholar 

  191. Bai, M., Missel, A. R., Klug, W. S. & Levine, A. J. The mechanics and affine-nonaffine transition in polydisperse semiflexible networks. Soft Matter 7, 907–914 (2011).

    ADS  Google Scholar 

  192. Shahsavari, A. S. & Picu, R. C. Exceptional stiffening in composite fiber networks. Phys. Rev. E 92, 012401 (2015).

    ADS  Google Scholar 

  193. Lin, Y.-C., Koenderink, G. H., MacKintosh, F. C. & Weitz, D. A. Control of non-linear elasticity in F-actin networks with microtubules. Soft Matter 7, 902–906 (2011).

    ADS  Google Scholar 

  194. Ricketts, S. N., Ross, J. L. & Robertson-Anderson, R. M. Co-entangled actin-microtubule composites exhibit tunable stiffness and power-law stress relaxation. Biophys. J. 115, 1055–1067 (2018).

    ADS  Google Scholar 

  195. Das, M. & MacKintosh, F. C. Mechanics of soft composites of rods in elastic gels. Phys. Rev. E 84, 061906 (2011).

    ADS  Google Scholar 

  196. Pelletier, V., Gal, N., Fournier, P. & Kilfoil, M. L. Microrheology of microtubule solutions and actin-microtubule composite networks. Phys. Rev. Lett. 102, 188303 (2009).

    ADS  Google Scholar 

  197. Broedersz, C. P., Storm, C. & MacKintosh, F. C. Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Phys. Rev. Lett. 101, 118103 (2008).

    ADS  Google Scholar 

  198. Das, M., Quint, D. A. & Schwarz, J. M. Redundancy and cooperativity in the mechanics of compositely crosslinked filamentous networks. PloS One 7, e35939 (2012).

    ADS  Google Scholar 

  199. Schmoller, K. M., Lieleg, O. & Bausch, A. R. Cross-linking molecules modify composite actin networks independently. Phys. Rev. Lett. 101, 118102 (2008).

    ADS  Google Scholar 

  200. Jensen, M. H., Morris, E. J., Goldman, R. D. & Weitz, D. A. Emergent properties of composite semiflexible biopolymer networks. Bioarchitecture 4, 138–143 (2014).

    Google Scholar 

  201. Deek, J., Maan, R., Loiseau, E. & Bausch, A. R. Reconstitution of composite actin and keratin networks in vesicles. Soft Matter 14, 1897–1902 (2018).

    ADS  Google Scholar 

  202. Yang, Y. L. et al. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels. Biomaterials 32, 7932–7940 (2011).

    Google Scholar 

  203. Jaspers, M. et al. Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells. Nat. Commun. 8, 15478 (2017).

    ADS  Google Scholar 

  204. Schiffhauer, E. S. et al. Mechanoaccumulative elements of the mammalian actin cytoskeleton. Curr. Biol. 26, 1473–1479 (2016).

    Google Scholar 

  205. Gan, Z. et al. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst. 3, 500–501 (2016).

    Google Scholar 

  206. Costigliola, N. et al. Vimentin fibers orient traction stress. Proc. Natl Acad. Sci. USA 114, 5195–5200 (2017).

    Google Scholar 

  207. Preciado Lopez, M. et al. Actin–microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014).

    Google Scholar 

  208. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    ADS  Google Scholar 

  209. Valon, L., Marin-Llaurado, A., Wyatt, T., Charras, G. & Trepat, X. Optogenetic control of cellular forces and mechanotransduction. Nat. Commun. 8, 14396 (2017).

    ADS  Google Scholar 

  210. Oakes, P. W. et al. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817 (2017).

    ADS  Google Scholar 

  211. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Cell Biol. 15, 786–801 (2014).

    Google Scholar 

  212. Chang, S. W., Flynn, B. P., Ruberti, J. W. & Buehler, M. J. Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. Biomaterials 33, 3852–3859 (2012).

    Google Scholar 

  213. Bouameur, J. E. & Magin, T. M. Lessons from animal models of cytoplasmic intermediate filament proteins. Subcell. Biochem. 82, 171–230 (2017).

    Google Scholar 

  214. Arseni, L., Lombardi, A. & Orioli, D. From structure to phenotype: impact of collagen alterations on human health. Int. J. Mol. Sci. 19, 1407 (2018).

    Google Scholar 

  215. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Ganzinger for critically reading the manuscript, C. Martinez-Torres for help in acquiring the confocal microscopy image in Fig. 1c and F. C. MacKintosh and C. Broedersz for stimulating discussions about many of the topics covered in this Review. The authors gratefully acknowledge financial support from the European Research Council (Starting Grant no. 335672-MINICELL) and from the Industrial Partnership Programme Hybrid Soft Materials, which is carried out under an agreement between Unilever Research and Development B.V. and the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research of data, discussion, writing and editing of this article prior to submission. F.B., Y.M. and G.H.K. coordinated the writing of this article.

Corresponding author

Correspondence to Gijsje H. Koenderink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burla, F., Mulla, Y., Vos, B.E. et al. From mechanical resilience to active material properties in biopolymer networks. Nat Rev Phys 1, 249–263 (2019). https://doi.org/10.1038/s42254-019-0036-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0036-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing