Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

van der Waals heterostructures combining graphene and hexagonal boron nitride

Abstract

As the first in a large family of 2D van der Waals (vdW) materials, graphene has attracted enormous attention owing to its remarkable properties. The recent development of simple experimental techniques for combining graphene with other atomically thin vdW crystals to form heterostructures has enabled the exploration of the properties of these so-called vdW heterostructures. Hexagonal boron nitride is the second most popular vdW material after graphene, owing to the new physics and device properties of vdW heterostructures combining the two. Hexagonal boron nitride can act as a featureless dielectric substrate for graphene, enabling devices with ultralow disorder that allow access to the intrinsic physics of graphene, such as the integer and fractional quantum Hall effects. Additionally, under certain circumstances, hexagonal boron nitride can modify the optical and electronic properties of graphene in new ways, inducing the appearance of secondary Dirac points or driving new plasmonic states. Integrating other vdW materials into these heterostructures and tuning their new degrees of freedom, such as the relative rotation between crystals and their interlayer spacing, provide a path for engineering and manipulating nearly limitless new physics and device properties.

Key points

  • Atomically thin flakes of van der Waals materials such as graphene and hexagonal boron nitride (hBN) can be mixed and matched into heterostructures with fundamentally new optoelectronic properties.

  • Graphene encapsulated in hBN has very high mobility, with very low charge carrier inhomogeneity and ballistic transport characteristics over micrometre length scales at low temperature.

  • High-mobility graphene devices exhibit well-developed multicomponent integer and fractional quantum Hall effects, as well as additional exotic correlated electronic phases in a magnetic field.

  • When the graphene and hBN crystals are rotationally aligned, a long-wavelength moiré superlattice emerges, which creates new, finite-energy Dirac points in the graphene bandstructure and leads to the Hofstadter butterfly spectrum.

  • Graphene–hBN heterostructures host new hybrid polaritons, as well as plasmonic excitations with exceptionally long lifetimes that can be tuned with a moiré superlattice.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fabrication of graphene devices encapsulated with hexagonal boron nitride.
Fig. 2: Charge inhomogeneity in graphene devices.
Fig. 3: Integer and fractional quantum Hall effect in graphene.
Fig. 4: Exotic correlated phases in graphene-based devices at high magnetic field.
Fig. 5: Band structure modification of graphene resulting from the lattice mismatch with a hexagonal boron nitride substrate.
Fig. 6: Hofstadter spectrum of graphene on hexagonal boron nitride at high magnetic fields.
Fig. 7: Polaritonic response in graphene and hexagonal boron nitride.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Google Scholar 

  3. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano. Lett. 12, 1707–1710 (2012).

    ADS  Google Scholar 

  4. Mak, K., Lee, C., Hone, J., Shan, J. & Heinz, T. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  5. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).

    Google Scholar 

  6. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    ADS  Google Scholar 

  7. Tang, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 13, 683–687 (2017).

    Google Scholar 

  8. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Google Scholar 

  9. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    ADS  MathSciNet  Google Scholar 

  10. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  Google Scholar 

  11. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    ADS  Google Scholar 

  12. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  13. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  14. Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    ADS  Google Scholar 

  15. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    ADS  Google Scholar 

  16. Bolotin, K. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    ADS  Google Scholar 

  17. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    ADS  Google Scholar 

  18. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS  Google Scholar 

  19. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Google Scholar 

  20. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

    Google Scholar 

  21. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2. Phys. Rev. B 79, 205411 (2009).

    ADS  Google Scholar 

  22. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    Google Scholar 

  23. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Google Scholar 

  24. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    ADS  Google Scholar 

  25. Golla, D. et al. Optical thickness determination of hexagonal boron nitride flakes. Appl. Phys. Lett. 102, 161906 (2013).

    ADS  Google Scholar 

  26. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Google Scholar 

  27. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano. Lett. 11, 2396–2399 (2011).

    ADS  Google Scholar 

  28. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nat. Phys. 9, 225–229 (2013).

    Google Scholar 

  29. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    ADS  Google Scholar 

  30. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano. Lett. 14, 3270–3276 (2014).

    ADS  Google Scholar 

  31. Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Google Scholar 

  32. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano. Lett. 16, 1989–1995 (2016).

    ADS  Google Scholar 

  33. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    ADS  Google Scholar 

  34. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano. Lett. 15, 4914–4921 (2015).

    ADS  Google Scholar 

  35. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    ADS  Google Scholar 

  36. Li, J. I. A. et al. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    ADS  Google Scholar 

  37. Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano. Lett. 18, 1416–1420 (2018).

    ADS  Google Scholar 

  38. Cullen, W. et al. High-fidelity conformation of graphene to SiO2 topographic features. Phys. Rev. Lett. 105, 215504 (2010).

    ADS  Google Scholar 

  39. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    ADS  Google Scholar 

  40. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano. Lett. 11, 2291–2295 (2011).

    ADS  Google Scholar 

  41. Yankowitz, M., Xue, J. & LeRoy, B. J. Graphene on hexagonal boron nitride. J. Phys. Condens. Matter 26, 303201 (2014).

    Google Scholar 

  42. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    ADS  Google Scholar 

  43. Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    ADS  Google Scholar 

  44. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Google Scholar 

  45. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    ADS  Google Scholar 

  46. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012).

    Google Scholar 

  47. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

    Google Scholar 

  48. Sanchez-Yamagishi, J. D. et al. Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer. Nat. Nanotechnol. 12, 118–122 (2016).

    ADS  Google Scholar 

  49. San-Jose, P., Lado, J. L., Aguado, R., Guinea, F. & Fernández-Rossier, J. Majorana zero modes in graphene. Phys. Rev. X 5, 041042 (2015).

    Google Scholar 

  50. Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).

    ADS  Google Scholar 

  51. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    ADS  Google Scholar 

  52. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    ADS  Google Scholar 

  53. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    ADS  Google Scholar 

  54. Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7, 693–696 (2011).

    Google Scholar 

  55. Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).

    ADS  Google Scholar 

  56. Zeng, Y. et al. High quality magnetotransport in graphene using the edge-free Corbino geometry. Preprint at arXiv https://arxiv.org/abs/1805.04904 (2018).

  57. Chen, S. et al. Competing fractional quantum hall and electron solid phases in graphene. Preprint at arXiv https://arxiv.org/abs/1807.10523 (2018).

  58. Zibrov, A. A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    Google Scholar 

  59. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    ADS  Google Scholar 

  61. Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν=5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).

    ADS  Google Scholar 

  62. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).

    Google Scholar 

  63. Li, J. I. A. et al. Negative Coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).

    ADS  Google Scholar 

  64. Lee, K. et al. Giant frictional drag in double bilayer graphene heterostructures. Phys. Rev. Lett. 117, 046803 (2016).

    ADS  Google Scholar 

  65. Liu, X., Wang, L., Fong, K. C., Gao, Y. & Maher, P. Frictional magneto-Coulomb drag in graphene double-layer heterostructures. Phys. Rev. Lett. 119, 056802 (2017).

    ADS  Google Scholar 

  66. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Google Scholar 

  67. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    ADS  Google Scholar 

  68. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Google Scholar 

  69. Chae, J. et al. Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy. Phys. Rev. Lett. 109, 116802 (2012).

    ADS  Google Scholar 

  70. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    ADS  Google Scholar 

  71. Järvinen, P. et al. Molecular self-assembly on graphene on SiO2 and h-BN substrates. Nano. Lett. 13, 3199–3204 (2013).

    ADS  Google Scholar 

  72. Wong, D., Wang, Y., Jung, J., Pezzini, S. & DaSilva, A. M. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015).

    ADS  Google Scholar 

  73. Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano. Lett. 17, 2839–2843 (2017).

    ADS  Google Scholar 

  74. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  Google Scholar 

  75. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS  Google Scholar 

  76. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS  Google Scholar 

  77. Chen, Z.-G. et al. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014).

    Google Scholar 

  78. Wang, E. et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat. Phys. 12, 1111–1115 (2016).

    Google Scholar 

  79. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    ADS  Google Scholar 

  80. Kim, H. et al. Accurate gap determination in monolayer and bilayer graphene/h-BN moiré superlattices. Nano Lett. 18, 7732–7741 (2018).

    ADS  Google Scholar 

  81. Yankowitz, M., Watanabe, K., Taniguchi, T., San-Jose, P. & LeRoy, B. J. Pressure-induced commensurate stacking of graphene on boron nitride. Nat. Commun. 7, 13168 (2016).

    ADS  Google Scholar 

  82. Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).

    ADS  Google Scholar 

  83. Jung, J., DaSilva, A. M., MacDonald, A. H. & Adam, S. Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015).

    ADS  Google Scholar 

  84. Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  85. Bokdam, M., Amlaki, T., Brocks, G. & Kelly, P. J. Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89, 201404 (2014).

    ADS  Google Scholar 

  86. Moon, P. & Koshino, M. Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice. Phys. Rev. B 90, 155406 (2014).

    ADS  Google Scholar 

  87. San-Jose, P., Gutiérrez-Rubio, A., Sturla, M. & Guinea, F. Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B 90, 115152 (2014).

    ADS  Google Scholar 

  88. Wallbank, J. R., Mucha-Kruczyński, M., Chen, X. & Fal’ko, V. I. Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures. Ann. der Phys. 527, 359–376 (2015).

    ADS  Google Scholar 

  89. Slotman, G. J. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015).

    ADS  Google Scholar 

  90. Jung, J. et al. Moiré band model and band gaps of graphene on hexagonal boron nitride. Phys. Rev. B 96, 085442 (2017).

    ADS  Google Scholar 

  91. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).

    Google Scholar 

  92. Weiss, D., Klitzing, K. V. & Ploog, K. Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential. Europhys. Lett. 8, 179–184 (1989).

    ADS  Google Scholar 

  93. Ismail, K., Chu, W., Yen, A., Antoniadis, D. A. & Smith, H. I. Negative transconductance and negative differential resistance in a grid-gate modulation-doped field-effect transistor. Appl. Phys. Lett. 54, 460–462 (1989).

    ADS  Google Scholar 

  94. Fang, H. & Stiles, P. J. Novel magnetoresistance oscillations in a two-dimensional superlattice potential. Phys. Rev. B 41, 10171–10174 (1990).

    ADS  Google Scholar 

  95. Schlösser, T., Ensslin, K. & Kotthaus, J. P. Landau subbands generated by a lateral electrostatic superlattice-chasing the Hofstadter butterfly. Semicond. Sci. Tech. 11, 1582–1585 (1996).

    ADS  Google Scholar 

  96. Albrecht, C. et al. Evidence of Hofstadter’s fractal energy spectrum in the quantized Hall conductance. Phys. Rev. Lett. 86, 147–150 (2001).

    ADS  Google Scholar 

  97. Melinte, S. et al. Laterally modulated 2D electron system in the extreme quantum limit. Phys. Rev. Lett. 92, 683–684 (2004).

    Google Scholar 

  98. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    ADS  Google Scholar 

  99. Kumar, R. K. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).

    ADS  Google Scholar 

  100. Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat. Phys. 10, 525–529 (2014).

    Google Scholar 

  101. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    ADS  Google Scholar 

  102. DaSilva, A. M., Jung, J. & MacDonald, A. H. Fractional Hofstadter states in graphene on hexagonal boron nitride. Phys. Rev. Lett. 117, 036802 (2016).

    ADS  Google Scholar 

  103. Chen, G. et al. Emergence of tertiary Dirac points in graphene Moiré superlattices. Nano. Lett. 17, 3576–3581 (2017).

    ADS  Google Scholar 

  104. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano. Lett. 11, 3370–3377 (2011).

    ADS  Google Scholar 

  105. Basov, D. N., Fogler, M. M. & de Abajo, F. J. G. Polaritons in van der Waals materials. Science 354, 195 (2016).

    Google Scholar 

  106. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2016).

    ADS  Google Scholar 

  107. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    ADS  Google Scholar 

  108. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Google Scholar 

  109. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Google Scholar 

  110. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2014).

    ADS  Google Scholar 

  111. Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Google Scholar 

  112. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    ADS  Google Scholar 

  113. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016).

    ADS  Google Scholar 

  114. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS  Google Scholar 

  115. Polini, M. & Koppens, F. H. L. Graphene: plasmons in moiré superlattices. Nat. Mater. 14, 1187–1188 (2015).

    ADS  Google Scholar 

  116. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    ADS  Google Scholar 

  117. Tomadin, A., Guinea, F. & Polini, M. Generation and morphing of plasmons in graphene superlattices. Phys. Rev. B 90, 161406 (2014).

    ADS  Google Scholar 

  118. Gorbachev, R. V., Song, J., Yu, G. L. & Kretinin, A. V. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    ADS  Google Scholar 

  119. Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    ADS  Google Scholar 

  120. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  Google Scholar 

  121. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Google Scholar 

  122. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Google Scholar 

  123. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    ADS  Google Scholar 

  124. Woessner, A. et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Mater. Appl. 1, 25 (2017).

    Google Scholar 

  125. Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2017).

    ADS  Google Scholar 

  126. Zimmermann, K. et al. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices. Nat. Commun. 8, 14983 (2017).

    ADS  Google Scholar 

  127. Overweg, H. et al. Electrostatically induced quantum point contacts in bilayer graphene. Nano. Lett. 18, 553–559 (2017).

    ADS  Google Scholar 

  128. Wei, D. S. et al. Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene. Sci. Adv. 3, e1700600 (2017).

    ADS  Google Scholar 

  129. Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  130. Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Google Scholar 

  131. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS  Google Scholar 

  132. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    ADS  Google Scholar 

  133. Chen, G. et al. Gate-tunable Mott insulator in trilayer graphene-boron nitride Moiré superlattice. Preprint at arXiv https://arxiv.org/abs/1803.01985 (2018).

  134. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Preprint at arXiv https://arxiv.org/abs/1808.07865 (2018).

  135. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    ADS  MathSciNet  Google Scholar 

  136. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    ADS  Google Scholar 

  137. Zunger, A., Katzir, A. & Halperin, A. Optical properties of hexagonal boron nitride. Phys. Rev. B 13, 5560–5573 (1976).

    ADS  Google Scholar 

  138. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    ADS  Google Scholar 

  139. Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016).

    ADS  Google Scholar 

  140. Li, J. I. A. et al. Evidence for pairing states of composite fermions in double-layer graphene. Preprint at arXiv https://arxiv.org/abs/1901.03480 (2019).

Download references

Acknowledgements

B.J.L. acknowledges the support of the US Army Research Office under grant W911NF-14-1-0653. Research reviewed by P.J.-H. and Q.M. has been supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under award number DE-SC0001088, US Air Force Office of Scientific Research (AFOSR) grant FA9550-16-1-0382, the National Science Foundation under award DMR-1405221, the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative through grant GBMF4541 and the US DOE, Office of BES, Division of Materials Sciences and Engineering, under award number DE-SC0001819.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Brian J. LeRoy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yankowitz, M., Ma, Q., Jarillo-Herrero, P. et al. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat Rev Phys 1, 112–125 (2019). https://doi.org/10.1038/s42254-018-0016-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-018-0016-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing