Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Attosecond imaging of molecules using high harmonic spectroscopy

Abstract

The availability of attosecond-duration extreme ultraviolet or soft X-ray light sources has opened up new fields of research in atomic and molecular physics. These pulses can be as short as 50 as, fast enough to freeze the motion of electrons within molecules, to resolve how electrons rearrange themselves after the removal of an electron and to study electron–electron correlations. Gas-phase molecules can be aligned in space using short laser pulses, permitting the measurement of molecular parameters in the molecular frame. Aligned molecules can be photoionized using a train of attosecond pulses, enabling the complete characterization of the partial waves making up the photoelectron angular distributions. Using a recolliding electron in the high harmonic process allows complex transition dipole matrix elements to be recorded (including their amplitude and phase) in the molecular frame. High harmonic spectroscopy makes it possible to image molecular orbitals and for unimolecular chemical reactions to be followed with femtosecond resolution. For example, the behaviour around conical intersections can be probed. Charge migration within molecules can be observed with sub-femtosecond resolution.

Key points

  • High harmonic spectroscopy uses femtosecond lasers to probe the valence electrons in gas-phase molecules. It records the transition dipole matrix elements upon recombination from a set of continuum wavefunctions. This is effectively time-reversed photoionization in which the highest occupied molecular orbitals are isolated.

  • A weaker laser can create rotational revivals that lead to an ensemble of molecules that are aligned in space and are field-free. This allows measuring of the dipole matrix elements in the molecular frame.

  • At the sub-optical-cycle level, on the attosecond timescale, electron–electron correlations can be revealed.

  • Simple chemical reactions such as unimolecular dissociation and the behaviour around conical intersections can be followed on a femtosecond timescale using pump–probe techniques.

  • Charge migration following removal of an electron from a molecule can be visualized with sub-femtosecond time resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High harmonic spectra from atoms and molecules reveal details of the electronic structure of valence orbitals.
Fig. 2: Tomographic imaging of molecular orbitals reveal the structure of a single orbital wavefunction.
Fig. 3: High harmonic spectra from aligned CO2 molecules driven by an infrared laser.
Fig. 4: High harmonic spectroscopy using a transient excitation grating reveals nuclear dynamics.
Fig. 5: Reconstructed electron dynamics following ionization of iodoacetylene.

Similar content being viewed by others

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B 4, 595 (1987).

    ADS  Google Scholar 

  2. Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    ADS  Google Scholar 

  3. Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

    ADS  Google Scholar 

  4. Scrinzi, A., Ivanov, M. Y., Kienberger, R. & Villeneuve, D. M. Attosecond physics. J. Phys. B. At. Mol. Opt. Phys. 39, R1–R37 (2006).

    Google Scholar 

  5. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Google Scholar 

  6. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  7. Haessler, S., Caillat, J. & Salières, P. Self-probing of molecules with high harmonic generation. J. Phys. B. At. Mol. Opt. Phys. 44, 203001 (2011).

    ADS  Google Scholar 

  8. Gallmann, L., Cirelli, C. & Keller, U. Attosecond science: recent highlights and future trends. Annu. Rev. Phys. Chem. 63, 447–469 (2012).

    ADS  Google Scholar 

  9. Leone, S. R. et al. What will it take to observe processes in ‘real time’? Nat. Photonics 8, 162 (2014).

    ADS  Google Scholar 

  10. Azoury, D. et al. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment. Nat. Commun. 8, 1453 (2017).

    ADS  Google Scholar 

  11. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  12. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Google Scholar 

  13. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Google Scholar 

  14. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Google Scholar 

  15. Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

    ADS  Google Scholar 

  16. Villeneuve, D. M., Hockett, P., Vrakking, M. J. J. & Niikura, H. Coherent imaging of an attosecond electron wave packet. Science 356, 1150–1153 (2017).

    Google Scholar 

  17. Kling, M. F. & Vrakking, M. J. J. Attosecond electron dynamics. Annu. Rev. Phys. Chem. 59, 463–492 (2008).

    ADS  Google Scholar 

  18. Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).

    ADS  Google Scholar 

  19. Trabattoni, A. et al. Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond time resolution. Phys. Rev. X 5, 041053 (2015).

    Google Scholar 

  20. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Google Scholar 

  21. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Google Scholar 

  22. Kobayashi, Y. et al. Selectivity of electronic coherence and attosecond ionization delays in strong-field double ionization. Phys. Rev. Lett. 120, 233201 (2018).

    ADS  Google Scholar 

  23. Sabbar, M. et al. Resonance effects in photoemission time delays. Phys. Rev. Lett. 115, 133001 (2015).

    ADS  Google Scholar 

  24. Hockett, P., Frumker, E., Villeneuve, D. M. & Corkum, P. B. Time delay in molecular photoionization. J. Phys. B. At. Mol. Opt. Phys. 49, 095602 (2016).

    ADS  Google Scholar 

  25. Huppert, M., Jordan, I., Baykusheva, D., von Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    ADS  Google Scholar 

  26. Vos, J. et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science 360, 1326–1330 (2018).

    ADS  Google Scholar 

  27. Baykusheva, D. & Wörner, H. J. Theory of attosecond delays in molecular photoionization. J. Chem. Phys. 146, 124306 (2017).

    ADS  Google Scholar 

  28. Schoun, S. B. et al. Precise access to the molecular-frame complex recombination dipole through high-harmonic spectroscopy. Phys. Rev. Lett. 118, 033201 (2017).

    ADS  Google Scholar 

  29. Gallmann, L. et al. Photoemission and photoionization time delays and rates. Struct. Dyn. 4, 061502 (2017).

    Google Scholar 

  30. Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    ADS  Google Scholar 

  31. Isinger, M. et al. Photoionization in the time and frequency domain. Science 362, eaao7043 (2017).

    Google Scholar 

  32. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  Google Scholar 

  33. Le, A.-T., Lucchese, R. R. & Lin, C. D. Quantitative rescattering theory of high-order harmonic generation for polyatomic molecules. Phys. Rev. A. 87, 063406 (2013).

    ADS  Google Scholar 

  34. Frolov, M. V. et al. Analytic description of the high-energy plateau in harmonic generation by atoms: can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901–4 (2009).

    ADS  Google Scholar 

  35. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic formulae for high harmonic generation. J. Phys. B 42, 035601 (2009).

    ADS  Google Scholar 

  36. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    ADS  Google Scholar 

  37. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Google Scholar 

  38. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    ADS  MathSciNet  Google Scholar 

  39. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).

    ADS  Google Scholar 

  40. Balcou, P., Salières, P., L’Huillier, A. & Lewenstein, M. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces. Phys. Rev. A. 55, 3204–3210 (1997).

    ADS  Google Scholar 

  41. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    ADS  Google Scholar 

  42. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443 (2006).

    ADS  Google Scholar 

  43. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Google Scholar 

  44. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photonics 4, 875–879 (2010).

    ADS  Google Scholar 

  45. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    ADS  Google Scholar 

  46. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Google Scholar 

  47. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    ADS  Google Scholar 

  48. Cooper, J. W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 128, 681 (1962).

    ADS  Google Scholar 

  49. Samson, J. A. R. & Stolte, W. C. Precision measurements of the total photoionization cross-sections of He, Ne, Ar, Kr, and Xe. J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002).

    Google Scholar 

  50. Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    ADS  Google Scholar 

  51. Higuet, J. et al. High-order harmonic spectroscopy of the Cooper minimum in argon: experimental and theoretical study. Phys. Rev. A. 83, 053401 (2011).

    ADS  Google Scholar 

  52. Zhou, J., Peatross, J., Murnane, M. M., Kapteyn, H. C. & Christov, I. P. Enhanced high-harmonic generation using 25 fs laser pulses. Phys. Rev. Lett. 76, 752–755 (1996).

    ADS  Google Scholar 

  53. Minemoto, S. et al. Retrieving photorecombination cross sections of atoms from high-order harmonic spectra. Phys. Rev. A. 78, 061402 (2008).

    ADS  Google Scholar 

  54. Wong, M. C. H. et al. High harmonic spectroscopy of the Cooper minimum in molecules. Phys. Rev. Lett. 110, 033006 (2013).

    ADS  Google Scholar 

  55. Wahlström, C.-G. et al. High-order harmonic generation in rare gases with an intense short-pulse laser. Phys. Rev. A. 48, 4709–4720 (1993).

    ADS  Google Scholar 

  56. Farrell, J. P. et al. Influence of phase matching on the Cooper minimum in Ar high-order harmonic spectra. Phys. Rev. A. 83, 023420 (2011).

    ADS  Google Scholar 

  57. Becker, U. et al. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A. 39, 3902–3911 (1989).

    ADS  Google Scholar 

  58. Amusia, M. Y. & Connerade, J.-P. The theory of collective motion probed by light. Rep. Prog. Phys. 63, 41 (2000).

    ADS  Google Scholar 

  59. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 7, 464–467 (2011).

    Google Scholar 

  60. Pabst, S. & Santra, R. Strong-field many-body physics and the giant enhancement in the high-harmonic spectrum of xenon. Phys. Rev. Lett. 111, 233005 (2013).

    ADS  Google Scholar 

  61. Mairesse, Y., Levesque, J., Dudovich, N., Corkum, P. B. & Villeneuve, D. M. High harmonic generation from aligned molecules — amplitude and polarization. J. Mod. Opt. 55, 2591–2602 (2008).

    ADS  Google Scholar 

  62. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nat. Lond. 435, 470–474 (2005).

    ADS  Google Scholar 

  63. Stapelfeldt, H. & Seideman, T. Aligning molecules witht strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    ADS  Google Scholar 

  64. Rosca-Pruna, F. & Vrakking, M. J. J. Experimental onservation of revival structure in picosecond laer-induced alignment of I2. Phys. Rev. Lett. 87, 153902 (2001).

    ADS  Google Scholar 

  65. Yun, H., Yun, S. J., Lee, G. H. & Nam, C. H. High-harmonic spectroscopy of aligned molecules. J. Phys. B. At. Mol. Opt. Phys. 50, 022001 (2017).

    ADS  Google Scholar 

  66. Ramakrishna, S. & Seideman, T. Information content of high harmonics generated from aligned molecules. Phys. Rev. Lett. 99, 113901 (2007).

    ADS  Google Scholar 

  67. Torres, R. et al. Probing orbital structure of polyatomic molecules by high-order harmonic Generation. Phys. Rev. Lett. 98, 203007 (2007).

    ADS  Google Scholar 

  68. Zhou, X. X., Tong, X. M., Zhao, Z. X. & Lin, C. D. Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules. Phys. Rev. A. 71, 061801 (2005).

    ADS  Google Scholar 

  69. De, S. et al. Field-free orientation of CO molecules by femtosecond two-color laser fields. Phys. Rev. Lett. 103, 153002 (2009).

    ADS  Google Scholar 

  70. Kraus, P. M., Baykusheva, D. & Wörner, H. J. Two-pulse field-free orientation reveals anisotropy of molecular shape Resonance. Phys. Rev. Lett. 113, 023001 (2014).

    ADS  Google Scholar 

  71. Kraus, P. M. et al. Observation of laser-induced electronic structure in oriented polyatomic molecules. Nat. Commun. 6, 7039 (2015).

    Google Scholar 

  72. Frumker, E. et al. Oriented rotational wave-packet dynamics studies via high harmonic generation. Phys. Rev. Lett. 109, 113901 (2012).

    ADS  Google Scholar 

  73. Frumker, E. et al. Probing polar molecules with high harmonic spectroscopy. Phys. Rev. Lett. 109, 233904 (2012).

    ADS  Google Scholar 

  74. Kraus, P. M., Rupenyan, A. & Wörner, H. J. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics. Phys. Rev. Lett. 109, 233903 (2012).

    ADS  Google Scholar 

  75. Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett. 88, 183903 (2002).

    ADS  Google Scholar 

  76. Hay, N. et al. High-order harmonic generation in laser-aligned molecules. Phys. Rev. A. 65, 053805 (2002).

    ADS  Google Scholar 

  77. Vozzi, C. et al. Controlling two-center interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005).

    ADS  Google Scholar 

  78. Torres, R. et al. Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A. 81, 051802 (2010).

    ADS  Google Scholar 

  79. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  80. Worner, H. J., Bertrand, J. B., Hockett, P., Corkum, P. B. & Villeneuve, D. M. Controlling the interference of multiple molecular orbitals in high-harmonic generation. Phys. Rev. Lett. 104, 233904 (2010).

    ADS  Google Scholar 

  81. Jin, C., Le, A.-T. & Lin, C. D. Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO2. Phys. Rev. A. 83, 053409 (2011).

    ADS  Google Scholar 

  82. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2. Science 322, 1232–1235 (2008).

    ADS  Google Scholar 

  83. Le, A.-T., Lucchese, R. R. & Lin, C. D. Uncovering multiple orbitals influence in high harmonic generation from aligned N2. J. Phys. B. At. Mol. Opt. Phys. 42, 211001 (2009).

    ADS  Google Scholar 

  84. Lee, G. H. et al. Alignment dependence of high harmonics contributed from HOMO and HOMO-1 orbitals of N2 molecules. J. Phys. B. At. Mol. Opt. Phys. 43, 205602 (2010).

    ADS  Google Scholar 

  85. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  86. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Google Scholar 

  87. Zhou, X. et al. Molecular recollision interferometry in high harmonic generation. Phys. Rev. Lett. 100, 073902 (2008).

    ADS  Google Scholar 

  88. Bertrand, J. B., Wörner, H. J., Salières, P., Villeneuve, D. M. & Corkum, P. B. Linked attosecond phase interferometry for molecular frame measurements. Nat. Phys. 9, 174–178 (2013).

    Google Scholar 

  89. Wagner, N. L. et al. Monitoring molecular dynamics using coherent electrons from high harmonic generation. Proc. Natl. Acad. Sci. U.S.A. 103, 13279–13285 (2006).

    ADS  Google Scholar 

  90. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Guhr, M. High-order harmonic phase in molecular nitrogen. Phys. Rev. A. 80, 033412 (2009).

    ADS  Google Scholar 

  91. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343 (2012).

    ADS  Google Scholar 

  92. Niikura, H., Dudovich, N., Villeneuve, D. M. & Corkum, P. B. Mapping molecular orbital symmetry on high-order harmonic generation spectrum using two-color laser fields. Phys. Rev. Lett. 105, 053003 (2010).

    ADS  Google Scholar 

  93. Niikura, H., Wörner, H. J., Villeneuve, D. M. & Corkum, P. B. Probing the spatial structure of a molecular attosecond electron wave packet using shaped recollision trajectories. Phys. Rev. Lett. 107, 093004 (2011).

    ADS  Google Scholar 

  94. Kim, I. J. et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 94, 243901 (2005).

    ADS  Google Scholar 

  95. Raz, O., Pedatzur, O., Bruner, B. D. & Dudovich, N. Spectral caustics in attosecond science. Nat. Photonics 6, 170–173 (2012).

    ADS  Google Scholar 

  96. Yun, H. et al. Resolving multiple molecular orbitals using two-dimensional high-harmonic spectroscopy. Phys. Rev. Lett. 114, 153901 (2015).

    ADS  Google Scholar 

  97. Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902–4 (2009).

    ADS  Google Scholar 

  98. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    ADS  Google Scholar 

  99. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics 8, 543–549 (2014).

    ADS  Google Scholar 

  100. Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photonics 9, 99–105 (2015).

    ADS  Google Scholar 

  101. Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl. Acad. Sci. U.S.A. 112, 14206–14211 (2015).

    ADS  Google Scholar 

  102. Gariepy, G. et al. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113, 153901 (2014).

    ADS  Google Scholar 

  103. Kong, F. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970 (2017).

    ADS  Google Scholar 

  104. Zhai, C. et al. Diffractive molecular-orbital tomography. Phys. Rev. A. 95, 033420 (2017).

    ADS  Google Scholar 

  105. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).

    Google Scholar 

  106. Boutu, W. et al. Coherent control of attosecond emission from aligned molecules. Nat. Phys. 4, 545–549 (2008).

    Google Scholar 

  107. Vozzi, C. et al. Generalized molecular orbital tomography. Nat. Phys. 7, 822–826 (2011).

    Google Scholar 

  108. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

    ADS  Google Scholar 

  109. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006).

    ADS  Google Scholar 

  110. Lan, P. et al. Attosecond probing of nuclear dynamics with trajectory-resolved high-harmonic spectroscopy. Phys. Rev. Lett. 119, 033201 (2017).

    ADS  Google Scholar 

  111. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    ADS  Google Scholar 

  112. Worner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    ADS  Google Scholar 

  113. Ruf, H. et al. High-harmonic transient grating spectroscopy of NO2 electronic relaxation. J. Chem. Phys. 137, 224303 (2012).

    ADS  Google Scholar 

  114. Kraus, P. M. et al. High-harmonic probing of electronic coherence in dynamically aligned molecules. Phys. Rev. Lett. 111, 243005 (2013).

    ADS  Google Scholar 

  115. Wörner, H. J. et al. Charge migration and charge transfer in molecular systems. Struct. Dyn. 4, 061508 (2017).

    Google Scholar 

  116. Calegari, F. et al. Charge migration induced by attosecond pulses in bio-relevant molecules. J. Phys. B. At. Mol. Opt. Phys. 49, 142001 (2016).

    ADS  Google Scholar 

  117. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photonics 8, 195 (2014).

    ADS  Google Scholar 

  118. Belshaw, L. et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).

    Google Scholar 

  119. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336 (2014).

    ADS  Google Scholar 

  120. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    ADS  Google Scholar 

  121. Kraus, P. M. & Wörner, H. J. Perspectives of attosecond spectroscopy for the understanding of fundamental electron correlations. Angew. Chem. Int. Ed. 57, 5228–5247 (2018).

    Google Scholar 

  122. Marceau, C. et al. Molecular frame reconstruction using time-domain photoionization interferometry. Phys. Rev. Lett. 119, 083401 (2017).

    ADS  Google Scholar 

  123. Beck, A. R., Neumark, D. M. & Leone, S. R. Probing ultrafast dynamics with attosecond transient absorption. Chem. Phys. Lett. 624, 119–130 (2015).

    ADS  Google Scholar 

  124. Chatterley, A. S., Lackner, F., Neumark, D. M., Leone, S. R. & Gessner, O. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy. Phys. Chem. Chem. Phys. 18, 14644–14653 (2016).

    Google Scholar 

  125. Warrick, E. R., Cao, W., Neumark, D. M. & Leone, S. R. Probing the dynamics of Rydberg and valence states of molecular nitrogen with attosecond transient absorption spectroscopy. J. Phys. Chem. A 120, 3165–3174 (2016).

    Google Scholar 

  126. Attar, A. R., Bhattacherjee, A. & Leone, S. R. Direct observation of the transition-state region in the photodissociation of CH3I by femtosecond extreme ultraviolet transient absorption spectroscopy. J. Phys. Chem. Lett. 6, 5072–5077 (2015).

    Google Scholar 

  127. Cheng, Y. et al. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy. Phys. Rev. A. 94, 023403 (2016).

    ADS  Google Scholar 

  128. Reduzzi, M. et al. Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets. J. Phys. B. At. Mol. Opt. Phys. 49, 065102 (2016).

    ADS  Google Scholar 

  129. Cao, W., Warrick, E. R., Fidler, A., Leone, S. R. & Neumark, D. M. Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing. Phys. Rev. A. 97, 023401 (2018).

    ADS  Google Scholar 

  130. Warrick, E. R. et al. Attosecond transient absorption spectroscopy of molecular nitrogen: vibrational coherences in the b1Σ+ u state. Chem. Phys. Lett. 683, 408–415 (2017).

    ADS  Google Scholar 

  131. Liao, C.-T. et al. Probing autoionizing states of molecular oxygen with XUV transient absorption: electronic-symmetry-dependent line shapes and laser-induced modifications. Phys. Rev. A. 95, 043427 (2017).

    ADS  Google Scholar 

  132. Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Google Scholar 

  133. Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).

    ADS  Google Scholar 

  134. Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

    ADS  Google Scholar 

  135. Sabbar, M. et al. State-resolved attosecond reversible and irreversible dynamics in strong optical fields. Nat. Phys. 13, 472–478 (2017).

    Google Scholar 

  136. Chini, M. et al. Subcycle ac stark shift of helium excited states probed with isolated attosecond pulses. Phys. Rev. Lett. 109, 073601 (2012).

    ADS  Google Scholar 

  137. Teichmann, S. M., Silva, F., Cousin, S. L., Hemmer, M. & Biegert, J. 0.5-keV Soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2016).

    ADS  Google Scholar 

  138. Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    ADS  Google Scholar 

  139. Popmintchev, D. et al. Near- and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys. Rev. Lett. 120, 093002 (2018).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Marceau, C. & Villeneuve, D.M. Attosecond imaging of molecules using high harmonic spectroscopy. Nat Rev Phys 1, 144–155 (2019). https://doi.org/10.1038/s42254-018-0015-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-018-0015-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing