Entanglement certification from theory to experiment

Abstract

Entanglement is an important resource for quantum technologies. There are many ways quantum systems can be entangled, ranging from the two-qubit case to entanglement in high dimensions or between many parties. Consequently, many entanglement quantifiers and classifiers exist, corresponding to different operational paradigms and mathematical techniques. However, for most quantum systems, exactly quantifying the amount of entanglement is extremely demanding, if at all possible. Furthermore, it is difficult to experimentally control and measure complex quantum states. Therefore, there are various approaches to experimentally detect and certify entanglement when exact quantification is not an option. The applicability and performance of these methods strongly depend on the assumptions regarding the involved quantum states and measurements, in short, on the available prior information about the quantum system. In this Review, we discuss the most commonly used quantifiers of entanglement and survey the state-of-the-art detection and certification methods, including their respective underlying assumptions, from both a theoretical and an experimental point of view.

Key points

  • Entanglement detection and certification are of high significance for ensuring the security of quantum communication, improving the sensitivity of sensing devices, and benchmarking devices for quantum computation and simulation.

  • Recent years have seen continuous progress in the development of tools for entanglement certification and an increase in control over a wide variety of experimental setups suitable for entanglement creation.

  • Goals for the development of entanglement detection techniques are device-independence and assumption-free certification.

  • Current challenges include the extension of well-understood methods for two qubits to many-body and/or high-dimensional quantum systems and their application in entanglement experiments with ions, atoms and photons.

  • An important focus of recent research is the reduction in the number of measurements required for entanglement certification to cope with increasing system dimensions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  MATH  Google Scholar 

  2. 2.

    Bell, J. S. On the Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964).

    MathSciNet  Google Scholar 

  3. 3.

    Bouwmeester, D. et al. Experimental Quantum Teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  4. 4.

    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Poppe, A. et al. Practical Quantum Key Distribution with Polarization-Entangled Photons. Opt. Express 12, 3865–3871 (2004).

    ADS  Google Scholar 

  6. 6.

    Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007).

    Google Scholar 

  7. 7.

    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

    ADS  Google Scholar 

  8. 8.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  Google Scholar 

  9. 9.

    Giustina, M. et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 115, 250401 (2015).

    ADS  Google Scholar 

  10. 10.

    Shalm, L. K. et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 115, 250402 (2015).

    ADS  Google Scholar 

  11. 11.

    Werner, R. F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).

    ADS  MATH  Google Scholar 

  12. 12.

    Barrett, J. Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65, 042302 (2002).

    ADS  MathSciNet  Google Scholar 

  13. 13.

    Acín, A., Gisin, N. & Toner, B. Grothendieck’s constant and local models for noisy entangled quantum states. Phys. Rev. A 73, 062105 (2006).

    ADS  MathSciNet  Google Scholar 

  14. 14.

    Vértesi, T. More efficient Bell inequalities for Werner states. Phys. Rev. A 78, 032112 (2008).

    ADS  MathSciNet  Google Scholar 

  15. 15.

    Hirsch, F., Quintino, M. T., Vértesi, T., Navascués, M. & Brunner, N. Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant K G(3). Quantum 1, 3 (2017).

    Google Scholar 

  16. 16.

    Bruß, D. Characterizing Entanglement. J. Math. Phys. 43, 4237–4251 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  17. 17.

    Plenio, M. B. & Virmani, S. An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Eltschka, C. & Siewert, J. Quantifying entanglement resources. J. Phys. A: Math. Theor. 47, 424005 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  19. 19.

    Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  20. 20.

    Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS  MathSciNet  Google Scholar 

  21. 21.

    Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of Quantum Key Distribution Using d-Level Systems. Phys. Rev. Lett. 88, 127902 (2002).

    ADS  Google Scholar 

  22. 22.

    Barrett, J., Kent, A. & Pironio, S. Maximally Nonlocal and Monogamous Quantum Correlations. Phys. Rev. Lett. 97, 170409 (2006).

    ADS  Google Scholar 

  23. 23.

    Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G. & Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006).

    ADS  Google Scholar 

  24. 24.

    Huber, M. & Pawlowski, M. Weak randomness in device independent quantum key distribution and the advantage of using high dimensional entanglement. Phys. Rev. A 88, 032309 (2013).

    ADS  Google Scholar 

  25. 25.

    Jozsa, R. & Linden, N. On the Role of Entanglement in Quantum-Computational Speed-Up. Proc. Roy. Soc. A Math. Phys. 459, 2011–2032 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  26. 26.

    Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  27. 27.

    Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

    ADS  Google Scholar 

  28. 28.

    Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992).

    ADS  Google Scholar 

  30. 30.

    Huelga, S. F. et al. On the Improvement of Frequency Stardards with Quantum Entanglement. Phys. Rev. Lett. 79, 3865 (1997).

    ADS  Google Scholar 

  31. 31.

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum Metrology. Phys. Rev. Lett. 96, 010401 (2006).

    ADS  MathSciNet  Google Scholar 

  32. 32.

    Maccone, L. Intuitive reason for the usefulness of entanglement in quantum metrology. Phys. Rev. A 88, 042109 (2013).

    ADS  Google Scholar 

  33. 33.

    Friis, N. et al. Flexible resources for quantum metrology. New J. Phys. 19, 063044 (2017).

    ADS  Google Scholar 

  34. 34.

    Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A: Math. Theor. 47, 424006 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  35. 35.

    Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018).

    MathSciNet  Google Scholar 

  36. 36.

    Andersen, U. L., Leuchs, G. & Silberhorn, C. Continuous-variable quantum information processing. Laser Photonics Rev. 4, 337–354 (2010).

    ADS  Google Scholar 

  37. 37.

    Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    ADS  Google Scholar 

  38. 38.

    Adesso, G., Ragy, S. & Lee, A. R. Continuous Variable Quantum Information: Gaussian States and Beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014).

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Nielsen, M. A. Conditions for a Class of Entanglement Transformations. Phys. Rev. Lett. 83, 436 (1999).

    ADS  Google Scholar 

  40. 40.

    Chitambar, E., Leung, D., Mančinska, L., Ozols, M. & Winter, A. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask). Commun. Math. Phys. 328, 303–326 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  41. 41.

    Gurvits, L. Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69, 448–484 (2004).

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Gharibian, S. Strong NP-hardness of the quantum separability problem. Quantum Inf. Comput. 10, 343–360 (2010).

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Nielsen, M. A. & Vidal, G. Majorization and the interconversion of bipartite states. Quant. Inf. Comput. 1, 76–93 (2001).

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Bennett, C. H., Di Vincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  45. 45.

    Wootters, W. K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245 (1998).

    ADS  MATH  Google Scholar 

  46. 46.

    Hayden, P. M., Horodecki, M. & Terhal, B. M. The asymptotic entanglement cost of preparing a quantum state. J. Phys. A: Math. Gen. 34, 6891–6898 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  47. 47.

    Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating Partial Entanglement by Local Operations. Phys. Rev. A 53, 2046–2052 (1996).

    ADS  Google Scholar 

  48. 48.

    Bennett, C. H. et al. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  Google Scholar 

  49. 49.

    Hastings, M. B. A Counterexample to Additivity of Minimum Output Entropy. Nat. Phys. 5, 255–257 (2009).

    Google Scholar 

  50. 50.

    Terhal, B. M. & Horodecki, P. Schmidt number for density matrices. Phys. Rev. A 61, 040301 (2000).

    ADS  MathSciNet  Google Scholar 

  51. 51.

    Altepeter, J. B., James, D. F. V. & Kwiat, P. G. in Quantum State Estimation (eds Paris, M. & Řeháček) 113–145 (Springer, Berlin, Heidelberg, 2004).

  52. 52.

    Ansmann, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006).

    ADS  MathSciNet  Google Scholar 

  53. 53.

    Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  54. 54.

    Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 25 (1996).

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Horodecki, M., Horodecki, P. & Horodecki, R. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? Phys. Rev. Lett. 80, 5239 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  56. 56.

    Pankowski, Ł., Piani, M., Horodecki, M. & Horodecki, P. A Few Steps More Towards NPT Bound Entanglement. IEEE Trans. Inf. Theory 56, 4085–4100 (2010).

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Watrous, J. Many Copies May Be Required for Entanglement Distillation. Phys. Rev. Lett. 93, 010502 (2004).

    ADS  Google Scholar 

  58. 58.

    Plenio, M. B. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex. Phys. Rev. Lett. 95, 090503 (2005).

    ADS  MathSciNet  Google Scholar 

  59. 59.

    Vidal, G. Entanglement monotones. J. Mod. Opt. 47, 355–376 (2000).

    ADS  MathSciNet  Google Scholar 

  60. 60.

    Eisert, J. Entanglement in quantum information theory. Thesis, Univ. Potsdam (2001).

  61. 61.

    Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    ADS  Google Scholar 

  62. 62.

    Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003).

    ADS  MathSciNet  Google Scholar 

  63. 63.

    Gühne, O., Mechler, M., Tóth, G. & Adam, P. Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A 74, 010301 (2006).

    ADS  Google Scholar 

  64. 64.

    Zhang, C.-J., Nha, H., Zhang, Y.-S. & Guo, G.-C. Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012324 (2010).

    ADS  Google Scholar 

  65. 65.

    Schwonnek, R., Dammeier, L. & Werner, R. F. State-Independent Uncertainty Relations and Entanglement Detection in Noisy Systems. Phys. Rev. Lett. 119, 170404 (2017).

    ADS  Google Scholar 

  66. 66.

    Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989).

    ADS  Google Scholar 

  67. 67.

    Lange, K. et al. Entanglement between two spatially separated atomic modes. Science 360, 416–418 (2018).

    ADS  MathSciNet  Google Scholar 

  68. 68.

    Reid, M. D. et al. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  69. 69.

    Gühne, O., Hyllus, P., Gittsovich, O. & Eisert, J. Covariance Matrices and the Separability Problem. Phys. Rev. Lett. 99, 130504 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  70. 70.

    Gittsovich, O., Gühne, O., Hyllus, P. & Eisert, J. Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A 78, 052319 (2008).

    ADS  MATH  Google Scholar 

  71. 71.

    Gühne, O., Reimpell, M. & Werner, R. F. Estimating Entanglement Measures in Experiments. Phys. Rev. Lett. 98, 110502 (2007).

    ADS  Google Scholar 

  72. 72.

    Eisert, J., Brandão, F. G. S. L. & Audenaert, K. M. R. Quantitative entanglement witnesses. New J. Phys. 9, 46 (2007).

    ADS  MathSciNet  Google Scholar 

  73. 73.

    Sørensen, A. & Mølmer, K. Entanglement and Extreme Spin Squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001).

    ADS  Google Scholar 

  74. 74.

    Vitagliano, G. et al. Entanglement and extreme spin squeezing of unpolarized states. New J. Phys. 19, 013027 (2017).

    ADS  Google Scholar 

  75. 75.

    Vitagliano, G. et al. Entanglement and extreme planar spin squeezing. Phys. Rev. A 97, 020301 (2018).

    ADS  MathSciNet  Google Scholar 

  76. 76.

    Marty, O., Cramer, M., Vitagliano, G., Tóth, G. & Plenio, M. B. Multiparticle entanglement criteria for nonsymmetric collective variances. Preprint at https://arxiv.org/abs/1708.06986 (2017).

  77. 77.

    Ma, Z.-H. et al. Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011).

    ADS  Google Scholar 

  78. 78.

    Wu, J.-Y., Kampermann, H., Brusß, D., Klöckl, C. & Huber, M. Determining lower bounds on a measure of multipartite entanglement from few local observables. Phys. Rev. A 86, 022319 (2012).

    ADS  Google Scholar 

  79. 79.

    Huber, M. & de Vicente, J. I. Structure of Multidimensional Entanglement in Multipartite Systems. Phys. Rev. Lett. 110, 030501 (2013).

    ADS  Google Scholar 

  80. 80.

    Bertlmann, R. A. & Krammer, P. Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  81. 81.

    Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    Google Scholar 

  82. 82.

    Blume-Kohout, R., Yin, J. O. S. & van Enk, S. J. Entanglement Verification with Finite Data. Phys. Rev. Lett. 105, 170501 (2010).

    ADS  Google Scholar 

  83. 83.

    Flammia, S. T. & Liu, Y.-K. Direct Fidelity Estimation from Few Pauli Measurements. Phys. Rev. Lett. 106, 230501 (2011).

    ADS  Google Scholar 

  84. 84.

    Aolita, L., Gogolin, C., Kliesch, M. & Eisert, J. Reliable quantum certification for photonic quantum technologies. Nat. Commun. 6, 8498 (2015).

    ADS  Google Scholar 

  85. 85.

    Schwemmer, C. et al. Systematic Errors in Current Quantum State Tomography Tools. Phys. Rev. Lett. 114, 080403 (2015).

    ADS  Google Scholar 

  86. 86.

    Ferrie, C. & Blume-Kohout, R. Maximum likelihood quantum state tomography is inadmissible. Preprint at https://arxiv.org/abs/1808.01072 (2018).

  87. 87.

    Pallister, S., Linden, N. & Montanaro, A. Optimal Verification of Entangled States with Local Measurements. Phys. Rev. Lett. 120, 170502 (2018).

    ADS  MathSciNet  Google Scholar 

  88. 88.

    Tiranov, A. et al. Quantification of multidimensional entanglement stored in a crystal. Phys. Rev. A 96, 040303 (2017).

    ADS  Google Scholar 

  89. 89.

    Martin, A. et al. Quantifying Photonic High-Dimensional Entanglement. Phys. Rev. Lett. 118, 110501 (2017).

    ADS  Google Scholar 

  90. 90.

    Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017).

    ADS  Google Scholar 

  91. 91.

    Schneeloch, J. & Howland, G. A. Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correlations. Phys. Rev. A 97, 042338 (2018).

    ADS  Google Scholar 

  92. 92.

    Erker, P., Krenn, M. & Huber, M. Quantifying high dimensional entanglement with two mutually unbiased bases. Quantum 1, 22 (2017).

    Google Scholar 

  93. 93.

    Tasca, D. S., Sánchez, P. & Walborn, S. P. & Rudnicki, Ł. Mutual Unbiasedness in Coarse-Grained Continuous Variables. Phys. Rev. Lett. 120, 040403 (2018).

    ADS  Google Scholar 

  94. 94.

    Piani, M. & Mora, C. E. Class of positive-partial-transpose bound entangled states associated with almost any set of pure entangled states. Phys. Rev. A 75, 012305 (2007).

    ADS  Google Scholar 

  95. 95.

    Gour, G. Family of concurrence monotones and its applications. Phys. Rev. A 71, 012318 (2005).

    ADS  MathSciNet  Google Scholar 

  96. 96.

    Sentís, G., Eltschka, C., Gühne, O., Huber, M. & Siewert, J. Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States. Phys. Rev. Lett. 117, 190502 (2016).

    ADS  Google Scholar 

  97. 97.

    Kraft, T., Ritz, C., Brunner, N., Huber, M. & Gühne, O. Characterizing Genuine Multilevel Entanglement. Phys. Rev. Lett. 120, 060502 (2018).

    ADS  Google Scholar 

  98. 98.

    Guo, Y. et al. Experimental witness of genuine high-dimensional entanglement. Phys. Rev. A 97, 062309 (2018).

    ADS  Google Scholar 

  99. 99.

    Szarek, S. J., Werner, E. & Życzkowski, K. How often is a random quantum state k-entangled? J. Phys. A: Math. Theor. 44, 045303 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  100. 100.

    Huber, M., Lami, L., Lancien, C. & Müller-Hermes, A. High-Dimensional Entanglement in states with positive partial transposition. Phys. Rev. Lett. 121, 200503 (2018).

  101. 101.

    Sanpera, A., Bruß, D. & Lewenstein, M. Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63, 050301 (2001).

    ADS  Google Scholar 

  102. 102.

    Miatto, F. M. et al. Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. Eur. Phys. J. D. 66, 178 (2012).

    ADS  Google Scholar 

  103. 103.

    Allen, L., Beijersbergen, M., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Google Scholar 

  104. 104.

    Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes. Philos. Trans. R. Soc. A 375, 20150442 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  105. 105.

    Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell Inequalities for Arbitrarily High-Dimensional Systems. Phys. Rev. Lett. 88, 040404 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  106. 106.

    Vaziri, A., Weihs, G. & Zeilinger, A. Experimental Two-Photon, Three-Dimensional Entanglement for Quantum Communication. Phys. Rev. Lett. 89, 240401 (2002).

    ADS  Google Scholar 

  107. 107.

    Krenn, M. et al. Generation and confirmation of a (100×100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. U. S. A. 111, 6243–6247 (2014).

    ADS  Google Scholar 

  108. 108.

    Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).

    Google Scholar 

  109. 109.

    O’Sullivan, M., Ali Khan, I., Boyd, R. W. & Howell, J. Pixel Entanglement: Experimental Realization of Optically Entangled d = 3 and d = 6 Qudits. Phys. Rev. Lett. 94, 220501 (2005).

    ADS  Google Scholar 

  110. 110.

    Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).

    Google Scholar 

  111. 111.

    Moreau, P.-A., Devaux, F. & Lantz, E. Einstein-Podolsky-Rosen Paradox in Twin Images. Phys. Rev. Lett. 113, 160401 (2014).

    ADS  Google Scholar 

  112. 112.

    Howland, G. A., Knarr, S. H., Schneeloch, J., Lum, D. J. & Howell, J. C. Compressively Characterizing High-Dimensional Entangled States with Complementary, Random Filtering. Phys. Rev. X 6, 021018 (2016).

    Google Scholar 

  113. 113.

    Tasca, D. S. et al. Testing for entanglement with periodic coarse graining. Phys. Rev. A 97, 042312 (2018).

    ADS  Google Scholar 

  114. 114.

    Law, C. K. & Eberly, J. H. Analysis and Interpretation of High Transverse Entanglement in Optical Parametric Down Conversion. Phys. Rev. Lett. 92, 127903 (2004).

    ADS  Google Scholar 

  115. 115.

    Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009).

    ADS  Google Scholar 

  116. 116.

    Sansoni, L. et al. Polarization Entangled State Measurement on a Chip. Phys. Rev. Lett. 105, 200503 (2010).

    ADS  Google Scholar 

  117. 117.

    Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015).

    Google Scholar 

  118. 118.

    Salavrakos, A. et al. Bell Inequalities Tailored to Maximally Entangled States. Phys. Rev. Lett. 119, 040402 (2017).

    ADS  MathSciNet  Google Scholar 

  119. 119.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS  MathSciNet  Google Scholar 

  120. 120.

    de Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Creating high dimensional time-bin entanglement using mode-locked lasers. Quantum Inf. Comput. 2, 425–433 (2002).

    MATH  Google Scholar 

  121. 121.

    Thew, R. T., Acín, A., Zbinden, H. & Gisin, N. Bell-Type Test of Energy-Time Entangled Qutrits. Phys. Rev. Lett. 93, 010503 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  122. 122.

    Bessire, B., Bernhard, C., Feurer, T. & Stefanov, A. Versatile shaper-assisted discretization of energy–time entangled photons. New J. Phys. 16, 033017 (2014).

    ADS  Google Scholar 

  123. 123.

    Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    ADS  Google Scholar 

  124. 124.

    Barreiro, J., Langford, N., Peters, N. & Kwiat, P. Generation of Hyperentangled Photon Pairs. Phys. Rev. Lett. 95, 260501 (2005).

    ADS  Google Scholar 

  125. 125.

    Anderson, B. E., Sosa-Martinez, H., Riofrío, C. A., Deutsch, I. H. & Jessen, P. S. Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System. Phys. Rev. Lett. 114, 240401 (2015).

    ADS  Google Scholar 

  126. 126.

    Kumar, K. S., Vepsäläinen, A., Danilin, S. & Paraoanu, G. S. Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016).

    ADS  Google Scholar 

  127. 127.

    Wang, Y. et al. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. ACS Nano 9, 7769–7774 (2015).

    Google Scholar 

  128. 128.

    Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    ADS  Google Scholar 

  129. 129.

    Epping, M., Kampermann, H., Macchiavello, C. & Bruß, D. Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017).

    ADS  MathSciNet  Google Scholar 

  130. 130.

    Pivoluska, M., Huber, M. & Malik, M. Layered quantum key distribution. Phys. Rev. A 97, 032312 (2018).

    ADS  Google Scholar 

  131. 131.

    Ribeiro, J., Murta, G. & Wehner, S. Fully device-independent conference key agreement. Phys. Rev. A 97, 022307 (2018).

    ADS  Google Scholar 

  132. 132.

    Bäuml, S. & Azuma, K. Fundamental limitation on quantum broadcast networks. Quantum Sci. Technol. 2, 024004 (2017).

    ADS  Google Scholar 

  133. 133.

    Tóth, G. Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012).

    ADS  Google Scholar 

  134. 134.

    Scott, A. J. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004).

    ADS  Google Scholar 

  135. 135.

    Bruß, D. & Macchiavello, C. Multipartite entanglement in quantum algorithms. Phys. Rev. A 83, 052313 (2011).

    ADS  Google Scholar 

  136. 136.

    Raussendorf, R. & Briegel, H. J. A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  Google Scholar 

  137. 137.

    Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  138. 138.

    Rossi, M., Huber, M., Bruß, D. & Macchiavello, C. Quantum hypergraph states. New J. Phys. 15, 113022 (2013).

    ADS  MathSciNet  Google Scholar 

  139. 139.

    Tóth, G. & Gühne, O. Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005).

    ADS  Google Scholar 

  140. 140.

    Audenaert, K. M. R. & Plenio, M. B. Entanglement on mixed stabilizer states: normal forms and reduction procedures. New J. Phys. 7, 170 (2005).

    ADS  Google Scholar 

  141. 141.

    Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).

    ADS  Google Scholar 

  142. 142.

    Ma, J., Wang, X., Sun, C. P. & Nori, F. Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011).

    ADS  MathSciNet  Google Scholar 

  143. 143.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Google Scholar 

  144. 144.

    Song, C. et al. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. Phys. Rev. Lett. 119, 180511 (2017).

    ADS  Google Scholar 

  145. 145.

    Gühne, O., Tóth, G. & Briegel, H. J. Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005).

    Google Scholar 

  146. 146.

    Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

  147. 147.

    Håstad, J. Tensor rank is NP-complete. J. Algorithm 11, 644–654 (1990).

    MathSciNet  MATH  Google Scholar 

  148. 148.

    Christandl, M., Jensen, A. K. & Zuiddam, J. Tensor rank is not multiplicative under the tensor product. Lin. Alg. Appl. 543, 125–139 (2018).

    MathSciNet  MATH  Google Scholar 

  149. 149.

    Chen, L., Chitambar, E., Duan, R., Ji, Z. & Winter, A. Tensor Rank and Stochastic Entanglement Catalysis for Multipartite Pure States. Phys. Rev. Lett. 105, 200501 (2010).

    ADS  Google Scholar 

  150. 150.

    Cadney, J., Huber, M., Linden, N. & Winter, A. Inequalities for the ranks of multipartite quantum states. Lin. Alg. Appl. 452, 153–171 (2014).

    MathSciNet  MATH  Google Scholar 

  151. 151.

    Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).

    ADS  MathSciNet  Google Scholar 

  152. 152.

    Acín, A., Bruß, D., Lewenstein, M. & Sanpera, A. Classification of Mixed Three-Qubit States. Phys. Rev. Lett. 87, 040401 (2001).

    ADS  MathSciNet  Google Scholar 

  153. 153.

    Gour, G., Kraus, B. & Wallach, N. R. Almost all multipartite qubit quantum states have trivial stabilizer. J. Math. Phys. 58, 092204 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  154. 154.

    de Vicente, J. I., Spee, C. & Kraus, B. Maximally Entangled Set of Multipartite Quantum States. Phys. Rev. Lett. 111, 110502 (2013).

    Google Scholar 

  155. 155.

    Schwaiger, K., Sauerwein, D., Cuquet, M., de Vicente, J. I. & Kraus, B. Operational Multipartite Entanglement Measures. Phys. Rev. Lett. 115, 150502 (2015).

    ADS  Google Scholar 

  156. 156.

    Verstraete, F., Dehaene, J., De Moor, B. & Verschelde, H. Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002).

    ADS  MathSciNet  Google Scholar 

  157. 157.

    Verstraete, F., Dehaene, J. & De Moor, B. Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A 68, 012103 (2003).

    ADS  MathSciNet  Google Scholar 

  158. 158.

    Helwig, W., Cui, W., Latorre, J. I., Riera, A. & Lo, H.-K. Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012).

    ADS  Google Scholar 

  159. 159.

    Huber, F., Gühne, O. & Siewert, J. Absolutely Maximally Entangled States of Seven Qubits Do Not Exist. Phys. Rev. Lett. 118, 200502 (2017).

    ADS  Google Scholar 

  160. 160.

    Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement. Phys. Rev. A 61, 052306 (2000).

    ADS  Google Scholar 

  161. 161.

    Osborne, T. J. & Verstraete, F. General Monogamy Inequality for Bipartite Qubit Entanglement. Phys. Rev. Lett. 96, 220503 (2006).

    ADS  Google Scholar 

  162. 162.

    Ou, Y.-C. Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75, 034305 (2007).

    ADS  Google Scholar 

  163. 163.

    Streltsov, A., Adesso, G., Piani, M. & Bruß, D. Are General Quantum Correlations Monogamous? Phys. Rev. Lett. 109, 050503 (2012).

    ADS  Google Scholar 

  164. 164.

    Lancien, C. et al. Should Entanglement Measures be Monogamous or Faithful? Phys. Rev. Lett. 117, 060501 (2016).

    ADS  Google Scholar 

  165. 165.

    Christandl, M. & Winter, A. “squashed entanglement”: An additive entanglement measure. J. Math. Phys. 45, 829–840 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  166. 166.

    Osterloh, A. & Siewert, J. Constructing n-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005).

    ADS  Google Scholar 

  167. 167.

    Gour, G. & Wallach, N. R. Classification of Multipartite Entanglement of All Finite Dimensionality. Phys. Rev. Lett. 111, 060502 (2013).

    ADS  Google Scholar 

  168. 168.

    Jungnitsch, B., Moroder, T. & Gühne, O. Taming Multiparticle Entanglement. Phys. Rev. Lett. 106, 190502 (2011).

    ADS  Google Scholar 

  169. 169.

    Huber, M. & Sengupta, R. Witnessing Genuine Multipartite Entanglement with Positive Maps. Phys. Rev. Lett. 113, 100501 (2014).

    ADS  Google Scholar 

  170. 170.

    Lancien, C., Gühne, O., Sengupta, R. & Huber, M. Relaxations of separability in multipartite systems: Semidefinite programs, witnesses and volumes. J. Phys. A: Math. Theor. 48, 505302 (2015).

    MathSciNet  MATH  Google Scholar 

  171. 171.

    Clivaz, F., Huber, M., Lami, L. & Murta, G. Genuine-multipartite entanglement criteria based on positive maps. J. Math. Phys. 58, 082201 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  172. 172.

    Bourennane, M. et al. Experimental Detection of Multipartite Entanglement using Witness Operators. Phys. Rev. Lett. 92, 087902 (2004).

    ADS  Google Scholar 

  173. 173.

    Hein, M. et al. in Quantum Computers, Algorithms and Chaos. Vol. 162 (eds Casati, G., Shepelyansky, D. L., Zoller, P. & Benenti, G.) 115–218 (IOS Press, 2005).

    MathSciNet  Google Scholar 

  174. 174.

    Bergmann, M. & Gühne, O. Entanglement criteria for Dicke states. J. Phys. A: Math. Theor. 46, 385304 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  175. 175.

    Tóth, G. & Gühne, O. Entanglement and Permutational Symmetry. Phys. Rev. Lett. 102, 170503 (2009).

    ADS  MathSciNet  Google Scholar 

  176. 176.

    Gühne, O. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010).

    ADS  MATH  Google Scholar 

  177. 177.

    Huber, M., Mintert, F., Gabriel, A. & Hiesmayr, B. C. Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States. Phys. Rev. Lett. 104, 210501 (2010).

    ADS  Google Scholar 

  178. 178.

    Tóth, G., Moroder, T. & Gühne, O. Evaluating Convex Roof Entanglement Measures. Phys. Rev. Lett. 114, 160501 (2015).

    ADS  Google Scholar 

  179. 179.

    Sperling, J. & Vogel, W. Multipartite Entanglement Witnesses. Phys. Rev. Lett. 111, 110503 (2013).

    ADS  Google Scholar 

  180. 180.

    Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    ADS  Google Scholar 

  181. 181.

    Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    ADS  Google Scholar 

  182. 182.

    Sørensen, A., Duan, L.-M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63–66 (2001).

    ADS  Google Scholar 

  183. 183.

    Tóth, G., Knapp, C., Gühne, O. & Briegel, H. J. Optimal Spin Squeezing Inequalities Detect Bound Entanglement in Spin Models. Phys. Rev. Lett. 99, 250405 (2007).

    ADS  Google Scholar 

  184. 184.

    Tóth, G., Knapp, C., Gühne, O. & Briegel, H. J. Spin squeezing and entanglement. Phys. Rev. A 79, 042334 (2009).

    ADS  MATH  Google Scholar 

  185. 185.

    Vitagliano, G., Hyllus, P., Egusquiza, I. L. & Tóth, G. Spin Squeezing Inequalities for Arbitrary Spin. Phys. Rev. Lett. 107, 240502 (2011).

    ADS  Google Scholar 

  186. 186.

    Vitagliano, G., Apellaniz, I., Egusquiza, I. L. & Tóth, G. Spin squeezing and entanglement for an arbitrary spin. Phys. Rev. A 89, 032307 (2014).

    ADS  Google Scholar 

  187. 187.

    Tura, J. et al. Detecting nonlocality in many-body quantum states. Science 344, 1256–1258 (2014).

    ADS  MATH  Google Scholar 

  188. 188.

    Lücke, B. et al. Detecting Multiparticle Entanglement of Dicke States. Phys. Rev. Lett. 112, 155304 (2014).

    ADS  Google Scholar 

  189. 189.

    He, Q. Y., Peng, S.-G., Drummond, P. D. & Reid, M. D. Planar quantum squeezing and atom interferometry. Phys. Rev. A 84, 022107 (2011).

    ADS  Google Scholar 

  190. 190.

    Pezzè, L. & Smerzi, A. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Phys. Rev. Lett. 102, 100401 (2009).

    ADS  MathSciNet  Google Scholar 

  191. 191.

    Hyllus, P. et al. Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012).

    ADS  Google Scholar 

  192. 192.

    Gessner, M., Pezzè, L. & Smerzi, A. Resolution-enhanced entanglement detection. Phys. Rev. A 95, 032326 (2017).

    ADS  Google Scholar 

  193. 193.

    Vollbrecht, K. G. H. & Cirac, J. I. Delocalized Entanglement of Atoms in Optical Lattices. Phys. Rev. Lett. 98, 190502 (2007).

    ADS  Google Scholar 

  194. 194.

    Cramer, M., Plenio, M. B. & Wunderlich, H. Measuring Entanglement in Condensed Matter Systems. Phys. Rev. Lett. 106, 020401 (2011).

    ADS  Google Scholar 

  195. 195.

    Dowling, M. R., Doherty, A. C. & Bartlett, S. D. Energy as an entanglement witness for quantum many-body systems. Phys. Rev. A 70, 062113 (2004).

    ADS  Google Scholar 

  196. 196.

    Tóth, G. Entanglement witnesses in spin models. Phys. Rev. A 71, 010301 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  197. 197.

    Wieśniak, M., Vedral, V. & Brukner, Č. Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005).

    ADS  Google Scholar 

  198. 198.

    Brukner, Č., Vedral, V. & Zeilinger, A. Crucial role of quantum entanglement in bulk properties of solids. Phys. Rev. A 73, 012110 (2006).

    ADS  Google Scholar 

  199. 199.

    Hauke, P., Heyl, M., Tagliacozzo, L. & Zoller, P. Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778 (2016).

    Google Scholar 

  200. 200.

    Cramer, M. et al. Spatial entanglement of bosons in optical lattices. Nat. Commun. 4, 2161 (2013).

    Google Scholar 

  201. 201.

    Marty, O. et al. Quantifying entanglement with scattering experiments. Phys. Rev. B 89, 125117 (2014).

    ADS  Google Scholar 

  202. 202.

    Fukuhara, T. et al. Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain. Phys. Rev. Lett. 115, 035302 (2015).

    ADS  Google Scholar 

  203. 203.

    Dai, H.-N. et al. Generation and detection of atomic spin entanglement in optical lattices. Nat. Phys. 12, 783–787 (2016).

    Google Scholar 

  204. 204.

    Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015).

    ADS  Google Scholar 

  205. 205.

    Gross, D., Flammia, S. T. & Eisert, J. Most Quantum States Are Too Entangled To Be Useful As Computational Resources. Phys. Rev. Lett. 102, 190501 (2009).

    ADS  MathSciNet  Google Scholar 

  206. 206.

    Terhal, B. M. Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  207. 207.

    Shalm, L. K. et al. Three-photon energy–time entanglement. Nat. Phys. 9, 19–22 (2013).

    Google Scholar 

  208. 208.

    Żukowski, M., Zeilinger, A. & Weinfurter, H. Entangling Photons Radiated by Independent Pulsed Sources. Ann. NY Acad. Sci. 755, 91–102 (1995).

    ADS  Google Scholar 

  209. 209.

    Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).

    ADS  Google Scholar 

  210. 210.

    Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  211. 211.

    Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000).

    ADS  MATH  Google Scholar 

  212. 212.

    Wang, X.-L. et al. Experimental Ten-Photon Entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    ADS  Google Scholar 

  213. 213.

    Graffitti, F., Barrow, P., Proietti, M., Kundys, D. & Fedrizzi, A. Independent high-purity photons created in domain-engineered crystals. Optica 5, 514–517 (2018).

    Google Scholar 

  214. 214.

    Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

  215. 215.

    Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett. 88, 257901 (2002).

  216. 216.

    Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental GHZ Entanglement beyond Qubits. Nat. Photonics 12, 759–764 (2018).

  217. 217.

    Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated Search for new Quantum Experiments. Phys. Rev. Lett. 116, 090405 (2016).

    ADS  Google Scholar 

  218. 218.

    Melnikov, A. A. et al. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. U. S. A. 115, 1221–1226 (2018).

    ADS  Google Scholar 

  219. 219.

    Friis, N. et al. Observation of Entangled States of a Fully Controlled 20-Qubit System. Phys. Rev. X 8, 021012 (2018).

    Google Scholar 

  220. 220.

    Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    ADS  Google Scholar 

  221. 221.

    Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    ADS  Google Scholar 

  222. 222.

    Monz, T. et al. 14-Qubit Entanglement: Creation and Coherence. Phys. Rev. Lett. 106, 130506 (2011).

    ADS  Google Scholar 

  223. 223.

    Kaufmann, H. et al. Scalable Creation of Long-Lived Multipartite Entanglement. Phys. Rev. Lett. 119, 150503 (2017).

    ADS  MathSciNet  Google Scholar 

  224. 224.

    Cramer, M. & Plenio, M. B. Reconstructing quantum states efficiently. Preprint at https://arxiv.org/abs/1002.3780 (2010).

  225. 225.

    Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).

    Google Scholar 

  226. 226.

    Flammia, S. T., Gross, D., Bartlett, S. D. & Somma, R. Heralded Polynomial-Time Quantum State Tomography. Preprint at https://arxiv.org/abs/1002.3839 (2010).

  227. 227.

    Lanyon, B. P. et al. Efficient tomography of a quantum many-body system. Nat. Phys. 13, 1158–1162 (2017).

    Google Scholar 

  228. 228.

    Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).

    ADS  Google Scholar 

  229. 229.

    Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Google Scholar 

  230. 230.

    Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 360, 413–416 (2018).

    ADS  MathSciNet  Google Scholar 

  231. 231.

    Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed States in a Bose-Einstein Condensate. Science 291, 2386–2389 (2001).

    ADS  Google Scholar 

  232. 232.

    Esteve, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose-Einstein condensate. Nature 455, 1216–1219 (2008).

    ADS  Google Scholar 

  233. 233.

    Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    ADS  Google Scholar 

  234. 234.

    Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    ADS  Google Scholar 

  235. 235.

    Ockeloen, C. F., Schmied, R., Riedel, M. F. & Treutlein, P. Quantum Metrology with a Scanning Probe Atom Interferometer. Phys. Rev. Lett. 111, 143001 (2013).

    ADS  Google Scholar 

  236. 236.

    Berrada, T. et al. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates. Nat. Commun. 4, 2077 (2013).

    Google Scholar 

  237. 237.

    Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates. Phys. Rev. Lett. 113, 103004 (2014).

    ADS  Google Scholar 

  238. 238.

    Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of Spin Squeezing via Continuous Quantum Nondemolition Measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

    ADS  Google Scholar 

  239. 239.

    Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl. Acad. Sci. U. S. A. 106, 10960–10965 (2009).

    ADS  Google Scholar 

  240. 240.

    Sewell, R. J. et al. Ultrasensitive Atomic Spin Measurements with a Nonlinear Interferometer. Phys. Rev. X 4, 021045 (2014).

    Google Scholar 

  241. 241.

    Inoue, R., Tanaka, S.-I.-R., Namiki, R., Sagawa, T. & Takahashi, Y. Unconditional Quantum-Noise Suppression via Measurement-Based Quantum Feedback. Phys. Rev. Lett. 110, 163602 (2013).

    ADS  Google Scholar 

  242. 242.

    Chen, Z., Bohnet, J. G., Sankar, S. R., Dai, J. & Thompson, J. K. Conditional Spin Squeezing of a Large Ensemble via the Vacuum Rabi Splitting. Phys. Rev. Lett. 106, 133601 (2011).

    ADS  Google Scholar 

  243. 243.

    Zhang, H. et al. Collective State Measurement of Mesoscopic Ensembles with Single-Atom Resolution. Phys. Rev. Lett. 109, 133603 (2012).

    ADS  Google Scholar 

  244. 244.

    Bohnet, J. G. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nat. Photon 8, 731–736 (2014).

    ADS  Google Scholar 

  245. 245.

    Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    ADS  MATH  Google Scholar 

  246. 246.

    Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic Squeezed States with Collective Measurements and Feedback. Phys. Rev. Lett. 116, 093602 (2016).

    ADS  Google Scholar 

  247. 247.

    Fernholz, T. et al. Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement. Phys. Rev. Lett. 101, 073601 (2008).

    ADS  Google Scholar 

  248. 248.

    Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    ADS  Google Scholar 

  249. 249.

    Kuzmich, A., Mølmer, K. & Polzik, E. S. Spin Squeezing in an Ensemble of Atoms Illuminated with Squeezed Light. Phys. Rev. Lett. 79, 4782–4785 (1997).

    ADS  Google Scholar 

  250. 250.

    McConnell, R., Zhang, H., Hu, J., Ćuk, S. & Vuletić, V. Entanglement with negative wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015).

    ADS  Google Scholar 

  251. 251.

    Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS  Google Scholar 

  252. 252.

    Behbood, N. et al. Generation of Macroscopic Singlet States in a Cold Atomic Ensemble. Phys. Rev. Lett. 113, 093601 (2014).

    ADS  Google Scholar 

  253. 253.

    Colangelo, G., Ciurana, F. M., Bianchet, L. C., Sewell, R. J. & Mitchell, M. W. Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature 543, 525–528 (2017).

    ADS  Google Scholar 

  254. 254.

    Peise, J. et al. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles. Nat. Commun. 6, 8984 (2015).

    Google Scholar 

  255. 255.

    Hoang, T. M. et al. Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition. Proc. Natl. Acad. Sci. U. S. A. 113, 9475–9479 (2016).

    ADS  Google Scholar 

  256. 256.

    Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  257. 257.

    Engelsen, N. J., Krishnakumar, R., Hosten, O. & Kasevich, M. A. Bell Correlations in Spin-Squeezed States of 500 000 Atoms. Phys. Rev. Lett. 118, 140401 (2017).

    ADS  Google Scholar 

  258. 258.

    Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 360, 409–413 (2018).

    ADS  MathSciNet  Google Scholar 

  259. 259.

    Wootters, W. K. & Fields, B. D. Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989).

    ADS  MathSciNet  Google Scholar 

  260. 260.

    Asadian, A., Erker, P., Huber, M. & Klöckl, C. Heisenberg-Weyl Observables: Bloch vectors in phase space. Phys. Rev. A 94, 010301 (2016).

    ADS  Google Scholar 

  261. 261.

    Tóth, G. & Gühne, O. Detecting Genuine Multipartite Entanglement with Two Local Measurements. Phys. Rev. Lett. 94, 060501 (2005).

    ADS  Google Scholar 

  262. 262.

    Laskowski, W., Markiewicz, M., Paterek, T. & Żukowski, M. Correlation-tensor criteria for genuine multiqubit entanglement. Phys. Rev. A 84, 062305 (2011).

    ADS  Google Scholar 

  263. 263.

    Tiranov, A. et al. Temporal Multimode Storage of Entangled Photon Pairs. Phys. Rev. Lett. 117, 240506 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Austrian Science Fund (FWF) through the START project Y879-N27 and from the joint Czech–Austrian project MultiQUEST (I3053-N27 and GF17-33780L). N.F. acknowledges support from the FWF through project P 31339-N27. M.M. acknowledges support from the QuantERA ERA-NET co-fund (FWF Project I3773-N36) and from the UK Engineering and Physical Sciences Research Council (EPSRC) (EP/P024114/1). G.V. acknowledges support from the FWF through the Lise-Meitner project M 2462-N27.

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation, revision, and editing.

Corresponding author

Correspondence to Marcus Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friis, N., Vitagliano, G., Malik, M. et al. Entanglement certification from theory to experiment. Nat Rev Phys 1, 72–87 (2019). https://doi.org/10.1038/s42254-018-0003-5

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing