Abstract
2D and 3D solitons and related states, such as quantum droplets, can appear in optical systems, atomic Bose–Einstein condensates (BECs) and liquid crystals, among other physical settings. However, multidimensional solitary states supported by the standard cubic nonlinearity tend to be strongly unstable — a property far less present in 1D systems. Thus, the central challenge is to stabilize multidimensional states, and to that end numerous approaches have been proposed over the years. Most strategies involve non-cubic nonlinearities or using various potentials, including periodic ones. Completely new directions have recently emerged in two-component BECs with spin–orbit coupling, which have been predicted to support stable 2D and metastable 3D solitons. A recent breakthrough is the creation of 3D quantum droplets. These are self-sustained states existing in two-component BECs, stabilized by the quantum fluctuations around the underlying mean-field states. Here, we review recent results in this field and outline outstanding current challenges.
Key points
-
We provide a brief summary of recent theoretical and experimental advances in the study of multidimensional solitons, chiefly in nonlinear optics, ultracold bosonic gases and liquid-crystal and magnetic media.
-
We cover results for fundamental nonlinear modes and for topologically non-trivial states, such as vortex solitons, hopfions and skyrmions.
-
The experimental realization of multidimensional solitons has proved to be more challenging than for 1D solitons owing to the propensity to instabilities of 2D and 3D states, both fundamental and topologically structured. We address different stabilization mechanisms that have been put forward to potentially observe multidimensional solitons, such as competing nonlinearities, linear and nonlinear potentials, spin–orbit coupling, quantum corrections and dissipative effects.
-
Special attention is paid to recent theoretical and experimental results that produced stable 3D solitons in the form of quantum droplets in ultracold bosonic gases, the stability of which is secured by a macroscopic effect of quantum fluctuations around mean-field states.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Unveiling the complexity of spatiotemporal soliton molecules in real time
Nature Communications Open Access 11 April 2023
-
1D solitons in cubic-quintic fractional nonlinear Schrödinger model
Scientific Reports Open Access 02 September 2022
-
Electrically tunable collective motion of dissipative solitons in chiral nematic films
Nature Communications Open Access 19 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Akhmediev, N. N. & Ankiewicz, A. Solitons: Nonlinear Pulses and Beams (Chapman & Hall, 1997).
Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
Dauxois, T. & Peyrard, M. Physics of Solitons (Cambridge University Press, Cambridge, 2006).
Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005).
Mihalache, D. Multidimensional localized structures in optical and matter-wave media: atopical review of recent literature. Rom. Rep. Phys. 69, 403 (2017).
Radu, E. & Volkov, M. S. Stationary ring solitons in field theory - knots and vortons. Phys. Rep. 468, 101–151 (2008).
Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).
Ruostekoski, J. Stable particlelike solitons with multiply quantized vortex lines in Bose-Einstein condensates. Phys. Rev. A 70, 041601(R) (2004).
Tiurev, K. et al. Three-dimensional skyrmions in spin-2 Bose–Einstein condensates. New J. Phys. 20, 055011 (2018).
Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M. & Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014).
Nguyen, J. H. V., Dyke, P., Luo, D., Malomed, B. A. & Hulet, R. G. Collisions of matter-wave solitons. Nat. Phys. 10, 918–922 (2014).
Berge, L. Wave collapse in physics: Principles and applications to light and plasma waves. Phys. Rep. 303, 259–372 (1998).
Kuznetsov, E. A. & Dias, F. Bifurcations of solitons and their stability. Phys. Rep. 507, 43–105 (2011).
Fibich, G. The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse (Springer, Heidelberg, 2015).
Firth, W. J. & Skryabin, D. V. Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79, 2450–2453 (1997).
Torner, L. & Petrov, D. V. Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation. Electron. Lett. 33, 608–610 (1997).
Silberberg, Y. Collapse of optical pulses. Opt. Lett. 22, 1282–1284 (1990).
Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Viewpoint: on multidimensional solitons and their legacy in contemporary atomic,molecular and optical physics. J. Phys. B 49, 170502 (2016).
Malomed, B. A. Multidimensional solitons: Well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016).
Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957).
Petrov, D. S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 115, 155302 (2015).
Petrov, D. S. & Astrakharchik, G. E. Ultradilute low-dimensional liquids. Phys. Rev. Lett. 117, 100401 (2016).
Baillie, D., Wilson, R. M., Bisset, R. N. & Blakie, P. B. Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A 94, 021602R (2016).
Schmitt, M., Wenzel, M., Böttcher, B., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016).
Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).
Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).
Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359, 301–304 (2018).
Cheiney, P. et al. Bright soliton to quantum droplet transition in a mixture of Bose-Einstein condensates. Phys. Rev. Lett. 120, 135301 (2018).
Semeghini, G. et al. Self-bound quantum droplets in atomic mixtures. Phys. Rev. Lett. 120, 235301 (2018).
Li, Y. et al. Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates. New J. Phys. 19, 113043 (2017).
Chiao, R. Y., Garmire, E. & Townes, C. H. Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964).
Vakhitov, M. & Kolokolov, A. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783–789 (1973).
Kruglov, V. I. & Vlasov, R. A. Spiral self-trapping propagation of optical beams in media with cubic nonlinearity. Phys. Lett. A 111, 401–404 (1985).
Karamzin, Yu. N. & Sukhorukov, A. P. Mutual focusing of high-power light beams in media with quadratic nonlinearities. Sov. Phys. Jetp. 41, 414–420 (1976).
Stegeman, G. I., Hagan, D. J. & Torner, L. Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691–1740 (1996).
Etrich, C., Lederer, F., Malomed, B. A., Peschel, T. & Peschel, U. Optical solitons in media with a quadratic nonlinearity. Progress. Opt. 41, 483–568 (2000).
Buryak, A. V., Di Trapani, P., Skryabin, D. V. & Trillo, S. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370, 63–235 (2002).
Mihalache, D. et al. Stable spinning optical solitons in three dimensions. Phys. Rev. Lett. 88, 073902 (2002).
Torruellas, W. E. et al. Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036–5039 (1995).
Petrov, D. V. et al. Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal. Opt. Lett. 23, 1444–1446 (1998).
Kanashov, A. A. & Rubenchik, A. M. On diffraction and dispersion effects on three-wave interaction. Phys. D 4, 122–134 (1981).
Malomed, B. A. et al. Spatio-temporal solitons in optical media with a quadratic nonlinearity. Phys. Rev. E 56, 4725–4735 (1997).
Liu, X., Qian, L. J. & Wise, F. W. Generation of optical spatiotemporal solitons. Phys. Rev. Lett. 82, 4631–4634 (1999).
Liu, X., Beckwitt, K. & Wise, F. W. Two-dimensional optical spatiotemporal solitons in quadratic media. Phys. Rev. E 62, 1328–1340 (2000).
Torner, L., Carrasco, S., Torres, J. P., Crasovan, L.-C. & Mihalache, D. Tandem light bullets. Opt. Commun. 199, 277–281 (2001).
Chen, Z., Segev, M. & Christodoulides, D. N. Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012).
Tikhonenko, V., Christou, J. & Luther-Davies, B. Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium. Phys. Rev. Lett. 76, 2698–2701 (1996).
Bjorkhol, J. & Ashkin, A. CW self-focusing and self-trapping of light in sodium vapour. Phys. Rev. Lett. 32, 129–132 (1974).
Duree, G. C. et al. Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71, 533–536 (1993).
Iturbe Castillo, M. D., Marquez Aguilar, P. A., Sanchez-Mondragon, J. J., Stepanov, S. & Vysloukh, V. Spatial solitons in photorefractive BTO with drift mechanism of nonlinearity. Appl. Phys. Lett. 64, 408–410 (1994).
Segev, M., Valley, G. C., Crosignani, B., Di Porto, P. & Yariv, A. Steady-state spatial screening solitons in photorefractive materials with external applied-field. Phys. Rev. Lett. 73, 3211–3214 (1994).
Edmundson, D. E. & Enns, R. H. Robust bistable light bullets. Opt. Lett. 17, 586–588 (1992).
Soto-Crespo, J. M., Heatley, D. R., Wright, E. M. & Akhmediev, N. N. Stability of the higher-bound states in a saturable self-focusing medium. Phys. Rev. A 44, 636–644 (1991).
Quiroga-Teixeiro, M. & Michinel, H. Stable azimuthal stationary state in quintic nonlinear media. J. Opt. Soc. Am. B 14, 2004–2009 (1997).
Quiroga-Teixeiro, M. L., Berntson, A. & Michinel, H. Internal dynamics of nonlinear beams in their ground states: short- and long-lived excitation. J. Opt. Soc. Am. B 16, 1697–1704 (1999).
Desyatnikov, A., Maimistov, A. & Malomed, B. Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity. Phys. Rev. E 61, 3107–3113 (2000).
Paredes, A., Feijoo, D. & Michinel, H. Coherent cavitation in the liquid of light. Phys. Rev. Lett. 112, 173901 (2014).
Falcão-Filho, E. L., de Araújo, C. B., Boudebs, G., Leblond, H. & Skarka, V. Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys. Rev. Lett. 110, 013901 (2013).
Reyna, S., Boudebs, G., Malomed, B. A. & de Araújo, C. B. Robust self-trapping of vortex beams in a saturable optical medium. Phys. Rev. A 93, 013840 (2016).
Reyna, A. S., Jorge, K. C. & de Araújo, C. B. Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014).
Akhmediev, N. & Ankiewicz, A. Dissipative Solitons, Lecture Notes in Physics Vol. 661 (Springer, 2005).
Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).
Grelu, P., Soto-Crespo, J. M. & Akhmediev, N. Light bullets and dynamic pattern formation in nonlinear dissipative systems. Opt. Express 13, 9352–9360 (2005).
Skarka, V. & Aleksić, N. B. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys. Rev. Lett. 96, 013903 (2006).
Mihalache, D. et al. Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation. Phys. Rev. Lett. 97, 073904 (2006).
Veretenov, N. A., Rosanov, N. N. & Fedorov, S. V. Rotating and precessing dissipative-optical-topological-3D solitons. Phys. Rev. Lett. 117, 183901 (2016).
Veretenov, N. A., Fedorov, S. V. & Rosanov, N. N. Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons. Phys. Rev. Lett. 119, 263901 (2017).
Gustave, F. et al. Observation of mode-locked spatial laser solitons. Phys. Rev. Lett. 118, 044102 (2017).
Bang, O., Krolikowski, W., Wyller, J. & Rasmussen, J. J. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys. Rev. E 66, 046619 (2002).
Conti, C., Peccianti, M. & Assanto, G. Observation of optical spatial solitons in highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004).
Rotschild, C., Cohen, O., Manela, O., Segev, M. & Carmon, T. Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005).
Burgess, I. B., Peccianti, M., Assanto, G. & Morandotti, R. Accessible light bullets via synergetic nonlinearities. Phys. Rev. Lett. 102, 203903 (2009).
Lahav, O. et al. Three-dimensional spatiotemporal pulse-train solitons. Phys. Rev. X 7, 041051 (2017).
Yang, J. & Musslimani, Z. H. Fundamental and vortex solitons in a two-dimensional optical lattice. Opt. Lett. 28, 2094–2096 (2003).
Baizakov, B. B., Malomed, B. A. & Salerno, M. Multidimensional solitons in periodic potentials. Europhys. Lett. 63, 642–648 (2003).
Efremidis, N. K. et al. Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003).
Mihalache, D. et al. Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. Phys. Rev. E 70, 055603R (2004).
Baizakov, B. B., Malomed, B. A. & Salerno, M. Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A 70, 053613 (2004).
Leblond, H., Malomed, B. A. & Mihalache, D. Three-dimensional vortex solitons in quasi-two-dimensional lattices. Phys. Rev. E 76, 026604 (2007).
Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).
Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).
Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).
Kartashov, Y. V., Vysloukh, V. A. & Torner, L. Soliton shape and mobility control in optical lattices. Progr. Opt. 52, 63–148 (2009).
Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).
Neshev, D. N. et al. Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).
Fleischer, J. W. et al. Observation of vortex-ring discrete solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004).
Terhalle, B. et al. Observation of multivortex solitons in photonic lattices. Phys. Rev. Lett. 101, 013903 (2008).
Chen, Z., Martin, H., Eugenieva, E. D., Xu, J. & Bezryadina, A. Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains. Phys. Rev. Lett. 92, 143902 (2004).
Martin, H., Eugenieva, E. D., Chen, Z. & Christodoulides, D. N. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett. 92, 123902 (2004).
Szameit, A. et al. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 14, 6055–6062 (2006).
Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser written photonic structures. J. Phys. B: At. Mol. Opt. Phys. 43, 163001 (2010).
Aceves, A. B., De Angelis, C., Rubenchik, A. M. & Turitsyn, S. K. Multidimensional solitons in fiber arrays. Opt. Lett. 19, 329–331 (1994).
Aceves, A. B., Luther, G. G., De Angelis, C., Rubenchik, A. M. & Turitsyn, S. K. Energy localization in nonlinear fibre arrays: Collapse-effect compressor. Phys. Rev. Lett. 75, 73–76 (1995).
Pelinovsky, D. E. Localization in Periodic Potentials (Cambridge University Press, Cambridge, 2011).
Minardi, S. et al. Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 105, 263901 (2010).
Eilenberger, F. et al. Evolution dynamics of discrete-continuous light bullets. Phys. Rev. A 84, 013836 (2011).
Eilenberger, F. et al. Observation of discrete, vortex light bullets. Phys. Rev. X 3, 041031 (2013).
Mihalache, D. et al. Stable spatiotemporal solitons in Bessel optical lattices. Phys. Rev. Lett. 95, 023902 (2005).
Rüter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Kartashov, Y. V., Hang, C., Huang, G. X. & Torner, L. Three-dimensional topological solitons in PT-symmetric optical lattices. Optica 3, 1048–1055 (2016).
Conti, C. et al. Nonlinear electromagnetic X waves. Phys. Rev. Lett. 90, 170406 (2003).
Di Trapani, P. et al. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003).
Lahini, Y. et al. Discrete X-wave formation in nonlinear waveguide arrays. Phys. Rev. Lett. 98, 023901 (2007).
Heinrich, M. et al. Observation of three-dimensional discrete-continuous X waves in photonic lattices. Phys. Rev. Lett. 103, 113903 (2009).
Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Airy-Bessel wave packets as versatile linear light bullets. Nat. Photonics 4, 103–106 (2010).
Abdollahpour, D., Suntsov, S., Papazoglou, D. G. & Tzortzakis, S. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Phys. Rev. Lett. 105, 253901 (2010).
Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, San Diego, 1995).
Yu, S.-S., Chien, Ch-H., Lai, Y. & Wang, J. Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity. Opt. Commun. 119, 167–170 (1995).
Shtyrina, O. V., Fedoruk, M. P., Kivshar, Y. S. & Turitsyn, S. K. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers. Phys. Rev. A 97, 013841 (2018).
Renninger, W. H. & Wise, F. W. Optical solitons in graded-index multimode fibres. Nat. Commun. 4, 1719 (2013).
Wright, L. G., Christodoulides, D. N. & Wise, F. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics 9, 306–310 (2015).
Wright, L. G., Wabnitz, S., Christodoulides, D. N. & Wise, F. W. Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves. Phys. Rev. Lett. 115, 223902 (2015).
Wright, L. G. et al. Self-organized instability in graded-index multimode fibres. Nat. Photonics 10, 771–776 (2016).
Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics 11, 237–242 (2017).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).
Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).
Egorov, O. A., Skryabin, D. V., Yulin, A. V. & Lederer, F. Bright cavity polariton solitons. Phys. Rev. Lett. 102, 153904 (2009).
Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photonics 6, 50–55 (2012).
Sala, V. G. et al. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).
Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2017).
Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 4, 1749 (2013).
Cerda-Mendez, E. A. et al. Exciton-polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013).
Gorbach, A. V., Malomed, B. A. & Skryabin, D. V. Gap polariton solitons. Phys. Lett. A 373, 3024–3027 (2009).
Ostrovskaya, E. A., Abdullaev, J., Fraser, M. D., Desyatnikov, A. S. & Kivshar, Y. S. Self-localization of polariton condensates in periodic potentials. Phys. Rev. Lett. 110, 170407 (2013).
Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).
Kartashov, Y. V. & Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators. Optica 3, 1228–1236 (2016).
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).
Durand, M. et al. Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation. Phys. Rev. Lett. 110, 115003 (2013).
Chekalin, S. V. et al. Light bullets from a femtosecond filament. J. Phys. B 48, 094008 (2015).
Chekalin, S. V., Kompanets, V. O., Dormidonov, A. E. & Kandidov, V. P. Path length and spectrum of single-cycle mid-IR light bullets in transparent dielectrics. Quantum Elec. 48, 372–377 (2018).
Majus, D. et al. Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. 112, 193901 (2014).
Scheller, M. et al. Externally refueled optical filaments. Nat. Photonics 8, 297 (2014).
Panagiotopoulos, P., Whalen, P., Kolesik, M. & Moloney, J. V. Super high power mid-infrared femtosecond light bullet. Nat. Photonics 9, 543–548 (2015).
Borovkova, O. V., Kartashov, Y. V., Malomed, B. A. & Torner, L. Algebraic bright and vortex solitons in defocusing media. Opt. Lett. 36, 3088–3090 (2011).
Borovkova, O. V., Kartashov, Y. V., Torner, L. & Malomed, B. A. Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, 035602(R) (2011).
Tian, Q., Wu, L., Zhang, Y. & Zhang, J.-F. Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. E 85, 056603 (2012).
Wu, Y., Xie, Q., Zhong, H., Wen, L. & Hai, W. Algebraic bright and vortex solitons in self-defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. A 87, 055801 (2013).
Driben, R., Kartashov, Y. V., Malomed, B. A., Meier, T. & Torner, L. Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014).
Kartashov, Y. V., Malomed, B. A., Shnir, Y. & Torner, L. Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014).
Driben, R., Kartashov, Y., Malomed, B. A., Meier, T. & Torner, L. Three-dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014).
Kartashov, Y. V., Malomed, B. A. & Torner, L. Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–306 (2011).
Roati, G. et al. 39K Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett. 99, 010403 (2007).
Pollack, S. E. et al. Extreme tunability of interactions in a 7Li Bose-Einstein condensate. Phys. Rev. Lett. 102, 090402 (2009).
Fedichev, P. O., Kagan, Yu, Shlyapnikov, G. V. & Walraven, J. T. M. Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996).
Yan, M., DeSalvo, B. J., Ramachandhran, B., Pu, H. & Killian, T. C. Controlling condensate collapse and expansion with an optical Feshbach resonance. Phys. Rev. Lett. 110, 123201 (2013).
Yamazaki, R., Taie, S., Sugawa, S. & Takahashi, Y. Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 050405 (2010).
Clark, L. W., Ha, L.-C., Xu, C.-Y. & Chin, C. Quantum dynamics with spatiotemporal control of interactions in a stable Bose-Einstein condensate. Phys. Rev. Lett. 115, 155301 (2015).
Hukriede, J., Runde, D. & Kip, D. Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides. J. Phys. D 36, R1–R16 (2003).
Morsch, O. & Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).
Ostrovskaya, E. A. & Kivshar, Y. S. Matter-wave gap solitons in atomic band-gap structures. Phys. Rev. Lett. 90, 160407 (2003).
Louis, P. J. Y., Ostrovskaya, E. A., Savage, C. M. & Kivshar, Y. S. Bose-Einstein condensates in optical lattices: Band-gap structure and solitons. Phys. Rev. A 67, 013602 (2003).
Ostrovskaya, E. A. & Kivshar, Y. S. Matter-wave gap vortices in optical lattices. Phys. Rev. Lett. 93, 160405 (2004).
Sakaguchi, H. & Malomed, B. A. Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps. J. Phys. B 37, 2225–2239 (2004).
Kartashov, Y. V., Vysloukh, V. A. & Torner, L. Rotary solitons in Bessel optical lattices. Phys. Rev. Lett. 93, 093904 (2004).
Baizakov, B., Malomed, B. A. & Salerno, M. Matter-wave solitons in radially periodic potentials. Phys. Rev. E 74, 066615 (2006).
Lin, Y.-J., Jiménez-García, K. & Spielman, I. B. Spin-orbit-coupled Bose-Einstein condensates. Nature 471, 83–86 (2011).
Zhai, H. Degenerate quantum gases with spin-orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015).
Sakaguchi, H., Li, B. & Malomed, B. A. Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. Phys. Rev. E 89, 032920 (2014).
Salasnich, L., Cardoso, W. B. & Malomed, B. A. Localized modes in quasi-two-dimensional Bose-Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 90, 033629 (2014).
Sakaguchi, H., Ya., E., Sherman & Malomed, B. A. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: effects of the Rashba-Dresselhaus coupling and the Zeeman splitting. Phys. Rev. E 94, 032202 (2016).
Zhang, Y.-C., Zhou, Z.-W., Malomed, B. A. & Pu, H. Stable solitons in three dimensional free space without the ground state: self-trapped Bose-Einstein condensates with spin-orbit coupling. Phys. Rev. Lett. 115, 253902 (2015).
Qin, J., Dong, G. & Malomed, B. A. Stable giant vortex annuli in microwave-coupled atomic condensates. Phys. Rev. A 94, 053611 (2016).
Bulgac, A. Dilute quantum droplets. Phys. Rev. Lett. 89, 050402 (2002).
Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).
Petrov, D. S. Liquid beyond the van der Waals paradigm. Nat. Phys. 14, 211 (2018).
Cappellaro, A., Macrí, T., Bertacco, G. F. & Salasnich, L. Equation of state and self-bound droplet in Rabi-coupled Bose mixtures. Sci. Rep. 7, 13358 (2017).
Cui, X. Spin-orbit coupling induced quantum droplet in ultracold Bose-Fermi mixtures. Phys. Rev. A 98, 023630 (2018).
Saito, H. Path-integral Monte Carlo study on a droplet of a dipolar Bose–Einstein condensate stabilized by quantum fluctuation. J. Phys. Soc. Jpn. 85, 053001 (2016).
Cikojević, V., Dželalija, K., Stipanović, P., Vranješ Markić, L. & Boronat, J. Ul-tradilute quantum liquid drops. Phys. Rev. B 97, 140502R (2018).
Cikojević, V., Vranješ Markić, L., Astrakharchik, G. E. & Boronat, J. Universality in ultradilute liquid Bose-Bose mixtures. Preprint at arXiv https://arxiv.org/abs/1811.04436 (2018).
Staudinger, C., Mazzanti, F. & Zillich, R. E. Self-bound Bose mixtures. Phys. Rev. A 98, 023633 (2018).
Li, Y. et al. Two-dimensional vortex quantum droplets. Phys. Rev. A 98, 063602 (2018).
Astrakharchik, G. E. & Malomed, B. A. Dynamics of one-dimensional quantum droplets. Phys. Rev. A 98, 013612 (2018).
Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. Phys. Rev. A 94, 043618 (2016).
Xi, K.-T. & Saito, H. Droplet formation in a Bose-Einstein condensate with strong dipole-dipole interaction. Phys. Rev. A 93, 011604R (2016).
Adhikari, S. K. Statics and dynamics of a self-bound dipolar matter-wave droplet. Laser Phys. Lett. 14, 025501 (2017).
Edler, D. et al. Quantum fluctuations in quasi-one-dimensional dipolar Bose-Einstein condensates. Phys. Rev. Lett. 119, 050403 (2017).
Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603R (2016).
Koch, T. et al. Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys. 4, 218–222 (2008).
Cidrim, A., dos Santos, F. E. A., Henn, E. A. L. & Macrí, T. Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618 (2018).
Kartashov, Y. V., Malomed, B. A., Tarruell, L. & Torner, L. Three-dimensional droplets of swirling superfluids. Phys. Rev. A 98, 013612 (2018).
Ackerman, P. J. & Smalyukh, I. I. Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017).
Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2017).
Tai, J.-S., Ackerman, P. I. & Smalyukh, I. I. Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals. Proc. Nat. Acad. Sci. USA 115, 921–926 (2018).
Hobart, R. H. On the instability of a class of unitary field models. Proc. Phys. Soc. Lond. 82, 201–203 (1963).
Derrick, G. H. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964).
Li, B.-X. et al. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat. Commun. 9, 2912 (2018).
Lai, P. et al. An improved racetrack structure for transporting a skyrmion. Sci. Rep. 7, 45330 (2017).
Ackerman, P. J., Boyle, T. & Smalyukh, I. I. Squirming motion of baby skyrmions in nematic fluids. Nat. Commun. 8, 673 (2017).
Deng, D.-L., Wang, S.-T., Sun, K. & Duan, L.-M. Probe knots and Hopf insulators with ultracold atoms. Chin. Phys. Lett. 35, 013701 (2018).
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microcavities. Science 361, 567 (2018).
Acknowledgements
The authors greatly appreciate many valuable collaborations and discussions with S. K. Adhikari, G. Dong, A. Gammal, R. G. Hulet, V. V. Konotop, O. D. Lavrentovich, Y. Li, D. Mihalache, D. S. Petrov, H. Sakaguchi, L. Salasnich, E. Y. Sherman, Y. Shnir, D. V. Skryabin and L. Tarruell. L.T. and Y.V.K. acknowledge support from the Severo Ochoa program (SEV-2015-0522) of the Government of Spain, Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya and Centres de Recerca de Catalunya (CERCA). The work of B.A.M. is supported, in part, by the joint programme in physics between the US National Science Foundation (NSF) and Binational (US–Israel) Science Foundation through project no. 2015616 and by the Israel Science Foundation through grant no. 1286/17. B.A.M. appreciates the hospitality of the Institute of Photonic Sciences (ICFO) during the preparation of this Review. G.E.A. acknowledges financial support from the Ministry of Science, Innovation and Universities (MICINN, Spain), grant no. FIS2017-84114-C2-1-P.
Author information
Authors and Affiliations
Contributions
All authors contributed to all sections of the paper. 3D solitons in liquid crystals and ferromagnets section was chiefly written by B.A.M.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Hopfions
-
A class of 3D localized modes, in the form of tori carrying the global vorticity, which are additionally twisted in the torus cross section. This mode carries two independent topological charges (winding numbers), one representing the overall vorticity and the other accounting for the intrinsic twist.
- Skyrmions
-
Complex 3D states in various two-component field-theory systems, which carry two independent topological numbers. They were introduced by Skyrme as a classical field model, which effectively describes baryons, and may be derived as a low-energy (semi-classical) limit of quantum chromodynamics.
- Spinor Bose–Einstein condensates
-
(spinor BECs). Condensates composed of two or several components, which may be considered as a set forming a spinor wavefunction, corresponding to a pseudo spin of 1/2 (two components), 1 (three components) or 2 (five components).
- Kerr nonlinearities
-
Universal optical nonlinearities occurring in dielectric media that yield a correction to the local refractive index proportional to the intensity of the electromagnetic wave. They are represented by the cubic self-attractive term in the corresponding nonlinear Schrödinger equation.
- Tandem structures
-
Optical tandem structures represent periodic stacks of materials with different parameters, such as the refractive index, nonlinearity and dispersion, in which widths of individual layers are usually small in comparison with the average diffraction and dispersion lengths.
- Vortex solitons
-
2D or 3D solitons represented by a complex wavefunction whose phase carries an integer winding number (vorticity, also known as the topological charge) and has an amplitude that vanishes at the central pivot.
- Parity–time (PT )-symmetry
-
Special symmetry of the evolution equation or non-Hermitian Hamiltonian governing a dissipative system under the transformation of time reversal and parity inversion (flip of the sign of the spatial coordinate). In the so-called unbroken PT phase, such Hamiltonian shows an entirely real energy spectrum despite being non-Hermitian.
- X-wave
-
A delocalized linear or nonlinear 2D wave, with the local power featuring an X-shaped profile, which may be supported by defocusing nonlinear optical material when the signs of dispersion and diffraction coefficients are opposite.
- Bessel and Airy beams
-
Bessel beams represent 2D non-diffracting solutions of the Helmholtz equation in circular cylindrical coordinates, in which this equation is separable. Airy beams are non-diffracting 1D or 2D beams that bend along a parabolic trajectory upon propagation while maintaining their functional shapes. Their combinations can be used to construct non-diffracting 3D wavepackets.
- Spin–orbit coupling
-
(SOC). Originally, it referred to the coupling between the spin of electrons in semiconductors and their motion through the crystalline electrostatic field. In the context of the Bose–Einstein condensate, SOC is realized as linear mixing between two components of a binary condensate through first spatial derivatives of the respective wavefunctions.
- Topological insulators
-
Originally, dielectric materials (insulators) possessing a complete gap in the bulk, but admitting conductance through in-gap edge states existing as a result of peculiarities of the intrinsic topological structure of the material. This name is also used for photonic settings that emulate the same phenomenology in terms of light transmission.
- Pseudopotentials
-
Effective potentials that are induced by the nonlinearity whose local strength is subject to spatial modulation.
- Feshbach resonances
-
The effects that make it possible to change the magnitude and sign of the scattering length characterizing collisions between atoms in quantum gases. The Feshbach resonance is a powerful experimental tool enabling control of the strength and sign of the effective nonlinearity in Bose–Einstein condensates (as concerns both self-interactions and cross interactions, in the case of two-component condensates).
- Semi-vortex
-
A stable two-component 2D or 3D soliton in a two-component spin–orbit-coupled Bose–Einstein condensate, in which, unlike mixed modes, one component has zero vorticity, whereas the other one carries a vorticity of 1.
- Mixed-mode
-
Stable 2D and 3D solitons in a two-component Bose–Einstein condensate with the spin–orbit coupling between the components. Unlike semi-vortices, each component of such a mode is a mixture of terms with zero vorticity and vorticities of ±1.
- Torons
-
Toroidal localized modes that may be created in liquid crystals and ferrofluids. A toron is organized in essentially the same way as a hopfion (a twisted torus, which may carry the overall vorticity).
Rights and permissions
About this article
Cite this article
Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A. et al. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat Rev Phys 1, 185–197 (2019). https://doi.org/10.1038/s42254-019-0025-7
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0025-7
This article is cited by
-
Unveiling the complexity of spatiotemporal soliton molecules in real time
Nature Communications (2023)
-
Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev–Petviashvili equations
Nonlinear Dynamics (2023)
-
Thresholds between modulational stability, rogue waves and soliton regimes in saturable nonlinear media
Nonlinear Dynamics (2023)
-
Multiple-peak and multiple-ring solitons in the nonlinear Schrödinger equation with inhomogeneous self-defocusing nonlinearity
Nonlinear Dynamics (2023)
-
Two-dimensional localized modes in saturable quintic nonlinear lattices
Nonlinear Dynamics (2023)