Atomic force microscopy-based mechanobiology

Abstract

Mechanobiology emerges at the crossroads of medicine, biology, biophysics and engineering and describes how the responses of proteins, cells, tissues and organs to mechanical cues contribute to development, differentiation, physiology and disease. The grand challenge in mechanobiology is to quantify how biological systems sense, transduce, respond and apply mechanical signals. Over the past three decades, atomic force microscopy (AFM) has emerged as a key platform enabling the simultaneous morphological and mechanical characterization of living biological systems. In this Review, we survey the basic principles, advantages and limitations of the most common AFM modalities used to map the dynamic mechanical properties of complex biological samples to their morphology. We discuss how mechanical properties can be directly linked to function, which has remained a poorly addressed issue. We outline the potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super-resolution microscopy, the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state.

Key points

  • The versatile functions of biological systems ranging from molecules, cells and cellular systems to living organisms are governed by their mechanical properties and ability to sense mechanical cues and respond to them.

  • Atomic force microscopy (AFM)-based approaches provide multifunctional nanotools to measure a wide variety of mechanical properties of living systems and to apply to them well-defined mechanical cues.

  • AFM allows us to apply and measure forces from the piconewton to the micronewton range on spatially defined areas with sizes ranging from the sub-nanometre to several tens of micrometres.

  • Mechanical parameters characterized by AFM include force, pressure, tension, adhesion, friction, elasticity, viscosity and energy dissipation.

  • The mechanical parameters of complex biological systems can be structurally mapped, with a spatial resolution ranging from millimetres to sub-nanometres and at kinetic ranges from hours to milliseconds.

  • AFM can be combined with various complementary methods to characterize a multitude of mechanical, functional and morphological properties and responses of complex biological systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Key operation modes of atomic force microscopy to quantitatively map the mechanical properties of biological systems.
Fig. 2: Probing, quantifying and mapping the mechanical properties of biological systems.
Fig. 3: Mapping the mechanical properties of cellular systems.
Fig. 4: Mapping the mechanical properties of microorganisms, viruses and blebbing cell membranes.
Fig. 5: High-resolution imaging and mapping of the mechanical properties of isolated membranes, proteins, fibrils and nucleic acids.

References

  1. 1.

    Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Google Scholar 

  2. 2.

    Howard, J., Grill, S. W. & Bois, J. S. Turing’s next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 392–398 (2011).

    Google Scholar 

  3. 3.

    Brugues, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690 (2014).

    Google Scholar 

  4. 4.

    Petridou, N. I., Spiro, Z. & Heisenberg, C. P. Multiscale force sensing in development. Nat. Cell Biol. 19, 581–588 (2017).

    Google Scholar 

  5. 5.

    Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012).

    Google Scholar 

  6. 6.

    Crest, J., Diz-Munoz, A., Chen, D. Y., Fletcher, D. A. & Bilder, D. Organ sculpting by patterned extracellular matrix stiffness. eLife 6, e24958 (2017).

    Google Scholar 

  7. 7.

    Heisenberg, C. P. & Bellaiche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Google Scholar 

  8. 8.

    Diz-Munoz, A., Fletcher, D. A. & Weiner, O. D. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23, 47–53 (2013).

    Google Scholar 

  9. 9.

    Cattin, C. J. et al. Mechanical control of mitotic progression in single animal cells. Proc. Natl Acad. Sci. USA 112, 11258–11263 (2015). This paper shows that mechanical confinement by the atomic force microscope cantilever can be used to slow down and stop cells progressing through mitosis.

    ADS  Google Scholar 

  10. 10.

    Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Google Scholar 

  11. 11.

    Roos, W. H., Bruinsma, R. & Wuite, G. J. L. Physical virology. Nat. Phys. 6, 733–743 (2010).

    Google Scholar 

  12. 12.

    Mateu, M. G. Structure and Physics of Viruses (Springer, Netherlands, 2013).

    Google Scholar 

  13. 13.

    Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    ADS  Google Scholar 

  14. 14.

    Bieling, P. et al. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks. Cell 164, 115–127 (2016).

    Google Scholar 

  15. 15.

    Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Google Scholar 

  16. 16.

    Puchner, E. M. & Gaub, H. E. Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19, 605–614 (2009).

    Google Scholar 

  17. 17.

    Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Google Scholar 

  18. 18.

    Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Google Scholar 

  19. 19.

    Alsteens, D. et al. Atomic force microscopy-based characterization and design of biointerfaces. Nat. Rev. Mater. 2, 17008 (2017).

    ADS  Google Scholar 

  20. 20.

    Dufrene, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    ADS  Google Scholar 

  21. 21.

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). This classical paper introduces the AFM technique.

    ADS  Google Scholar 

  22. 22.

    Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006).

    ADS  Google Scholar 

  23. 23.

    Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013). The authors combine AFM with advanced microscopy to explain that the sponge-like behaviour of cells relates to a viscous fluid (cytosol) flowing through a porous elastic matrix (cytoskeleton, organelles and macromolecules).

    ADS  Google Scholar 

  24. 24.

    Hecht, F. M. et al. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter 11, 4584–4591 (2015).

    ADS  Google Scholar 

  25. 25.

    Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011). This paper shows that to facilitate the drastic shape changes required for mitosis, animal cells generate hydrostatic pressure, which is balanced by a contracting actomyosin cortex.

    ADS  Google Scholar 

  26. 26.

    Ramanathan, S. P. et al. Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat. Cell Biol. 17, 148–159 (2015).

    Google Scholar 

  27. 27.

    Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001). This paper represents a milestone in cellular rheology, as it introduces the notion of timescale-invariant mechanical properties and the power-law behaviour of cells.

    ADS  Google Scholar 

  28. 28.

    Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nat. Mater. 5, 636–640 (2006).

    ADS  Google Scholar 

  29. 29.

    Fischer-Friedrich, E. et al. Rheology of the active cell cortex in mitosis. Biophys. J. 111, 589–600 (2016).

    ADS  Google Scholar 

  30. 30.

    Sen, S., Subramanian, S. & Discher, D. E. Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys. J. 89, 3203–3213 (2005).

    Google Scholar 

  31. 31.

    Fischer-Friedrich, E., Hyman, A. A., Julicher, F., Muller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    ADS  Google Scholar 

  32. 32.

    Vorselen, D., Kooreman, E. S., Wuite, G. J. & Roos, W. H. Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips. Sci. Rep. 6, 36972 (2016).

    ADS  Google Scholar 

  33. 33.

    Mahaffy, R. E., Shih, C. K., MacKintosh, F. C. & Kas, J. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000).

    ADS  Google Scholar 

  34. 34.

    Toyoda, Y. et al. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nat. Commun. 8, 1266 (2017). This paper presents a genome-scale AFM-based screen that discovers unexpected genes that animal cells use to round for mitosis.

    ADS  Google Scholar 

  35. 35.

    Stewart, M. P. et al. Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 60, 186–194 (2013).

    Google Scholar 

  36. 36.

    Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    ADS  Google Scholar 

  37. 37.

    Dufrene, Y. F., Martinez-Martin, D., Medalsy, I., Alsteens, D. & Muller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    Google Scholar 

  38. 38.

    Eisenberg, B. R. & Mobley, B. A. Size changes in single muscle fibers during fixation and embedding. Tissue Cell 7, 383–387 (1975).

    Google Scholar 

  39. 39.

    Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Google Scholar 

  40. 40.

    Hoh, J. H. & Schoenenberger, C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105–1114 (1994).

    Google Scholar 

  41. 41.

    Meredith, J. E., Fazeli, B. & Schwartz, M. A. The extracellular-matrix as a cell-survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    Google Scholar 

  42. 42.

    Sader, J. E. & White, L. Theoretical analysis of the static deflection of plates for atomic force microscope applications. J. Appl. Phys. 74, 1–9 (1993).

    ADS  Google Scholar 

  43. 43.

    Butt, H. J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    ADS  Google Scholar 

  44. 44.

    te Riet, J. et al. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy 111, 1659–1669 (2011).

    Google Scholar 

  45. 45.

    Schillers, H. et al. Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Sci. Rep. 7, 5117 (2017). This paper introduces an approach to reducing the variability in extracting the elastic moduli of soft samples and reports on its validation in various laboratories to establish it as a standard method.

    ADS  Google Scholar 

  46. 46.

    Wegmann, S., Medalsy, I. D., Mandelkow, E. & Muller, D. J. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proc. Natl Acad. Sci. USA 110, E313–E321 (2013).

    ADS  Google Scholar 

  47. 47.

    Vorselen, D., MacKintosh, F. C., Roos, W. H. & Wuite, G. J. Competition between bending and internal pressure governs the mechanics of fluid nanovesicles. ACS Nano 11, 2628–2636 (2017).

    Google Scholar 

  48. 48.

    Hertz, H. Über die Berührung fester elastischer Körper [German]. Reine Angew. Math. 92, 156–171 (1881).

    MATH  Google Scholar 

  49. 49.

    Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Johnson, K. L., Kendall, K. & Roberts, A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971).

    ADS  Google Scholar 

  51. 51.

    Rigato, A., Miyagi, A., Scheuring, S. & Rico, F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 13, 771–775 (2017).

    Google Scholar 

  52. 52.

    Hassan, A. E. et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998).

    Google Scholar 

  53. 53.

    Morse, D. C. Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys. Rev. E 58, R1237–R1240 (1998).

    ADS  Google Scholar 

  54. 54.

    Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995–1036 (2014).

    ADS  Google Scholar 

  55. 55.

    Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002). This paper introduces a helpful approach to reliably extract the mechanical properties of spread cells, as it remedies the insufficient treatment of their finite thickness within the Hertzian (and related) model.

    Google Scholar 

  56. 56.

    Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    ADS  Google Scholar 

  57. 57.

    Notbohm, J., Poon, B. & Ravichandran, G. Analysis of nanoindentation of soft materials with an atomic force microscope. J. Mater. Res. 27, 229–237 (2012).

    ADS  Google Scholar 

  58. 58.

    Friedrichs, J. et al. A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60, 169–178 (2013).

    Google Scholar 

  59. 59.

    Hinterdorfer, P. & Dufrene, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Google Scholar 

  60. 60.

    Snijder, J., Ivanovska, I. L., Baclayon, M., Roos, W. H. & Wuite, G. J. Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43, 1343–1350 (2012).

    Google Scholar 

  61. 61.

    Medalsy, I. D. & Muller, D. J. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7, 2642–2650 (2013).

    Google Scholar 

  62. 62.

    Efremov, Y. M., Wang, W. H., Hardy, S. D., Geahlen, R. L. & Raman, A. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Sci. Rep. 7, 1541 (2017). This paper introduces a powerful approach to extracting elastic and viscous parameters from FD curves.

    ADS  Google Scholar 

  63. 63.

    Zink, M. & Grubmuller, H. Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 96, 1350–1363 (2009).

    ADS  Google Scholar 

  64. 64.

    Schoeler, C. et al. Mapping mechanical force propagation through biomolecular complexes. Nano Lett. 15, 7370–7376 (2015).

    ADS  Google Scholar 

  65. 65.

    Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6, 383–387 (2009).

    Google Scholar 

  66. 66.

    Beicker, K., O’Brien, E. T. 3rd, Falvo, M. R. & Superfine, R. Vertical light sheet enhanced side-view imaging for AFM cell mechanics studies. Sci. Rep. 8, 1504 (2018).

    ADS  Google Scholar 

  67. 67.

    Curry, N., Ghezali, G., Kaminski Schierle, G. S., Rouach, N. & Kaminski, C. F. Correlative STED and atomic force microscopy on live astrocytes reveals plasticity of cytoskeletal structure and membrane physical properties during polarized migration. Front. Cell Neurosci. 11, 104 (2017).

    Google Scholar 

  68. 68.

    Freikamp, A., Cost, A. L. & Grashoff, C. The piconewton force awakens: quantifying mechanics in cells. Trends Cell Biol. 26, 838–847 (2016).

    Google Scholar 

  69. 69.

    Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Google Scholar 

  70. 70.

    Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    Google Scholar 

  71. 71.

    Nekimken, A. L. et al. Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Lab. Chip 17, 1116–1127 (2017).

    Google Scholar 

  72. 72.

    Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Google Scholar 

  73. 73.

    Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    ADS  Google Scholar 

  74. 74.

    Guo, J., Wang, Y., Sachs, F. & Meng, F. Actin stress in cell reprogramming. Proc. Natl Acad. Sci. USA 111, E5252–E5261 (2014).

    ADS  Google Scholar 

  75. 75.

    Freikamp, A., Mehlich, A., Klingner, C. & Grashoff, C. Investigating piconewton forces in cells by FRET-based molecular force microscopy. J. Struct. Biol. 197, 37–42 (2017).

    Google Scholar 

  76. 76.

    Krieg, M., Dunn, A. R. & Goodman, M. B. Mechanical control of the sense of touch by beta-spectrin. Nat. Cell Biol. 16, 224–233 (2014).

    Google Scholar 

  77. 77.

    O’Callaghan, R., Job, K. M., Dull, R. O. & Hlady, V. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L353–L360 (2011).

    Google Scholar 

  78. 78.

    Morris, C. E. & Homann, U. Cell surface area regulation and membrane tension. J. Membr. Biol. 179, 79–102 (2001).

    Google Scholar 

  79. 79.

    Cartagena-Rivera, A. X., Logue, J. S., Waterman, C. M. & Chadwick, R. S. Actomyosin cortical mechanical properties in nonadherent cells determined by atomic force microscopy. Biophys. J. 110, 2528–2539 (2016).

    ADS  Google Scholar 

  80. 80.

    Janmey, P. A. & Weitz, D. A. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29, 364–370 (2004).

    Google Scholar 

  81. 81.

    Laurent, V. M. et al. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. Biomed. Eng. 31, 1263–1278 (2003).

    Google Scholar 

  82. 82.

    Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 1, 783–807 (2011).

    Google Scholar 

  83. 83.

    Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    ADS  Google Scholar 

  84. 84.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Google Scholar 

  85. 85.

    Engler, A. J., Rehfeldt, F., Sen, S. & Discher, D. E. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83, 521–545 (2007).

    Google Scholar 

  86. 86.

    Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    Google Scholar 

  87. 87.

    Moeendarbary, E. et al. The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017).

    ADS  Google Scholar 

  88. 88.

    Hardie, R. C. & Franze, K. Photomechanical responses in Drosophila photoreceptors. Science 338, 260–263 (2012).

    ADS  Google Scholar 

  89. 89.

    Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).

    Google Scholar 

  90. 90.

    Zhang, T., Vavylonis, D., Durachko, D. M. & Cosgrove, D. J. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat. Plants 3, 17056 (2017).

    Google Scholar 

  91. 91.

    Lopez, J. I., Kang, I., You, W. K., McDonald, D. M. & Weaver, V. M. In situ force mapping of mammary gland transformation. Integr. Biol. 3, 910–921 (2011).

    Google Scholar 

  92. 92.

    Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol 7, 757–765 (2012).

    ADS  Google Scholar 

  93. 93.

    Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007). This work introduces AFM for the mechanical phenotyping of cancer cells derived from patients.

    ADS  Google Scholar 

  94. 94.

    Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

    ADS  Google Scholar 

  95. 95.

    Staunton, J. R., Doss, B. L., Lindsay, S. & Ros, R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6, 19686 (2016).

    ADS  Google Scholar 

  96. 96.

    Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    ADS  Google Scholar 

  97. 97.

    Krieg, M. et al. Genetic defects in beta-spectrin and tau sensitize C.elegans axons to movement-induced damage via torque-tension coupling. eLife 6, e20172 (2017).

    Google Scholar 

  98. 98.

    Zhang, Y. et al. Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLOS Comput. Biol. 13, e1005407 (2017).

    Google Scholar 

  99. 99.

    Magdesian, M. H. et al. Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 103, 405–414 (2012).

    ADS  Google Scholar 

  100. 100.

    Gueta, R., Barlam, D., Shneck, R. Z. & Rousso, I. Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proc. Natl Acad. Sci. USA 103, 14790–14795 (2006).

    ADS  Google Scholar 

  101. 101.

    Szarama, K. B., Gavara, N., Petralia, R. S., Kelley, M. W. & Chadwick, R. S. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Development 139, 2187–2197 (2012).

    Google Scholar 

  102. 102.

    Windmill, J. F. C., Jackson, J. C., Pook, V. G. & Robert, D. Frequency doubling by active in vivo motility of mechanosensory neurons in the mosquito ear. R. Soc. Open Sci. 5, 171082 (2018).

    Google Scholar 

  103. 103.

    Rotsch, C., Braet, F., Wisse, E. & Radmacher, M. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685–696 (1997).

    Google Scholar 

  104. 104.

    Rotsch, C., Jacobson, K. & Radmacher, M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 921–926 (1999).

    ADS  Google Scholar 

  105. 105.

    Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

    ADS  Google Scholar 

  106. 106.

    Blaue, C., Kashef, J. & Franz, C. M. Cadherin-11 promotes neural crest cell spreading by reducing intracellular tension-Mapping adhesion and mechanics in neural crest explants by atomic force microscopy. Semin. Cell Dev. Biol. 73, 95–106 (2018).

    Google Scholar 

  107. 107.

    Rigato, A., Rico, F., Eghiaian, F., Piel, M. & Scheuring, S. Atomic force microscopy mechanical mapping of micropatterned cells shows adhesion geometry-dependent mechanical response on local and global scales. ACS Nano 9, 5846–5856 (2015).

    Google Scholar 

  108. 108.

    Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607–610 (2001). This is a pioneering AFM study mapping the dynamic stiffness changes of the cortex of adherent cells.

    Google Scholar 

  109. 109.

    Gaub, B. M. & Muller, D. J. Mechanical stimulation of piezo1 receptors depends on extracellular matrix proteins and directionality of force. Nano Lett. 17, 2064–2072 (2017).

    ADS  Google Scholar 

  110. 110.

    Ossola, D. et al. Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743–1750 (2015).

    ADS  Google Scholar 

  111. 111.

    Pamir, E., George, M., Fertig, N. & Benoit, M. Planar patch-clamp force microscopy on living cells. Ultramicroscopy 108, 552–557 (2008).

    Google Scholar 

  112. 112.

    Upadhye, K. V., Candiello, J. E., Davidson, L. A. & Lin, H. Whole-cell electrical activity under direct mechanical stimulus by AFM cantilever using planar patch clamp chip approach. Cell. Mol. Bioeng. 4, 270–280 (2011).

    Google Scholar 

  113. 113.

    Martinez-Martin, D. et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500–505 (2017). This paper introduces AFM as a picobalance to measure the total mass of adherent cells at millisecond time resolution under cell culture conditions.

    ADS  Google Scholar 

  114. 114.

    Xu, W. et al. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication for methane production. J. Bacteriol. 178, 3106–3112 (1996).

    Google Scholar 

  115. 115.

    Yao, X., Jericho, M., Pink, D. & Beveridge, T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181, 6865–6875 (1999).

    Google Scholar 

  116. 116.

    Gaboriaud, F., Bailet, S., Dague, E. & Jorand, F. Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J. Bacteriol. 187, 3864–3868 (2005).

    Google Scholar 

  117. 117.

    van der Mei, H. C. et al. Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys. J. 78, 2668–2674 (2000).

    Google Scholar 

  118. 118.

    Francius, G., Domenech, O., Mingeot-Leclercq, M. P. & Dufrene, Y. F. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol. 190, 7904–7909 (2008).

    Google Scholar 

  119. 119.

    Touhami, A., Nysten, B. & Dufrêne, Y. F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

    Google Scholar 

  120. 120.

    Francius, G., Tesson, B., Dague, E., Martin-Jezequel, V. & Dufrene, Y. F. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ. Microbiol. 10, 1344–1356 (2008).

    Google Scholar 

  121. 121.

    Mosier, A. P., Kaloyeros, A. E. & Cady, N. C. A novel microfluidic device for the in situ optical and mechanical analysis of bacterial biofilms. J. Microbiol. Methods 91, 198–204 (2012).

    Google Scholar 

  122. 122.

    Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrene, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    ADS  Google Scholar 

  123. 123.

    Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrene, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. USA 113, 410–415 (2016).

    ADS  Google Scholar 

  124. 124.

    Marchetti, M., Wuite, G. & Roos, W. H. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr. Opin. Virol. 18, 82–88 (2016).

    Google Scholar 

  125. 125.

    Ivanovska, I. L. et al. Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl Acad. Sci. USA 101, 7600–7605 (2004).

    ADS  Google Scholar 

  126. 126.

    Uetrecht, C. et al. High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 105, 9216–9220 (2008).

    ADS  Google Scholar 

  127. 127.

    Smith, D. E. et al. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    ADS  Google Scholar 

  128. 128.

    Carrasco, C. et al. DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl Acad. Sci. USA 103, 13706–13711 (2006). This paper shows that the viral genome interacts with and mechanically reinforces the viral capsid.

    ADS  Google Scholar 

  129. 129.

    Castellanos, M., Carrillo, P. J. & Mateu, M. G. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis. Nanoscale 7, 5654–5664 (2015).

    ADS  Google Scholar 

  130. 130.

    Snijder, J. et al. Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5, 502–509 (2013).

    Google Scholar 

  131. 131.

    Carrasco, C. et al. Built-in mechanical stress in viral shells. Biophys. J. 100, 1100–1108 (2011).

    ADS  Google Scholar 

  132. 132.

    Baclayon, M. et al. Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett. 11, 4865–4869 (2011). This work describes the contribution of viral domains to the mechanical stability of a viral capsid.

    ADS  Google Scholar 

  133. 133.

    Roos, W. H. et al. Mechanics of bacteriophage maturation. Proc. Natl Acad. Sci. USA 109, 2342–2347 (2012).

    ADS  Google Scholar 

  134. 134.

    Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007). This work establishes a direct link between the mechanical properties of HIV and its infectivity.

    ADS  Google Scholar 

  135. 135.

    Ortega-Esteban, A. et al. Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9, 10571–10579 (2015).

    Google Scholar 

  136. 136.

    Martinez-Martin, D. et al. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLOS ONE 7, e30204 (2012).

    ADS  Google Scholar 

  137. 137.

    Luque, D. Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage. Chem. Sci. 5, 575–581 (2014).

    Google Scholar 

  138. 138.

    Heinze, K. et al. Protein nanocontainers from nonviral origin: testing the mechanics of artificial and natural protein cages by AFM. J. Phys. Chem. B 120, 5945–5952 (2016).

    Google Scholar 

  139. 139.

    Snijder, J. et al. Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17, 2522–2529 (2016).

    Google Scholar 

  140. 140.

    Llauro, A. et al. Decrease in pH destabilizes individual vault nanocages by weakening the inter-protein lateral interaction. Sci. Rep. 6, 34143 (2016).

    ADS  Google Scholar 

  141. 141.

    Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA 109, 13626–13631 (2012).

    ADS  Google Scholar 

  142. 142.

    Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).

    ADS  Google Scholar 

  143. 143.

    Arkhipov, A., Roos, W. H., Wuite, G. J. & Schulten, K. Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys. J. 97, 2061–2069 (2009).

    ADS  Google Scholar 

  144. 144.

    Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008). This work addresses a question in cell biology that is over 30 years old, that is, whether cell adhesion or cortex tension governs germ-layer organization in development.

    Google Scholar 

  145. 145.

    Heu, C., Berquand, A., Elie-Caille, C. & Nicod, L. Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J. Struct. Biol. 178, 1–7 (2012).

    Google Scholar 

  146. 146.

    Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–396 (2001).

    Google Scholar 

  147. 147.

    Krieg, M., Helenius, J., Heisenberg, C. P. & Muller, D. J. A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor-ligand kinetics. Angew. Chem. Int. Ed. 47, 9775–9777 (2008).

    Google Scholar 

  148. 148.

    Vasquez, V., Krieg, M., Lockhead, D. & Goodman, M. B. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6, 70–80 (2014).

    Google Scholar 

  149. 149.

    Gonnermann, C. et al. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup. Integr. Biol. 7, 356–363 (2015).

    Google Scholar 

  150. 150.

    Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009).

    ADS  Google Scholar 

  151. 151.

    Medalsy, I., Hensen, U. & Muller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. Int. Ed. 50, 12103–12108 (2011).

    Google Scholar 

  152. 152.

    Rico, F., Su, C. & Scheuring, S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 11, 3983–3986 (2011).

    ADS  Google Scholar 

  153. 153.

    Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E., Wegmann, S. & Muller, D. J. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat. Protoc. 9, 1113–1130 (2014).

    Google Scholar 

  154. 154.

    Liang, X., Mao, G. & Simon Ng, K. Y. Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy. Colloids Surf. B Biointerfaces 34, 41–51 (2004).

    ADS  Google Scholar 

  155. 155.

    Delorme, N. & Fery, A. Direct method to study membrane rigidity of small vesicles based on atomic force microscope force spectroscopy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 030901 (2006).

    Google Scholar 

  156. 156.

    Li, S., Eghiaian, F., Sieben, C., Herrmann, A. & Schaap, I. A. Bending and puncturing the influenza lipid envelope. Biophys. J. 100, 637–645 (2011).

    ADS  Google Scholar 

  157. 157.

    Vorselen, D. et al. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. Nanoscale 10, 5318–5324 (2018).

    Google Scholar 

  158. 158.

    Engel, A. & Muller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Google Scholar 

  159. 159.

    Muller, D. J., Buldt, G. & Engel, A. Force-induced conformational change of bacteriorhodopsin. J. Mol. Biol. 249, 239–243 (1995).

    Google Scholar 

  160. 160.

    Pfreundschuh, M., Hensen, U. & Muller, D. J. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. Nano Lett. 13, 5585–5593 (2013).

    ADS  Google Scholar 

  161. 161.

    Martinez-Martin, D., Herruzo, E. T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 198101 (2011).

    ADS  Google Scholar 

  162. 162.

    Wegmann, S. et al. Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem. 285, 27302–27313 (2010).

    Google Scholar 

  163. 163.

    Zhang, S. et al. Coexistence of ribbon and helical fibrils originating from hIAPP(20–29) revealed by quantitative nanomechanical atomic force microscopy. Proc. Natl Acad. Sci. USA 110, 2798–2803 (2013).

    ADS  Google Scholar 

  164. 164.

    de Pablo, P. J., Schaap, I. A. T., MacKintosh, F. C. & Schmidt, C. F. Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91, 098101 (2003).

    ADS  Google Scholar 

  165. 165.

    Block, J. et al. Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain. Phys. Rev. Lett. 118, 048101 (2017).

    ADS  Google Scholar 

  166. 166.

    Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    ADS  Google Scholar 

  167. 167.

    Radmacher, M., Tillmann, R. W., Fritz, M. & Gaub, H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992).

    ADS  Google Scholar 

  168. 168.

    Adamantidis, A. et al. Optogenetics: 10 years after ChR2 in neurons — views from the community. Nat. Neurosci. 18, 1202–1212 (2015).

    Google Scholar 

  169. 169.

    Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 169, 1357 (2017).

    Google Scholar 

  170. 170.

    Dufrene, Y. F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123–127 (2011).

    Google Scholar 

  171. 171.

    Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sorensen, K. & Oddershede, L. B. Manipulation and motion of organelles and single molecules in living cells. Chem. Rev. 117, 4342–4375 (2017).

    Google Scholar 

  172. 172.

    Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    ADS  Google Scholar 

  173. 173.

    Lomakina, E. B., Spillmann, C. M., King, M. R. & Waugh, R. E. Rheological analysis and measurement of neutrophil indentation. Biophys. J. 87, 4246–4258 (2004).

    Google Scholar 

  174. 174.

    Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90, 2994–3003 (2006).

    ADS  Google Scholar 

  175. 175.

    de Sousa, J. S. et al. Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation. J. Appl. Phys. 121, 034901 (2017).

    ADS  Google Scholar 

  176. 176.

    Darling, E. M., Zauscher, S. & Guilak, F. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14, 571–579 (2006).

    Google Scholar 

  177. 177.

    Stifter, T., Weilandt, E., Marti, O. & Hild, S. Influence of the topography on adhesion measured by SFM. Appl. Phys. A 66, S597–S605 (1998).

    ADS  Google Scholar 

  178. 178.

    Rico, F. et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72, 021914 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Newton for critically discussing the manuscript. M.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through the Ramon y Cajal programme (RYC-2015-17935), “Severo Ochoa” programme for the Centres of Excellence in R&D (SEV-2015-0522) from Fundació Privada Cellex, Generalitat de Catalunya, through the Centres de Recerca de Catalunya (CERCA) programme, and the European Research Council (ERC; MechanoSystems grant 715243). D.A. was supported by the ERC (NanoVirus grant 758224) and the National Fund for Scientific Research and Research Department of the Communauté française de Belgique (Concerted Research Action). B.M.G. was supported by a long-term European Molecular Biology Organization (EMBO) fellowship (ALTF 424–2016). W.H.R. was funded by the Nederlandse organisatie voor Wetenschappelijk Onderzoek (VIDI grant). H.E.G. acknowledges financial support from the CelluFuel ERC grant. C.G. was supported by the Swiss Nanoscience Institute (SNI), University of Basel. Y.F.D. was supported by the Université catholique de Louvain, ERC, under the European Union’s Horizon 2020 research and innovation programme (grant 693630), Walloon Excellence in Life Sciences and Biotechnology (WELBIO) (grant no. WELBIO-CR-2015A-05), National Fund for Scientific Research (FNRS and EOS grants) and Research Department of the Communauté française de Belgique (Concerted Research Action). D.J.M. was supported by the Swiss National Science Foundation (SNF; grant 310030B_160225), the National Centre of Competence in Research (NCCR) Molecular Systems Engineering and the Swiss Commission for Technology and Innovation (CTI, grant 28033.1).

Author information

Affiliations

Authors

Contributions

All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Daniel J. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krieg, M., Fläschner, G., Alsteens, D. et al. Atomic force microscopy-based mechanobiology. Nat Rev Phys 1, 41–57 (2019). https://doi.org/10.1038/s42254-018-0001-7

Download citation

Keywords

  • Biological Sensor Systems
  • Mechanical Cues
  • Actomyosin Cortex
  • Atomic Force Microscopy Probe
  • Cortical Shell-liquid Core (CSLC)

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing