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Rheologyofacrowd: fromfaster-is-slower
to shear thickening
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The evacuation speed of pedestrians through bottlenecks usually leads to the faster-is-slower (FIS)
phenomenon, which relies on frictional clogging and clusters’ size. However, less attention is given in
literature to the rheology of pedestrian crowds and the forces ruling their dynamics. Here, we establish
a link between the faster-is-slower phenomenon (FIS) in pedestrian crowds and the shear-thickening
rheological behavior of (non)Brownian suspensions. We analyze pedestrian room egress through
particle-based simulations using the Social Force Model, revealing an S-shaped shear rate
dependency characteristic of discontinuous shear thickening (DST). At the same time, the crowd flow
viscosity near the exit exhibits a steep increase coinciding with FIS occurrence, establishing a
correlation between FIS and shear thickening. Our results prove that crowd evacuations are governed
by two distinct critical jamming densities, one frictional and another frictionless, and that contact
forces alone cannot lead to FIS, but social force interactions are necessary to avoid contacts at low
desired speeds. Our results point at the suitability of (non)Brownian suspensions as models that
provide an original rheological perspective to pedestrian dynamics.

The complex dynamics underlying pedestrian crowd evacuation have
captured the attentionof researchers indifferent study areas.Understanding
the nature of the behavior of pedestrians plays an essential role in predicting
and avoiding disasters related to crowd systems. Based on the information
gathered through investigations, substantial advances may be devised in
terms of the design of facilities and safety procedures to prevent catastrophic
scenarios and optimize the movement of pedestrian crowds. Special rele-
vance lies in systems where the pedestrian number in an area of interest is
high, and the characteristics of the geometry change abruptly, e.g.,
bottlenecks1–5. In this context, evacuation of pedestrian crowds is
undoubtedly crucial due to the existent relationship with safety in view of
preventing fatal accidents.

When pedestrian crowds evacuate through bottlenecks with certain
competitiveness, the evacuation becomes faster as the competitiveness is
higher until a critical point. Fromsuchpoint, the evacuationbecomes slower
despite the increasing competitiveness. Although this phenomenon is
empiricallywell-known, itwasnot describeduntil 2000,whenHelbing et al.1

obtained it through numerical simulations based on their social forcemodel
(SFM)6 and named it faster-is-slower (FIS). FIS has been confirmed in a
number of experiments7–9 and numerical studies1,10. In the context of the
SFM, three distinct forces are considered, which are the desired force f d,

frictionless repulsive long-range social force f s, and frictional contact force
f c. f d exerts an acceleration on pedestrians with the end of changing their
current velocity to the desired velocity v0i ¼ v0i ei, where v

0
i is the desired

speed. Here, ei is the direction an individual pedestrian i takes if it is isolated
fromother pedestrians or obstacles thatmight perturb itsmovement. In this
way, the desired force of an individual pedestrian reads

fdi ¼ mi
v0i � vi

τ
, ð1Þ

where mi is the mass of the pedestrian and τ is a typical relaxation time
parameter that characterizes the time spent by a pedestrian to reach the
direction ei and speed v0i . In general, v0i depends on the position ri of the
pedestrian, i.e., geometry-dependent, or can even be different for each
individual by definition11.

f sij is the inter-pedestrian pairwise social force, which is of repulsive
nature and stems from the idea that a pedestrian i is prone to avoid colliding
with another pedestrian or an obstacle j. Therefore, a widely-used and
simple alternative to mimic this behavior relies on selecting a decaying
function for f sij as a function of the distance between the pedestrian i and
another pedestrian or obstacle j, rij = ri−rj. Although there are more
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complex anisotropic functions to model anticipation and limited visual
range effects6,12–14, we use the standard circular specification here, consisting
of an isotropic decaying exponential function with two parametersA andB.
Hence, the social force between two agents is described by

f sij ¼ Ae
jRij�rij j

B
rij
jrijj

, ð2Þ

withA andB accounting for the strength and range of the force, respectively.
In the present work, pedestrians are modeled as disks, and Rij = Ri+ Rj,
being Ri and Rj the radii of agents i and j.

Finally, fcij mimics those forces that appear when two agents are in
physical contact, that is to say, when ∣rij∣ < Rij. Pedestrian systems usually
experience contact forces in high-density scenarios where social forces
cannot keep pedestrians apart. For this reason, the contact force becomes
especially relevant in crowded systems or when pedestrians are in a rush.
Under the last circumstances, the values of the desired force term can
increase dramatically, overcoming social forces. Helbing and Molnár pro-
posed fcij as the sum of two contributions fcij ¼ fBij þ fSij, a compressing
spring-like force

fBij ¼ Hδij
rij
jrijj

, ð3Þ

and a shear force that introduces friction due to the contact force

fSij ¼ �γδijðvij � tijÞtij , ð4Þ

where δij = Rij−∣rij∣ is the overlap between the interacting agents.H and γ are
the compression and shear parameters, respectively. vij is the relative velo-
city between pedestrians i and j, and tij is the vector tangential to rij. It is
worth mentioning that the overlap must fulfill δij ≥ 0; otherwise, both
contact contributions are null.

Previous attempts to elucidate the mechanism underlying FIS have
primarily relied on themicroscopic structure of the particles forming part of
the pedestrian system15,16. The predominant argument appeals to the fact
that when particles are flowing, blocking structures are prone to arise. These
blocking clusters are associated with an increase in the clogging probability,
indicating that forming these clusters is necessary for the emergence of FIS.
Due to the resemblances of these concepts with the extensively studied arch
formation and clogging in granular matter physics, most of the precedent
research on disentangling FIS stems from established frameworks of the
above-mentioned field. Nevertheless, since most granular experimental
systems consider inert particles, no physical cause prevents the formation of
the above structures17, and additional factors should be contemplated. Such
is the case studied in refs. 8,18, where a quasi-2D granular system was
assessed so that the driven force is a control parameter obtained by varying
the incline angle between the plane where particles are contained and the
horizontal one. Additionally, the authors incorporated a horizontal oscil-
lation that can prevent or break the arches, obtaining evidence of FIS for
inert particles. This outcome implies that a physical mechanism able to
prevent or break arches is necessary. Pastor et al.8 explained the FIS as a
combination offlowing and clogging states. Other studies have considered a
distinct way of breaking or avoiding arches by introducing a noise for the
rotation dynamics of non-circular pedestrians10,19.

Recently, Cornes et al. showed that evacuation and, as a consequence,
frictional clogging times correlate well with the size of the clusters, claiming
that the appearance of FIS owes to the presence ofmedium-size clusters that
coincide with the typical size of the blocking clusters20. In that contribution,
a blocking cluster is defined as a pedestrian group in which each individual
possesses contactwith another of the samegroup, and twoparticles from the
cluster are in contactwith thewalls at both sides of the exit. Then, for higher-
driven forces, the probability of emerging medium-size clusters reduces,
making itmore likely tofind a combination of small and large clusters. Also,
small clusters are present for all desired velocities, even though it is

demonstrated that their number ismuch lower after the optimal evacuation
time. When inert particle flow through a silo is analyzed, it is usual to
observe dense scenarios. Thus, small ormedium clusters are rarely obtained
in pedestrian evacuation. As stated recently20, the pedestrian system is
expected to behave as a single geometry-spanning cluster for larger driven
forces being similar to a highly viscous fluid.

There is a paucity of evidence on the rheology of pedestrian crowds in
the literature, although if one carefully analyzes pedestrian and (non)
Brownian suspensions, strong analogies arise. The desired force is identical
to a viscous (Stokesian), similar to those considered for (non)Brownian
suspensions21–23. In suspension systems, repulsive electrostatic forces,
usually described through DLVO theory, resemble pedestrian social forces,
whereas contact forces materialize when particles are forced into touch,
similarly to fc considered in the SFM. However, in the model introduced by
Seto et al., lubrication forces are included for the numerical simulation of
suspensions, an ingredient that is not considered in the present version of
the SFMor either in a previous work where shear thickening was evidenced
for frictional particles under a Stokesian drag force23. (Non)Brownian sus-
pensions can be described as non-Newtonian fluids, i.e., their viscous
response under external forces is nonlinear, presenting a complex behavior.
Special relevance covers those systems that flow worse as the outside per-
turbation increases, with this rheological effect being known as shear
thickening (ST)24–28. This observation shows an augment in the effective
viscosity ηeff of suspensions. The ηeff increase can be either continuous or
abrupt, i.e., related to continuous shear thickening (CST) anddiscontinuous
shear thickening (DST), respectively. The transition from CST to DST
strongly depends on the concentration of particles in the suspension21,22,29–32

and the friction characteristic of the particles33,34.
Based on the elements previously proposed by Seto et al.21 examining

shear thickening for particulate suspension flows, Wyart and Cates (WC)
introduced a phenomenological theory that considers a crossover from
frictionless (lubricated) interactions to frictional contacts30. This crossover is
characterized by an onset stress σ*, at which weak repulsive forces (e.g.,
DLVO) fail to prevent particles from touching, and a lubrication-to-
frictional transition occurs. Following this reasoning, if the total stress in
terms of the onset stress is low (p = σ/σ*≪ 1), the system’s viscosity diverges
at the random close packing fraction ϕ0 typical for frictionless systems.
Conversely, if p≫ 1, most of the contacts become frictional, and ηeff
diverges at a packing fraction ϕm < ϕ0, whose precise value depends on the
characteristic static friction coefficient of the contact pairwise interactions.
In the WC model, the rheology of dense (non)Brownian suspensions is
described through a jamming volume fraction ϕJ(p), which is taken to
depend on the fraction of frictional contacts through a function f(p) that
evolves smoothly from 0 to 1 within the domain p = [0,∞). In this way,
jamming volume fraction ϕJ(p) takes the form

ϕJðpÞ ¼ ϕm f ðpÞ þ ϕ0ð1� f ðpÞÞ: ð5Þ

Othermore recent frameworks have been introduced to describe DST,
considering an inverse-biviscousmodel35, scalarWCmodel36, or developing
the WC model with the inclusion of a full tensorial evolution equation37.
With regard to f(p), multiple mathematical functions have been considered
in the literature30,38,39. Nevertheless, the most widely accepted and experi-
mentally proven31 is

f ðpÞ ¼ expf�ð1=pÞβg; ð6Þ

where the exponent β describes how steeper the frictionless-to-frictional
transition is. At dense scenarios, DST models consider that the viscosity η
diverges following a Krieger–Dougherty expression40 as a function of ϕJ(p)
and the volume fraction ϕ

ηðϕ; pÞ∼ ð1� ϕ=ϕJðpÞÞ�λ; ð7Þ

where λ is typically estimated with the value 2.
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In the present contribution, we aim to elucidate the nature behind FIS
on the basis of the forces involved in the dynamics. On the one hand, the
social forces mimic the long-range interaction of pedestrians to sidestep
each other and avoid touching. On the other hand, contact frictional forces
might occur if the weakly repulsive social forces fail to maintain pedestrian
inter-distance larger than their physical sizes. It is precisely this transition
from pedestrians interacting only socially to pedestrians contacting fric-
tionally that induces the FIS phenomenon. A systematic understanding of
how the distinct forces contribute to the emergence of FIS is still lacking. To
fill this gap, an adequate approach, hitherto unexplored, consists of
employing tools and understanding from the field of suspension rheology.
This can be a significant change in perspective since it implies that experi-
ments using specifically tuned suspensions can be used tomimic pedestrian
behavior. Moreover, utilizing theory and numerical models rooted in sus-
pension investigations can shed new light and revisit the field of pedestrian
dynamics from a new rheological perspective. In this work, we demonstrate
that it is possible to translate shear thickening into push faster is the slower
picture in pedestrian systems governed by a social force model, establishing
a direct link between ST and FIS concepts.

Results
Flow rate
Firstly, we analyze the number of pedestrians that exit the room during the
total time of the simulation. As the first result, we obtain that the system
flows for each desired velocity considered here when the width of the exit
b ≥ 2Dm, where Dm is the mean diameter of the N = 300 polydispersed
pedestrians. On the contrary, for smaller apertures, the pedestrians are
prone to clogging in the vicinity of the exit, and as a consequence, the flux is
stopped (see, as an example, the snapshot displayed in Supplementary
Figs. 1 and 2) in Supplementary Note 1. In previous investigations, rota-
tional noise was applied on pedestrians to prevent permanent clog
formation10,19.Onewayof rationalizing the effect of thedesired velocity v0 on
evacuation time is to find the inverse slope of the cumulative number of
egressed pedestriansN as time t goes by (see Supplementary Fig. 2b) and see
how the time it takes for a pedestrian to leaveΦ varies. Therefore, in order to
find the best linear fits of the timemagnitude as a function of the number of
pedestrians who escape through the bottleneck, we constructed the plot of
Fig. 1a. Note that the procedure to obtain the characteristic evacuation time
Φ is done by finding the slope of the time t as a function of the egressing
pedestrians numberN (t vs.N) and notN vs. t. The non-monotonicity ofΦ
is evident for each exit size, confirming the existence of FIS since the eva-
cuation is faster when the desired velocity is increased from the minimum
v0 m/s to a critical desired velocity v0c (v0c ¼ 1:125 m/s for b = 2Dm and

v0c ¼ 1:25m/s for b = 3Dm). The evacuation becomes slower after this value
up to v0 = 5.0m/s. Finally, for larger values, the evacuation becomes faster
again. Thementioned trend is reproduced for all the b values, while it is true
that it is more pronounced for the case b = 2.0Dm.

Analysis of the macroscopic flow near the exit
As was shown in Fig. 1a, the exit size b = 2Dm is the case that exhibits the
most amplified FIS phenomenon. Nonetheless, this exit width can exhibit
instabilities and extreme clogging when other force configurations are
studied. Hence, in order to avoid biases in the statistics, we consider the
bottleneck b = 3Dm and apply post-processing with the coarse-graining
technique. Selecting this exit width bottleneck allows us to describe the
system akin to shear-jammed particulate systems21. In this sense, we com-
puted the average of the coarse-graining spatial profiles in a centered rec-
tangle of dimensions 2Dm × 2Dm located in front of the exit, A.

The flow rate is a magnitude that depends on two quantities: the
pedestrian filling fraction ϕ(t) and the perpendicular velocity of the
pedestrian near the gateway vx(t) through the relation 1/Φ~ϕvx. From the
independent examination of these magnitudes, it is possible to elucidate if
the overall evacuation time is affected by a variation of one of the two
magnitudes or if the variation is due to a combined effect. Let us focus only
on the values of �ϕ in Fig. 1b (orange-colored squares, right y-axis). This plot
shows that the time- and spatial-averaged area fraction surrounding the exit
�ϕ follows a monotonic increase with the desired velocity. In that case, the
conclusions we might extract contradict the results of Fig. 1a since the
invertedflow rate trend differs from themonotonic one, evenwhen they are
directly proportional. Thus, the behavior of time-averaged velocity �vx
should be such that it reverts the �ϕ trend observed forΦ. That is, �vx values
must be lower in the cases of higher density and more significant for the
most dilute cases in order to recover the FIS flow rate trend, observed
in Fig. 1a.

The growthof �ϕ presents twodifferent slopes: for lowdesired velocities,
v0 < 1.25m/s, the area fraction holds a higher growth compared to the trend
observed for v0 ≥ 1.25m/s. This outcome could be connected to a transition
in the pedestrian dynamics related to a variation in the balance of social and
contact forces. Although one might expect for a realistic situation that the
area fraction reaches a constant value at some point in the studied v0 range,
the density is constantly increasing. This result could be due to the selection
of model parameters or the simplicity of the contact model, which allows
excessive overlaps between pedestrians. Fig. 1b exhibits the time-averaged
velocity in the x-direction �vx (blue-colored circles, left y-axis), evidencing a
trend that is consistent with the result observed for the flow rate with a
maximum for �vx at v0 = 1.25m/s, which corresponds to the fastest

Fig. 1 | Mean flow rate for a pedestrian and depending variables velocity and
density. a Averaged time that it takes for a pedestrian to exit the room or single
pedestrian evacuation timeΦ as a function of the desired velocity v0 for each aperture
b in terms ofDm units. Each point is the best linear fit slope of t vs.N, with standard
errors more minor than the marker size for all values. bTime-averaged area fraction
�ϕ (orange-colored squares, right y-axis) and velocity �vx (blue-colored circles, left y-

axis) as a function of the input desired velocity v0 for b = 3.00Dm. The colored areas
stand for the standard deviation for �ϕ and �vx . Shadowed red and green areas dis-
tinguish the faster-is-faster (FIF) from faster-is-slower (FIS) behavior. The cross-
overs between distinct behaviors are highlightedwith the vertical dashed lines placed
at v0c ¼ 1:25 m/s (red) and v0c ¼ 5:00 m/s (green).
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evacuation. Furthermore, the minimum value around v0 = 5.0m/s also
reproduces theflow rate behavior. From this outcome, the conclusion is that
the change in evacuation times for v0 ≤ 5.0m/s, aswell as theonset of FIS, are
due to changes in the near-exit velocity of the flow rather than area fraction,
even though these magnitudes can be related. On the other hand, for
v0 > 5.0m/s �vx is almost invariable independently of the increase of the
desired velocity, and the emergence of the second FIF, with a slight increase
of the flow rate area, is due to the increase in density as a function of v0. The
valuewhere theϕ and vx trends vary their behavior, specifically, the changes
in the slope for ϕ and the monotonicity for vx matches.

These results indicate that the FIS is due to a non-monotonic variation
of the flow velocity close to the orifice as a function of the desired velocity,
which is connected to a change in the slope of the monotonic trend for Φ.
The next question, therefore, arises: what are the rheological changes of the
crowd that are affected by the competitiveness and lead to the mentioned
FIS behavior? Firstly, we analyzed their values separately to shed light on the
effect of the distinct force contributions. Figure 2a displays the social and
contact pressure from Eq. (11) time- and spatially averaged as in the pre-
vious analysis (Ps and Pc, respectively). Both trends, Ps and Pc, show a linear
growth with the increase of v0 for v0 > 1.5m/s. With this result, it is con-
firmed that the transition in the dynamics stems from the activation of
contact forces between pedestrians that become increasingly significant. In
fact, the values of Pc are close to zero for low competitiveness due to the area
fraction being low; for larger v0, the contact forces appear as a result of the
density increase. This can also explain why the evacuation becomes slower
for v0 values higher than 1.25m/s. Unlike Pc, Ps differs from zero at every v0

and increases monotonically from the simulated minimum v0. Comparing
both trends manifests a crossover just after the value of v0, where the eva-
cuation is the slowest (v0 = 5.0m/s). This result suggests that the evacuation
starts to be faster again because the contact pressure overcomes the social
pressure. Also, this result is in correspondence with the recent findings
shown20, where the authors connected the transition to faster-is-faster to the
formation of a big cluster encompassing almost all the pedestrians and
forcing the system to flowas awholewith a diminishing of the clogging. The
decrease in the clog times must also occur due to a reduction of the system
friction. We analyze the near-exit friction of the system later in this
contribution.

Centering the attentionon thePs trend, it is alsopossible to observe that
this is very similar to the profile of �ϕ as a function of v0. Finally, figure 2a
depicts the total pressure, showing a linear increase as a function of the
desired velocity. Fromthis outcome,we can conclude that the increase in the
desired velocity always provokes a linear increase in the total pressure
despite the change in the slope of the different force contributions.

Complementary, we have mapped the total pressure with the local area
fraction, showing that the pressure collapses in a single curve that increases
monotonically with the increment of the area fraction (see Supplementary
Fig. 4a), as expected. Conversely, the total pressure near the exit does not
show that collapse since the system releases the pressure depending on the
preceding pressure in addition to the area fraction.

For the sake of completeness, we extracted the deviatoric part of the
stress tensor τt and also split it into the social and contact contributions, τs
and τc. This component of the stress is critical to the understanding of either
the evacuation slowdown or thickening suspension since these are forces
transmitted laterally to the flow direction. Thus, high values of τt may imply
a proliferation of frictional contacts and a frictionless-to-frictional interac-
tion transition. The result of averaging these quantities close to the exit is
illustrated in Fig. 2b. The inset in Fig. 2b additionally displays the fraction of
shear stress from the social interaction, τs/τt, or from the contact, τc/τt. Both
trends show a clear symmetry and tend to reach a constant behavior for
v0 > 5m/s. The crossover of the deviatoric part of the contact tensor on the
social one occurs again close to v0 = 1.85m/s. From this observation, we can
infer that FIS arises when the frictional contribution of the contact forces
becomes relevant. Nonetheless, a full picture of the effect of the contribu-
tions of the pressure and the deviatoric parts must be described by the
friction coefficient. This analysis is presented in the following section.

Rheology of the system
The rheology of a pedestrian system can be characterized either through the
overall viscosity Eq. (14) or via a macroscopic friction coefficient Eq. (15).
μRheology—by focusing first on the latter, we show in Fig. 3a the time- and
spatial-averaged profile of the contact μc and social μs friction coefficient
(Eq. (15)) as a function of the desired velocity. As expected, μc is zero for low
velocitiesdue to the contact force being zero. In this sense, the values that are
different fromzero alwayspresent contactsnear the exit.One cannotice that
the values decrease after the maximum value is reached, which, again, is
close to the v0 value at the fastest evacuation. Astonishingly, the μc trend is
counterintuitive to explain the FIF and FIS zones if we rely solely on it since
one may expect that the macroscopic friction should increase as the eva-
cuation becomes slower. Nevertheless, connections between the decrease in
the macroscopic friction and the occurrence of jamming with the contact
network anisotropy have been verified in the past when studying the shear
jamming of granular materials41,42. Our results here confirm that the μc

diminishes as the contact network becomes more isotropic, as shown in
Supplementary Note 3. The decrease of macroscopic contact friction has
also been recently proven to be linked with the increase of suspension
viscosity inDST by Thomas et al.43. An additional cause can be attributed to

Fig. 2 | Pressure and shear stress close to the exit. For the exit width b = 3.00Dm:
a Plot of time-averaged contact and social pressure Pc (red circles) and Ps (blue
squares), respectively, as a function of the desired velocity v0. As a reference, the total
pressure contribution divided by two is plotted (black stars), showing a monotonic
linear increase with v0. b Plot of time-averaged the deviatoric part of the contact and
social stress τc (red circles) and τs (blue squares), respectively, as a function of the

desired velocity v0. The total deviatoric part of the stress is shown as a reference
(black stars). Inset: the fraction of shear stress from the social interaction, τs/τt
(blue squares), or from the contact, τc/τt (red circles). In both a and b, including
the inset, orange and green lines have been included to distinguish the faster-is-faster
(FIF) from faster-is-slower (FIS) behavior. Error bars depict the standard deviation
values.
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the behavior of the kinetic pressure P
k
(see Fig. 3b), which measures the

velocity dispersion. More in detail, along the FIS zone, the ratio between
the dissipative term in the interactions (Eq. (4)) diminishes compared to the
gain of the elastic part Eq. (3), given that the velocity dispersion decreases.

In terms of social friction coefficient, μs shows to be higher at low
desired velocities and then tends to decrease, reaching a constant value
μs≈0:08. The origin of μs is rooted in two distinct mechanisms related to an
imbalance of social forces acting on a single pedestrian. On the one hand,
pedestrians close to the exit experience a shear due to wall forces, which do
not have a force pair, provoking an imbalance.On the other hand, a particle
that is near the egress can affect the balance of forces due to instabilities in
the equilibrium between the desired force and the social force in this zone.
This effect can provoke clogging delays due to social interactions20, and it is
especially important indilute scenarioswhen the competitiveness is still low.
Acrucial conclusionwecanextract fromthis outcome is that FIS seems tobe
directly connected to an increase in the frictional shear forces relative to the
normal forces. As the friction shear forces increase compared to the normal
forces, FIS must be enhanced because these forces push the particles away
laterally from the desired direction. Thus, the tangential term of the contact
force plays a crucial role.

The contact tangential term depends on the relative velocity of
pedestrians in contact. Therefore, one should anticipate that the increase in
this term has to be related to the presence of fluctuations in the velocities as
well as a higher shear rate. This expectation is confirmed through the curves
of the kinetic pressure and the shear rate in Fig. 3b. The outcome reveals
similar behavior for both magnitudes, having maximum values close to the
desired velocity value where FIS is raised. This outcome also reveals that the
shear rate can return an identical value for two distinct v0 or, keeping in
mind that the total pressure P scales linearly with v0, two different P present
in the system. This reasoning is confirmed with the inset of Fig. 3b which
displays the shear rate _γ as a functionofPwith identical behavior to the _γðv0Þ
trend. From the rheological point of view, the observation of a multivalued
_γðPÞ profile becomes relevant since it means that not only the system’s
response is non-Newtonian but also evidence of a complex response of a
discontinuous shear thickening type30,44. This can be better understood by
noting that there is a maximum value of _γ, i.e., d _γ=dP ¼ 0. Thus, there is a
domain of v0, where d _γ=dP>0, indicating that the system flows easier with
the pressure increase, whereas, at a certain point, d _γ=dP becomes negative,
implying an increase of the viscosity and, as a consequence, an arresting of
the flow. This change results from the triggering of contact forces, making
the system thicker.

One aspect we still need to address up to this point is that the current
experimental setup is typical for studying clogging45. Clogging is a flow halt,
typically observed when a particulate matter crosses a constriction46.
However, DST has been primarily connected to jamming transition, which
characterizes a liquid-like to solid-like transition for granular materials41,47.
Nowadays, there is consensus on the distinction between both phenomena,
albeit they present a common underpinning mechanism of force chain
formation. Unlike clogging, which presents local characteristics with the

formation of local structures that arrest the succeeding flow, jamming
comprises a global state that exhibits ordering in the force network space48.
This observation has also been established as a microscopic origin for shear
thickening in dense granular suspensions43, and it is related to the concept of
rigidity percolation that has been linked to DST very recently49. Apart from
jamming by compression, granular systems can exhibit shear jamming and
an intermediate state called fragile differentiating in the ability of whether
the system can bear incompatible loads50–52. Bi et al. showed that shear
jamming and fragile states are distinguished by a transition in the force
percolation length in shear and compressiondirection51.While the former is
characterized by an entire force percolation throughout the system, the
percolation only occurs along the compression direction in the latter. It is
worth mentioning that DST has also been recently evidenced for dry
granular systems under oscillatory shear experiencing not only shear jam-
ming but also a fragile state53, and Seto et al. showed that the shear jamming
states in suspensions can truly evolve in fragile systemswhen reversed shear
is applied54.

Despite the discussed distinction between clogging and jamming,
determining whether one phenomenon or another is dominant is still an
open question in systems where both can arise simultaneously, such as the
particle flow through a bottleneck. Recent contributions have been devoted
to finding connections between both phenomena55–57, advancing their
understanding, even though a valid theoretical framework or method to
distinguish them is still lacking. Following the analysis performed by Bi
et al.51, we conducted a force percolation analysis for the strong force net-
work, defined as the contact forces bearing more than the average contact
force magnitude for the whole system (∣ f c∣ > 〈∣ f c∣〉) (see Supplementary
Note 3 and Supplementary Fig. 9). Since the particles grouped around the
exit resemblances a semicircle, we split the percolation directions into radial
and azimuthal directions. From this analysis, we argue that the radial per-
colation length reaches zones at a considerable distance from the exit, which
increases with the desired velocity. Although the radial percolation does not
extend to the whole system, this result indicates that the force chains do not
appear just locally, aswould be the case of pure clogging. Complementary to
this is that the azimuthal direction increaseswith thedesiredvelocity, as does
the radial direction. This last result should also be observed in the case of
clogging when stable arches are formed. Nonetheless, these percolation
lengths were extracted during the time for several configurations and
remained statistically greater than zero. Together with the decline of the
contact network anisotropy and the growth of frictional contacts as a
function of the desired velocity, these results suggest that the system’s
behavior depends on bulk properties rather than a local phenomenon such
as clogging merely. We consider that further investigation is required in
order to characterizewhether the system is experiencing a shear jamming or
fragile state. An excellent approach to carry out this task is the theoretical
framework proposed by Ramola and Chakraborty to include body forces
actingon theparticle systemandevaluate thepersistence of the contact force
network58. We remark that this framework has been employed in granular
suspension, allowing the understanding of the microscopic origin of DST43.

Fig. 3 | Friction and shear rate behavior near
the exit. a Spatial- and time-averaged contact (red
circles) and social friction (blue squares) parameters
(μc and μs) as a function of the desired velocity v0.
b Spatial and time-averaged _γ (red-colored circles,
left y-axis) and kinetic pressure Pk (blue-colored
squares, right y-axis) as a function of the desired
velocity v0. The inset displays _γ against the total
pressure P averaged in the area of interest. In both
a and b, including the inset, the considered case is
b = 3Dm, and orange and green lines have been
included to distinguish the faster-is-faster (FIF)
from faster-is-slower (FIS) behavior. Standard
deviation values are illustrated via error bars.
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Furthermore, we consider that the current discussion can motivate the
investigation of connections betweenDST and suspension systems prone to
clogging59.

ηRheology—When considering a three-dimensional scenario, passive
spherical particles suspended in a solvent with viscosity η0 display an
effective dimensionless viscosity, ηeff = η/η0, that is dependent on the
volume fraction. Krieger and Dougherty’s semi-empirical law provides a
reliable description of this relationship40. In a two-dimensional system,
similar behavior shouldoccur, obtaining.As a result, an increase ofηeff as the
area fraction is augmented. Thus, as the increase of the desired velocity is
linked to a monotonic increase of ϕ, this might imply by itself a gain in the
effective viscosity. Fig. 4a shows the viscosity as a function of the desired
velocity. For low desired speeds v0 < 1m/s, the social force canmaintain the
particles apart without physical contact (social contactless regime); there-
fore, they can move easily in the absence of shear forces. Consequently, the
viscosity η remains almost constant despite the small increase in area
fraction. However, when v0 > 1m/s, it is unviable for the social force to keep
the particles distant, frictional contacts set in (frictional contact regime), and
the viscosity increases significantly. This scenario is in agreement with
recent theories of shear thickening inwet particle suspensions as a result of a
frictionless-to-frictional transition mediated by a variable weak repulsion
force21,29,30. The role playedby aweak repulsive force determining the energy
barrier for contactless against contact interactions is here taken by the
screening social force model.

Figure 4a also shows that the steep increment of η as a function of v0

follows the relation η∼ ðv0Þβ, with β = 3 indicating a multievaluated
dependency ηð _γÞ. A relationship with β > 1 indicates a multivalued
dependency ηð _γÞ32,60 since it means the shear starts to decrease with the
increase of the stress (as it was shown in Fig. 3b), and it is considered to be a
hallmarkofDST.The inset of Fig. 4a stresses this argument sinceηð _γÞ shows
a multivalued behavior. Both observations, the fact that β > 1 and the
multivalued behavior of ηð _γÞ, constitute evident fingerprints of DST. In
Supplementary Note 2, a complementary analysis of the local viscosity as a
function of the local pressure has been performed, showing that the DST
transition not only emerges in the area surrounding the exit but also in the
bulk system (see Supplementary Fig. 4b). This observation is also suggesting
that a transition far from exit and beyond clogging arises in the system, such
as an unjammed to a shear-jamming or fragile state.

To verify the compatibility of theWCmodel with the results, we have
computed the fraction of frictional contacts for each simulated desired
velocity f(v0). Here, f(v0) is evaluated using the same definition lately

proposed by Ruiz-Lopez et al.61, that is, the fraction of particles having at
least one contact in friction. In this case, the particles that meet the criteria
overlap and have a relative tangential velocity different from zero. The
particles analyzed are contained in the areaA. Figure 4b displays the time-
averaged f(v0), showing to be in agreement with the function
f ðv0Þ ¼ expf�ðv0c=v0Þβg, defining v0c as the critical desired velocity. From
the inset of Fig. 2b, we have identified v0c ¼ 1:85 m/s as the value where the
contact shear stress overcomes the social shear stress. Moreover, the
exponent β = 2 recovers the behavior of the numerical results of f(v0). This
agreement between the numerical results and the analytical function gives
insights into the possibility of modeling pedestrian systems using the WC
model. Nonetheless, the fraction of frictional contacts depends on both the
total pressure imposed over the system and the local area fraction, variables
that are dependent on the desired velocity (see SupplementaryNote 2). This
reasoning implies the possibility of a combined effect for the viscosity
increase led by either density or pressure augments. Thus, we conduct a
scaling analysis to avoid this ambiguity.

A recent study62 proposed a universal scaling for shear thickening
transitions. In this work and other63, the authors employed the scaling in
equilibrium phase transition framework64 rather than fitting data to func-
tional forms. The scaling framework allows for collapsing data over a broad
range of multiple control parameters, resulting in a tool extremely useful in
systems such as the current one where both density and stress vary with the
parameter of control v0. They described shear thickening in terms of a
crossover between the two critical maximum solid volume fractions ϕ0 and
ϕm, pointswhere the viscosity following Eq. (7) diverges. They proceeded by
substituting Eq. (5) into Eq. (7), yielding

ηðϕ0 � ϕÞ2 ∼FWC
f ðpÞ

ϕ0 � ϕ

� �
; FWC ∼

1
ϕ0 � ϕm

� f ðpÞ
ϕ0 � ϕ

� ��2

; ð8Þ

whereFWC is the crossover scaling function specific to theWCmodel with
the scaling variable xWC = f(p)/(ϕ0−ϕ) related to the frictionless jamming
critical point, and xc = 1/(ϕ0−ϕm) is the critical point at which FWC
diverges. Following the work of Cardy64, Ramaswamy et al.62 write the
scaling in terms of a universal functionH as follows:

ηg2ðp; ϕÞ∼Hðj1=xc � 1=xjÞ; ð9Þ

where the function g is more general than the function f(p), expanding the
transition dependence to density besides the stress62,63. The scaling analysis

Fig. 4 | Viscosity and frictional contact fraction increase as a function of the
desired velocity. a Spatial and time-averaged viscosity η as a function of the desired
velocity v0. The slopes β = 1 and β = 3 have been included as guides for the eye. β
characterizes the exponent in the relationship η ~ Pβ, here P ~ v0. Thus, β = 1 implies
an invariable shear rate with the increase of P; and β > 1 implies a multivalued
dependency ηð _γÞ as is obtained in this case, assuming _γ∼P=η. The inset depicts the
multivalued dependency ηð _γÞ. (b) Spatial and time-averaged fraction of frictional
contacts as a function of the desired velocity v0, f(v0). The function f ðv0Þ ¼
expf�ðv0c=v0Þβg is plotted, showing a good agreement with the numerical data. The

critical desired velocity v0c ¼ 1:85m/s and the exponent β = 2. The inset displays the
functionH ¼ ηf ðpÞ2 versus ∣1/xc−1/x∣; the black lines stand for exponents −1 and
−2 as annotated. All cases correspond to b = 3Dm, and shadowed red and green areas
have been included to distinguish the faster-is-faster (FIF) from faster-is-slower
(FIS) behavior. In the specific case of b, an additional yellow-colored range is plotted
exclusively to depict the shape of f(v0) at larger v0 values. Error bars stand for the 95%
confidence interval and are not shownwhen they are lessminor than themarker size.
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of H is relevant since changes in its exponent underpin differences in the
frictional shear-jamming and frictionless jamming transition, indicating a
crossover between critical values that belong to different universality classes.
As the function g can depend on p and ϕ, we can use the universal scaling to
parse out the pressure and density. Firstly, in Supplementary Note 4, we
have estimated the value of ϕ0 = 0.959 ± 0.001 and demonstrated thatFWC
diverges at a point xc = 1/(ϕ0−ϕm) = 4.927, from which it is obtained
ϕm = 0.756 ± 0.001. The inset of Fig. 4b depicts the behavior of the universal
scaling functionH ¼ ηf ðpÞ2 versus ∣1/xc−1/x∣, denoting a clear change in
the exponent. This outcome demonstrates that crowds are governed by two
distinct critical points similar to the DST transition with two distinct
jamming criticalities (one frictionless and the other frictional).

Disentangling the influence of force nature in FIS
The following final analysis is dedicated to shedding light on the type of
interactions involved in the model that induces FIS. With this aim,
we consider the sets described in the section “Numerical setup: room scape
scenario”. Figure 5a shows the average time a pedestrian takes to exit
the room as a function of the desired velocity for aperture b = 3Dm.Within
these sets, only two of them yield FIS, namely f S1,s1 and f B1,S1,s1. These two
cases have the presence of the shear force term given by Eq. (4) in common,
and it is noticeable that the case with the f B deactivated enhances the FIS
phenomenon. A similar result to the last one was previously found65.

Neither the sets where the particles solely interact due to social forces
nor contact forces alone can influence the emergence of FIS. However, the
latter case behaves distinctly to the rest of the cases. Under these circum-
stances, the absence of social force induces particles to enter into contact
starting from low velocities in contrast to the cases when social forces are
contemplated. It is worth mentioning that all these results clearly show that
FIS is obtained only if social and shear forces are included in themodel, with
the social forces being responsible for the transition from contactless to
contact frictional. The outcome reveals that substantial values of shear force
are needed to observe FIS, i.e., contact forces solely do not trigger FIS.

Paying careful attention, there are two distinct scenarios that prevent
FIS triggering. First, if the shear force is too lowor absent, the shear-frictional
contribution responsible for ST is too low or null; therefore, there is no
transition. Second, if the social force contribution is absent, the dynamics is
pure of frictional contact type and, similarly to a gravity-driven granular
system when neither external perturbations nor long-range interactions are
involved, neither FIS nor DST is observed. For this reason, a combined
presence of social force and a large contribution of the shear force are needed
to produce the frictionless(social)-friction transition and obtain FIS.

The rheological analysis confirms the previous discussion through the
results displayed in Fig. 5b. In this plot, only the cases coinciding with FIS
emergence prove to have an abrupt increase in viscosity. An effect that is
enhanced when the ratio of shear forces with respect to normal forces is
higher. Moreover, this suggests that an exaggerated increment of _γ in front

of the normal force can cause the system to jam or a more pronounced
discontinuous shear thickening.

Discussion
The aim of the present research was to establish connections between the
concepts of shear thickening and faster-is-slower phenomena. The geo-
metry selected inorder to assess this objectivewas thepedestrian egress from
a room through a bottleneck. The work was done through particle-based
simulations, concretely using the Social Force Model, and a particular type
of boundary conditionswas introduced in order tomaintain a constantflow
rate during the crowd evacuation. To assess the rheological response of the
pedestrian crowd, an approach able to compute the relevant magnitudes in
generic flows was employed.

The study has confirmed the presence of FIS in pedestrian evacuation
despite the introduction of specific boundary conditions that ensure a
constant number of particles during the simulation. Based on the time- and
spatial-averaged values of area fraction and velocity, we have obtained FIS
transition occurrence obeys changes in velocity rather than density since
velocity depicted a non-monotonic behavior as a function of the desired
velocity. This non-monotonic velocity profile behavior offered the first hint
regarding a possible change in the system rheology. Conversely, the area
fraction increased monotonically with the increase of v0, showing two dif-
ferent rates of increment that correspondedwith themaximumvelocity and
the optimal evacuation time. The increase in area fraction triggers the sec-
ond FIF domain since the velocity trend is less variable in this range of
desired velocities (v0 > 5).

The analysis of the contributions of the social (frictionless) and fric-
tional contact forces to the total stress showed that the frictional shear
contact stress overcomes the social contribution. This crossover is also
evidence that the crowd rheology presents a complex behavior similar to
(non)Brownian suspensions, where this crossover indicates the transition
from frictionless to frictional contacts characterized by an onset stress.
Supporting this line of reasoning, the found friction coefficient dependency
on the desired velocity is in good agreementwith this crossover, presenting a
maximum value close to the v0 value that corresponds with the fastest
evacuation. In addition, the time- and spatial-averaged shear rate showed an
S-shape dependency with the increase of v0 and, consequently, with the
pressure. This is a hallmark of discontinuous shear thickening (DST). This
outcome stresses that the local shear rate _γ behaves differently depending on
v0 or P values, transiting from d _γ=dP > 0 to d _γ=dP < 0. This transition is
linked to a change in the system rheology and is, again, a fingerprint of DST.
Also, by mapping the viscosity against the total pressure in a zone beyond
the exit vicinity, we also demonstrated that DST transition is evident in the
bulk in addition to the constriction. This observation, together with the
contact network analysis we performed, indicates that a transition from a
flowing state to a solid-like state (shear jamming or fragile) is responsible for
the DST transition.

Fig. 5 | Correspondence between FIS and shear
thickening in terms of the flow rate and the visc-
osity. a Averaged time that it takes for a pedestrian
to exit the room as a function of the desired velocity
for the force settings described in the section
“Numerical setup: room scape scenario”. Each point
is the best linear fit slope of t vs. N. b Spatial and
time-averaged viscosity η as a function of the desired
velocity v0, colors and symbols match the ones
represented in (a). The slopes β = 1 and β = 3 have
been included as guides for the eye. Error bars stand
for the 95% confidence interval and are not shown
when they are less minor than the marker size.
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Steeping forward, the results for the viscosity of the crowdflownear the
exit showed a steep increase at the same point where FIS occurs. This is a
clear correlation between the occurrence of FIS and shear thickening.
Moreover, the exponential increase of η(P ~ v0) indicates DST materializes
with an exponent β = 3, which implies a multivalued dependency ηð _γÞ,
assuming _γ∼P=η (the inset of Fig. 4a confirms that dependency), high-
lighting the existence of DST. Also, existing phenomenological theories
describe the fraction of frictional contacts f(v0) as a function of the desired
velocity v0. These results can be exploited in future contributions to model
pedestrian systems using the complex fluid models of the WC type, iden-
tifying as a potential candidate the scalar WC model posed recently36. A
performed scaling analysis based on refs. 62,63 evidenced the existence of
two distinct critical points that determine evacuation crowd dynamics,
analogous to the DST transition with two distinct jamming criticalities.

Finally, we have disentangled the influence of the distinct forces in FIS.
The results demonstrated that a combined presence of social force and a
large contribution of the shear force is required in order to trigger the
frictionless(social)-friction transition that leads to FIS. The contact forces
cannot activate FIS alone, and a social force interaction is necessary to avoid
contacts at low desired speeds. This also suggests that (non)Brownian
suspension systems can be more suitable to mimic pedestrian dynamics
than classical dry granular systems.

Overall, the obtained results are of double significance. On one side,
confirming the correspondence between FIS and shear thickening can be
exploited to simulate or describe pedestrian dynamics using complex fluids
models and theories stemming from the rheology of suspensions’ area.
Moreover, equivalent experimental setups embodying (non)Brownian
suspensions can shed new light and revisit pedestrian dynamics from a new
rheological perspective. This idea is based on the different complexity that
presents (non)Brownian suspensions compared todry granular systemsdue
to the role played by the repulsive(frictionless) force.

Methods
Velocity and position Integration using social force model
The model employed to simulate the pedestrians’ evacuation through a
bottleneck is the popular social force model (SFM), proposed by Helbing
and Molnár in 19956. The SFM is based on Newton’s second law and
considers three forces to reproduce basic aspects related to the behavior of
pedestrians, which were discussed in the section “Introduction”. The

velocities and positions of each particle i are obtained by integrating New-
ton’s second law, including all the forces acting on the particle i

mi
dvi
dt

¼ fdi þ
X
j

ðf sij þ f cijÞ: ð10Þ

In this work, we integrate Eq. (10) numerically using the Velocity-
Störmer–Verlet scheme66.

Numerical setup: room scape scenario
In our simulations, we emulate the pedestrians’ shapes as circles of diameter
uniformly distributed in the range Di = [0.45, 0.55] m, resulting in a mean
value for the pedestrian diameter Dm = 0.50m. Initially, N = 300 poly-
dispersed pedestrians of mass mi = 80 kg are randomly located in a
15m× 15m room with an exit centered at the middle of the right wall.
Figure 6 depicts this room through the black lines. Moreover, we perform
simulations for several widths of the exit b, with b ranging from b =Dm to
b = 5Dm at intervals of Δb =Dm/2. The upper bound of the desired velocity
domain is chosen to be consistent with the groundbreaking work done
analyzing the FIS phenomenon systematically by Helbing et al.1. Never-
theless, such extreme values may not mimic any real crowd evacuation
scenario. For every exit width, different desired speeds of the pedestrians v0

are evaluated in each run, going from v0 =Dm/s to v
0 = 20Dm/s at intervals of

Δv0 =Dm/s. When pedestrians move throughout the room, the desired
direction of movement always points to the center of the exit for all the
pedestrians, independent of their positions. For b = {2Dm, 3Dm}, additional
desired velocities are considered, which are selected from v0 = 0.25Dm/s to
v0 = 3Dm/s every 0.25Dm/s.

It is well known from the literature9,15 and also evidenced in our
simulations that the evacuation flux is affected by the remaining number of
pedestrians left in the room. This result is observed through a change in the
slope of the number of pedestrians exiting the outlet as the time increases
and prevents obtaining a steady or quasi-steady regime during the whole
process. Therefore, in order to keep a constant number of pedestrians in the
system and, as a result, to avoid the transient effect, a specific boundary
condition is imposed. Namely, a pedestrian that exits the room through the
outlet enters a second room with the size 7.5m × 15m, reassigning the
desired velocity and pointing towards a random position at the right
extreme of the domain. Afterward, the typical periodic boundary conditions
are considered. Fig. 6 denotes this second spot with the discontinuous
red lines.

Regarding themodel’s parameters, in the first part of this study, we use
the same values employed byHelbing et al. to reproduce the distance kept at
characteristic desired velocities and the measured flows through
bottlenecks1.With this aim, the parameters are set as τ = 0.5 s,A = 2 × 103 N,
B = 0.08m, H = 1.2 × 105 kg s−2, and γ = 2.4 × 105 kgm−1 s−1. Nonetheless,
we assess the influence of each force involved in the SFM by evaluating
different parameters H, γ, and A. We also isolate the effect of individual
interactions by deactivating one or two of the others, thereby allowing the
systematic evaluation of the minimum set of ingredients necessary for the
FIS phenomenon. As an example, it will explore whether FIS can be
reproduced by just maintaining either contact or social forces solely. The
used sets of parameters are f s1, f B1,s2, f B1,s1, f B1,S1,s1, f B1,S1, f B1,S2,s1, f S1,s1, where f B,
f S, and f s denote the body compression, shear, and social forces. In our
notation, the superscript stands for activated forces, whilst missing super-
scripts denote that the force is deactivated. The numbers 1 and 2 designate
different numerical values for those interactions in which two different
numeric values distinct from zero are explored, with 1 always defining the
corresponding parameter alreadymentioned in the caption of Fig. 6. For the
frictional force case f S, 2 stands for the additional friction parameter
γ = 2.4 × 104 kgm−1 s−1. Similarly, for the social force label (f s), we selected a
supplementary A = 3.2 × 103 N value and represented by 2. The other
parameters remain invariable. For example, the case f SB1,s2 means that the
shear force is deactivated, contrary to the body compression and social
forces that are activated. Moreover, for this case, all the values for the

Fig. 6 | Numerical sketch. An example of a typical initial configuration of the
N = 300 polydispersed pedestrians randomly located in a 15 m × 15m roomwith an
exit of width b = 3.0Dm. A random selection of 20 desired velocities in the evacuation
room and the same for the second room, pictured with red and blue arrows,
respectively. In the evacuation room, desired velocities are vectors pointing from
particle positions to the center of the exit, whereas in the second room, the desired
velocities point to a random position at the discontinuous vertical line. The
employed parameters are τ = 0.5 s, A = 2 × 103 N, B = 0.08 m, H = 1.2 × 105 kg s−2,
and γ = 2.4 × 105 kg m−1 s−1.
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simulation are as those mentioned in the caption of Fig. 6 except the
parameter A, which is A = 3.2 × 103 N due to the 2 accompanying the
superscript for the social force. The total time for each simulation is fixed at
1000 s with a numerical time step chosen to be Δt = 10−3 s.

Coarse-graining (CG) micro-macro mapping
To examine the results of the numerical simulations and to facilitate insight
into the complex behavior of the considered system, we have employed
coarse-graining mapping. In this way, the microscopic magnitudes pro-
vided by the simulations, such as positions, velocities, and interaction forces,
are mapped into macroscopic fields. To carry out this task, CG requires
introducing a non-negative integrable function φi(r). Here, a truncated
Gaussian function φðrÞ ¼ A�1

ω exp½�ðr� riÞ2=2ω2� is selected with
ω =Dm/2, where A�1

ω is the normalization constant such that φi(r) is nor-
malized in the interval [−rc, rc], being rc = 3ω the cut-off length. Thus, the
macroscopic mean fields of density ρ(r, t), momentum P(r, t), and velocity
V(r, t) = P(r, t)/ρ(r, t) are obtained from the particle positions ri and velo-
cities vi, respectively. Complementarily, the components of the shear rate
tensor _γαβ are numerically computed via central difference.

The stress field σ(r, t) is computed using the formulation introduced in
refs. 67,68. Following this approach, the stress σ(r, t) = σ k(r, t)+ σ f(r, t) has
two contributions: the kinetic stress field σ k(r, t) and an interaction-force
stress field σ f(r, t) = σ c(r, t)+ σ s(r, t), with superscripts c and s denoting the
contact and social contributions, respectively.

The interaction-force stress field σ f(r, t) is computed from the inter-
action forces and branch vectors rij by the line integral of φ(r) along rij as
follows:

σ f ðr; tÞ ¼
XN
i¼1

XNc
j¼1

rij � Fij

Z 1

0
φðr� ri þ srijÞds: ð11Þ

On the other hand, the kinetic stress σ k(r, t) accounts for the velocity
fluctuations relative to the mean velocity field V(r, t). Defining the fluc-
tuations of the velocity as v0i ¼ vi � Vðr; tÞ, the kinetic stress yields

σkðr; tÞ ¼
XN
i¼1

v0i � v0iφi: ð12Þ

in the framework of the coarse-graining methodology.
Based on the previous formulation, a post-processing data analysis tool

was implemented. It allows the computation of all the relevantmacroscopic
fields using the SFM simulations’ outcomes as input data.

Rheology from complex flows
Standard rheological characterization of complex fluids is usually done
under viscometric flows69. Giusteri and Seto recently introduced a general
decomposition of the stress tensor for incompressible fluids in generic flow
conditions70. In their proposed framework, the velocity gradient∇ u is
expressed in terms of its symmetricD and antisymmetricW part as follows:

∇u ¼ DþW ð13Þ

Employing this decomposition of the velocity gradient and expressing D
andW in the base of the unit-norm eigenvectors ofD, a generalized system
viscosity η is inferred to hold the following form

η ¼ 1
2
σ : D
D : D

ð14Þ

under steady simple shear flow, η becomes exactly the shear viscosity.
σ = σ k+ σ c+ σ f is the total stress. It can be split into normal and shear
contributions, σ ¼ TrðσÞ1þ τ. The normal contribution can be rationa-
lized in terms of the hydrodynamic pressure (first tensor invariant)
P ¼ TrðσÞ=2. In contrast, the shear contribution can be quantified through

the second invariant of σ, τ ¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1�λ2Þ2

p
, where λ1 and λ2 are the

eigenvalues of the stress tensor.
Moreover, a measure of macroscopic friction can be quantified as

tensor-invariant finding the deviatoric stress relative to pressure, which
reads

μc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλc1 � λc2Þ2

q
ffiffiffi
6

p
pc

; ð15Þ

where λc1 and λ
c
2 are the eigenvalues of the contact stress tensor σ

c, whereas
pc is the contact pressure which is Trðσ cÞ=2.When the strain rate and stress
are collinear, this quantity is precisely the Coulomb coefficient of friction.

Data availability
Those interested in requesting the data related to this contribution can
contact the corresponding authors. The data can also be easily obtained
using the code, which is available at https://github.com/BCAM-CFD/
evacuation_pedestrians.

Code availability
The code can be found at https://github.com/BCAM-CFD/evacuation_
pedestrians.
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