
communications physics Article

https://doi.org/10.1038/s42005-024-01643-4

Large impact of phonon lineshapes on the
superconductivity of solid hydrogen

Check for updates

Ðorđe Dangić 1,2 , Lorenzo Monacelli3, Raffaello Bianco4,5,6, Francesco Mauri 7 & Ion Errea 1,2,8

Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of
high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture
obsolete questioning standard approaches formodeling superconductivity in thesematerial systems.
In this work, we show the effects of non-Lorentzian phonon lineshapes on the superconductivity of
high-pressure solid hydrogen. We calculate the superconducting critical temperature TC ab initio
considering the full phonon spectral function and show that it overall enhances the TC estimate. The
anharmonicity-induced phonon softening exhibited in spectral functions increases the estimate of the
critical temperature, while the broadening of phonon lines due to phonon-phonon interaction
decreases it. Our calculations also reveal that superconductivity emerges in hydrogen in the
Cmca− 12molecular phase VI at pressures between 450 and 500 GPa and explain the disagreement
between the previous theoretical results and experiments.

Solid atomic hydrogen was postulated to be a high-temperature super-
conductor at high pressures by Ashcroft in 19681. Later, this idea has been
revised and hydrogen-rich compounds have been hypothesized to be high-
temperature superconductors at pressures that are only a fraction of the one
needed to get atomic hydrogen2,3. The first experimental verification of that
idea came in 2015whenH3S was shown to have a transition temperature of
203 K at 155 GPa4. This has been followed up by numerous experiments on
different hydrogen compounds,many of them exhibiting high-temperature
superconductivity5–11, verifying without a reasonable doubt the existence of
superconductivity in hydrides at high pressures12.

The discovery of high-temperature superconductivity renewed the
interest in synthesizing atomic metallic hydrogen, which is expected to
superconduct above room temperature13–16. Recently, a work reported
atomic metallic hydrogen at 495 GPa on the basis of enhanced optical
reflectivity17. While this finding was questioned18 due to a probable over-
estimation of the measured pressure, there is an abundant amount of proof
of finite electrical conductivity of solid hydrogen in themolecular phase19,20.
None of these works, however, observed the transition to the super-
conducting phase up to 440 GPa. Many first-principles calculations predict
the onset of superconductivity in solid hydrogen at significantly lower
pressures21–23. The disagreement with experiments, in this case, is surprising

in light of the success of thefirst-principles approach to superconductivity in
other high-pressure hydrides3,24,25.

A better understanding of the high-pressure solid hydrogen phase
diagram was provided by recent first-principles calculations considering
both electronic correlations beyond density functional theory (DFT) and
nuclear quantum effects26–28. Monacelli et al. show that at pressures lower
than 422 GPa hydrogen crystallizes in the C2/c-24 phase, with 24 atoms in
the primitive unit cell (phase III of solid hydrogen). In a pressure range
between 422 and 577 GPa hydrogen transforms to theCmca-12 phase, with
12 atoms per unit cell (phaseVI). The value of 422 GPaagrees verywell with
the experimental transition pressures detected by infrared at 420 GPa20 and
byRaman at 440 GPa19. Finally, at pressures higher than 577 GPa, hydrogen
transforms into atomic hydrogen with a tetragonal I41/amd− 2 structure,
containing two atoms per primitive unit cell.

Oneof thekey reasonswhy studies in refs. 26,27were able to successfully
model the phase diagram of solid hydrogen was the inclusion of quantum
anharmonic effects. The phonon renormalization due to anharmonicity can
significantly alter superconductivity, as shown in refs. 21,22,25,29,30. How-
ever, these studies have not explored the anharmonicity-induced dynamical
renormalization of phonons and its impact on superconductivity. Some
studies have highlighted the importance of these effects on superconductivity
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utilizing simple single phonon mode toy models31,32. On the other hand,
dynamical renormalization of phonons due to electron-phonon coupling has
been shown to have little impact on the critical temperature33 of conventional
superconductors. However, the dynamical effects due to phonon-phonon
interaction should be much stronger in high-pressure hydrides, and thus, a
full first principle study of these effects is necessary.

Here, we present a first-principles study of the superconducting
properties of solid hydrogen in its high-pressure phases from 300 to
600 GPa by accounting for quantum anharmonic effects both on the pho-
nons and the structure with the self-consistent harmonic approximation
(SSCHA) at zero Kelvin. On top of the static renormalization of phonons
(first-order perturbation theory terms of all anharmonic orders), we addi-
tionally include the dynamical renormalization of phonon quasiparticles
(see Supplementary Note 4). We find that the SSCHA appreciably changes
the structure of solid hydrogen in all phases, which leads to an increased
density of states (DOS) at the Fermi level and an overall phonon softening.
These two effects combine to increase the electron-phonon coupling con-
stants and superconducting transition temperatures in the SSCHA struc-
tures, at odds with previous calculations that neglect the impact of ionic
quantum effects on the structure21,22.We also show that the phonon spectral
functions of all these phases have a complex and broad shape, clearly
deviating from a simple Lorentzian, questioning the standard approxima-
tion made in the electron-phonon calculations in which the spectral func-
tion is represented with a Dirac delta function. By considering the full
phonon spectral function,we show that the critical temperature (TC) of both
molecular and atomic phases is considerably enhanced. Our calculations
predict the onset of superconductivity in solid hydrogen in the semimetallic
molecular phase VI at pressures between 450 and 500 GPa, which is con-
sistent with recent experiments19, which did not observe superconductivity
below 450GPa.

Results and discussion
Quantum anharmonic effects have a large impact on the structures in the
phase diagram, as shown in Fig. 1 (solid lines), compared to the structures

that are minima of the Born-Oppenheimer energy surface (BOES) (dashed
lines). There is a discontinuity in volume at the phase transition between
molecular and atomic phases, not evident for the transition between
molecular phases III and VI. This discontinuity is partly suppressed in the
quantum anharmonic SSCHA structures. The SSCHA expands the struc-
ture slightly for all phases, most prominently for the atomic phase,
increasing bond lengths and the c/a ratio at all pressures, as it has already
been calculated in other high-pressure hydrides23,34. Importantly, SSCHA
changes the qualitative behavior of bond lengths inmolecular phases: while
in SSCHA the bond length increaseswith pressure, in the classical harmonic
approximation, in which it is determined by the minimum of the BOES, it
stays relatively constant26.

These changes have a significant effect on the electronic and vibrational
properties of solid hydrogen (see Figs. 1 and 2 and Supplementary Note 1).
Themost prominent impact is the increase of the DOS at the Fermi level in
the quantum anharmonic SSCHA structures. In the molecular phase VI,
decreasing volume leads to an increase in the DOS, but with a considerably
higher slope for the SSCHA structures than for the harmonic ones. This
behavior shows that quantum anharmonic effects tend to increase the DOS
at the Fermi level, as already described in several hydrides23,24. Molecular
phase III is onlyweakly semimetallic up to450 GPaandwill not bediscussed
further on, as, thus, it cannot superconduct as suggested by the latest
transport experimental results19.Closingof the fundamental bandgap inour
DFT calculations occurs above 400 GPa, which is slightly overestimated
compared to calculations that include both better approximation for the
exchange-correlation functional and the effect of the electron-phonon
coupling26,28,35. The effects of the electron-phonon coupling (which is the
main driver of the band gap closure) will be somewhat included in our
superconductivity calculations through the self-consistent solution of
Eliashberg equations.

In addition to the structure modified by quantum nuclear effects, the
SSCHA method allows us to obtain auxiliary second-order force constants
renormalized by anharmonicity. Quantum anharmonicity softens phonon
frequencies as a consequence of the stretching of the H bonds (see Fig. 1).

Fig. 1 | Structural, vibrational, and electronic
properties of solid hydrogen with pressure.
a Volume of the primitive unit cell per hydrogen
atom, b length of the hydrogen-hydrogen bond,
c the electronic density of states (DOS) at the Fermi
level per hydrogen atom, and d the average phonon
frequency in high-pressure solid hydrogen. Solid
lines represent data obtained for structures relaxed
within the stochastic self-consistent harmonic
approximation (SSCHA) considering quantum
anharmonic effects and dashed lines are for the
structures that are minima of the
Born–Oppenheimer energy surface. The color
background shows a phase diagram of the solid
hydrogen from ref. 27 and the color of the lines
indicates for which phase calculations were
performed.
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This is at odds with recent calculations21,22, in which the frequencies of the
phonon modes excluding the vibrons increase due to anharmonicity. The
difference is that, in the latter case, the effect of the quantum zero-point
fluctuations on the structure was neglected, which our calculations show to
be important. Additionally, in the SSCHA of ref. 22 a truncated potential is
used (to the fourth order), which gives slightly different results compared to
the SSCHA method where all anharmonic orders are included in the cal-
culation of the auxiliary force constants. Both the increase of theDOS at the
Fermi level and the phonon softening are beneficial for superconductivity
since the electron-phonon coupling constant scales inversely with phonon
frequencies and linearly with the DOS at the Fermi level.

Beyond the renormalization of structural parameters and phonon
frequencies, anharmonicity has a huge impact on the phonon spectral
function (see Supplementary Note 3). The spectral function of all phases
shows further softening with respect to the auxiliary SSCHA phonon fre-
quencies, especially for high-frequency opticalmodes. This softening can be
also captured with the calculation of the free energyHessian. Specifically, in
the static limit, the peaks of the phonon spectral function coincide with the
frequencies obtained diagonalizing the free energyHessian. However, Fig. 2
clearly demonstrates the range of applicability of the free energyHessian for
describing vibrational properties. It is a good approximation in the vicinity
of the vanishing imaginary self-energy, that is, when auxiliary SSCHA fre-
quency is close to 0 or when there is no large broadening of the phonon
spectral line.

In addition to the aforementioned softening, we predict a huge
broadening of the phonon spectral functions of the order of thousands of
cm−1 evenat vanishing temperatures. In this case, phonon spectral functions
clearly deviate from the standard Lorentzian line shape.We illustrate this in
Fig. 2, where phonon spectral functions for selected modes at Γ point are
presented for structures at 500 GPa inmolecular phaseVI andatomicphase.
We report two representativemodes formolecular phase VI: a global lattice
vibration (phononmode)and a stretchingofH2molecule (vibronmode). In
the atomic phase, we only have two optical modes that are non-degenerate
andwe showbothof them.The shift of thephonon frequency is very large in

all cases. Additionally, allmodes, except theEg one in the atomic phase, have
ahugebroadeningof thephonon spectral functionof thousandsof cm−1 and
a clear non-Lorentzian line shape. Such anomalous behavior questions the
standard practice of approximating the spectral function with slightly
smeared Delta functions in first-principles calculations of the super-
conducting critical temperatures. In fact, it has already been shown that
non-Lorentzian lineshapes can have a non-negligible effect on other
properties of materials, i.e., the lattice thermal conductivity in highly
anharmonic semiconducting chalcogenides36.

The isotropic Eliashberg function of the electron-phonon interaction
can be calculated keeping the full anharmonic spectral function as37

α2FðωÞ ¼ 1
Nq

X
abq

ΔabðqÞσabðq;ωÞ
ω

ffiffiffiffiffiffiffiffiffiffiffiffi
mamb

p ; ð1Þ

where σab(q, ω) is the phonon spectral function in the Cartesian basis with
wave number q (see Supplementary Note 4). In Eq. (1) a and b label both
atoms in a Cartesian direction, Δab(q) represents the average of the defor-
mation potential over the Fermi surface,ma is themass of atom a, andNq is
the numberofqpoints in the sum. In the harmonic case,α2F(ω) is calculated
for the structure that minimizes the BOES, while in the SSCHA it is cal-
culated for the structure that minimizes the free energy. Eq. (1) offers a
straightforward approach to studying the impact of anomalous phonon
lineshapes into superconducting properties. However, Δab(q) includes only
the linear term in the electron-phonon interaction without considering
higher-order terms that may become important due to quantum nature of
hydrogen ions and which are included in other approaches38,39.

All calculations thus far that have accounted for anharmonicity in the
calculation of α2F(ω) have been performed assuming that σab(q, ω) can be
expressed as15,23–25,29,30σabðq;ωÞ ¼

P
μe

a
μðqÞeb�μ ðqÞσhμðq;ωÞ, where the har-

monic spectral function σhμðq;ωÞ of mode μ and wave number q is a Delta
function centered at the harmonic or SSCHA auxiliary phonon frequency,
and eμ(q) are either harmonic or SSCHA phonon eigenvectors. As in
practical implementations, the Delta functions are numerically approxi-
mated with a Gaussian function of fixed spread, we label this approach as
Gaussian. However, as we have shown in Fig. 2, anharmonicity can dras-
tically affect the phonon lineshapes. In order to obtain σab(q, ω), here we
utilize the full phonon spectral function. In this case, we do not assume that
the phonon self-energy is diagonal in the phonon branch index, as it is
usually done, and instead calculate the spectral function as σabðq;ωÞ ¼P

μνe
a
μðqÞeb�ν ðqÞσμνðq;ωÞ fully accounting for off-diagonal terms in pho-

non self-energy. Here, the polarization vectors are obtained from the
SSCHA auxiliary dynamical matrices. Including full phonon spectral
functions drastically changes the calculated α2F(ω), as shown in Fig. 3. The
previously mentioned softening of the phonon modes is also evident in the
Eliashberg spectral functions. Additionally, the broadening of the phonon
lineshapes leads to the complete closing of the gap betweenhydrogen vibron
and phonon branches in the molecular phase VI. The softening of the
phononmodes in the SSCHA coupledwith a higher DOS at the Fermi level
in the SSCHA structures leads to higher values of the electron–phonon
coupling constant λ in most cases compared to the harmonic result, more
remarkably in the molecular phase VI (see Fig. 3a and Supplementary
Note 4). A notable exception is atomic hydrogen at 500 GPa (depicted in
Fig. 3b), where the proximity to a phonon instability, which is suppressedby
anharmonicity, drastically increases λ in the harmonic approximation.
Finally, it isworthnoting that the no-mode-mixing approximation (treating
phonon self-energy as diagonal in phonon branches), which is more com-
monly used for the calculation of phonon spectral functions, yields similar
results to those obtained with the full off-diagonal spectral function.

Solving isotropic Migdal-Eliashberg equations with the α2F(ω)
obtained considering the full spectral function37,40, we can estimate the
impact of anharmonicity on the superconducting transition temperature
(see Fig. 4). Asmentioned above, theC2/c−24 phase of solid hydrogen does
not exhibit superconductingbehavior in thepressure rangeof interest. In the

Fig. 2 | Phonon spectral function of solid hydrogen. Phonon spectral functions in
the no mode mixing approximation in mode basis, σμ(q, ω), of two representative
optical phonon modes at Γ of solid hydrogen in a molecular Cmca-12 phase VI at
500 GPa, and b atomic tetragonal I41/amd-2 phase at 500 GPa. Thick dashed vertical
lines represent the corresponding frequencies obtained from the auxiliary stochastic
self-consistent harmonic approximation (SSCHA) force constants, while dotted lines
represent the corresponding free energy Hessian frequency. In panel b we scaled the
values of the Eg mode in order to make the figures clearer.
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molecular phase VI, the transition temperature is mostly linear with pres-
sure and correlateswell with the value of theDOS at the Fermi level. Because
of this, the SSCHA structures consistently show higher transition tem-
peratures than the classical harmonic ones. The difference in TC between
these two methods increases with pressure, again due to the stronger
dependence of the electronic DOS on the pressure in the SSCHA structures
(see Fig. 1), as well as due to the increased electron-phonon coupling due to
the anharmonic softening of the phonon modes.

The estimate of the superconducting transition temperature obtained
utilizing full phonon spectral function in all cases is larger than the one
obtained using auxiliary SSCHA force constants and Gaussian approx-
imation by ~30 K. On the other hand, Gaussian approximation coupled
with the phonons from the Hessian of the total free energy gives a larger
critical temperature than the full phonon spectral function calculation (at
most 15 K). SinceHessian calculations only incorporate the softening of the
phonon modes, the conclusion is that the softening of phonon modes
increases the critical temperature while the broadening of the phonon
spectral lines reduces it. Considering that α2F(ω) is intimately related to the
electron self energy37 we can assume that the phonon spectral functions will
have an influence on other material properties that strongly depend on the
electron self-energy, such as electrical conductivity, Seebeck coefficient,
band gap renormalization, etc. We would like to highlight that at this
moment, the effects of the finitely lived phonon quasiparticles are not
accounted for in any first-principles calculations, while our results show
they might have a large effect.

Considering the critical dependence of TC on the DOS at the Fermi
level and that local exchange-correlation functionals tend to overestimate
it13,15,21,22,41,42, we perform DFT calculations for the quantum SSCHA struc-
tures of phase VI using the B3LYP hybrid functional43 (see Supplementary
Note 2). Since the critical temperature correlates linearly with the electronic

DOS in theCmca-12 phase, we can estimate the superconducting transition
temperature using the DOS from the better B3LYP calculation. With this
procedure, we predict that superconductivity will emerge in solid hydrogen
in the Cmca-12 phase between 450 and 500GPa. This result is consistent
with a recent experiment19, which failed to observe superconductivity at
440 GPa in what was identified as a molecular phase VI26.

In the atomic tetragonal phase, the critical temperature is mostly
constant with pressure. In this phase, TC is mostly decorrelated with the
value of the electronic DOS at the Fermi level because the structures are far
away from themetal-insulator phase transition27 and, despite quantum and
anharmonic effects enhancing the DOS as well, its relative increase is small
compared to the molecular case. Accounting for the full phonon spectral
function in the calculation of α2F(ω) increases the estimate of the critical
temperature by 20 K compared to the case using the Gaussian approx-
imation and SSCHA auxiliary force constants (see Supplementary Note 4).
This increase is much larger than the one induced by the SSCHA structure
renormalization (<5 K away from the structural instabilities, see Supple-
mentary Note 4). This highlights the important role that anharmonicity
plays in the superconductivity of high-pressure hydrogen also in the atomic
phase, contrary to the previous calculations that only estimated its effect
within the Gaussian approximation of the spectral function15.

In conclusion, our first-principles calculations considering ionic
quantum effects and anharmonicity show that superconductivity will
emerge in solid hydrogen inmolecular phaseVI, between 450 and 500GPa,
andTC will rapidly soar with pressure.We expect a jump ofTC to ~350 K at
the transition to the atomicphase.Quantumanharmonic effects have ahuge
impact on the structural, vibrational, and superconducting properties of
both molecular and atomic phases by, for instance, increasing the H-H
bonds and making the phonon spectral functions extremely broad and
anomalous. We show that considering the full phonon spectral function in
the calculation of α2F(ω) enhances the predicted critical temperature by
25 K in the atomic phase and 30 K in the molecular phase VI.

Methods
DFTanddensity functional perturbation theory (DFPT)44 calculationswere
performed using Quantum Espresso software45,46, implementing the gen-
eralized gradient approximation (GGA) with the BLYP parameterization47

Fig. 4 | Superconducting critical temperature in solid hydrogen. Calculated
superconducting transition temperature in solid hydrogen in different phases and
pressures within the stochastic self-consistent harmonic approximation (SSCHA)
using the full phonon spectral functions (full symbols and solid lines) and the
harmonic approximation using the Gaussian method (empty symbols and dashed
lines). Shaded regions represent the phase diagram of solid hydrogen from ref. 27.
Line colors denote for which phase calculations were performed (red for molecular
phase VI and purple for atomic phase).

Fig. 3 | Eliashberg spectral function α2F(ω) and integrated electron-phonon
coupling constant λ(ω) of solid hydrogen. Eliashberg spectral function α2F(ω) and
integrated electron-phonon coupling constant λ(ω) of solid hydrogen in amolecular
Cmca-12 phase VI at 500 GPa, and b atomic tetragonal I41/amd− 2 phase at
500 GPa. The Gaussian-Harmonic label refers to results calculated with harmonic
phonons of the DFT structures in the Gaussian approximation for the phonon
spectral function. Gaussian-Hessian refers to results calculated with phonons from
free energy Hessian calculated for the stochastic self-consistent harmonic approx-
imation (SSCHA) structures in the Gaussian approximation for phonon spectral
function. Finally, Full results were obtained for SSCHA structures with the α2F
calculated with the full phonon spectral function matrix. Legend in panel b applies
for a as well.

https://doi.org/10.1038/s42005-024-01643-4 Article

Communications Physics |           (2024) 7:150 4



for the exchange-correlation functional. In the case of the primitive unit cell
calculations, we used a Monkhorst-Pack grid for sampling electronic states
with densities of 48 × 48 × 48 for the atomic phase, 12 × 12 × 12 for the
molecular phase VI, and 12 × 6 × 12 for molecular phase III. The electronic
wave functions were represented in a plane wave expansion using an 80 Ry
energy cutoff (320 Ry cutoff for the electronic density). To describe
hydrogen ions, we used a norm-conserving pseudopotential with no
pseudized electrons generated by the Pseudo Dojo library48 and the
ONCVPSP software49. Considering that we are investigating metallic/
semimetallic phaseswe used aMarzari-Vanderbilt smearing of 0.03 Ry50 for
Brillouin zone integrations.

To get the structural and vibrational properties of solid hydrogen we
used the stochastic self-consistent harmonic approximation (SSCHA). The
SSCHAmethod51–54 allowsus tominimize the total free energyof the system,
which includes the quantum zero-point motion and anharmonicity, with
respect to twovariational parameters that define the ionicwave function: the
centroid positions and the auxiliary force constants. The centroids are the
average positions of the atoms (the means of the Gaussians that approx-
imate the ionic wave functions). The auxiliary force constants are related to
the standard deviation of the Gaussians. Eigenvalues of the dynamical
matrices constructed from these auxiliary force constants can be regarded as
better estimates of the true phonon frequencies than the simple harmonic
force constants since they have been renormalized by anharmonicity. More
precisely, in perturbation theory language these force constants include
contributions to the first order in perturbative expansion from all of the
anharmonic terms in the expansion of the BOES. These corrections are
purely real and only shift the phonon frequency. The centroids and SSCHA
auxiliary second-order force constants are obtained at the end of the
minimization of the total free energy. Additionally, on top of renormalizing
the second-order force constants, SSCHA renormalizes the anharmonic
force constants as well in a similar manner.

From here, we can go a step further and include some terms of the
higher orders in the perturbation theory that stem from third and fourth-
order anharmonic force constants (renormalized by anharmonicity as
explained above), which are consistent with SSCHA54–57. The phonon
Green’s function (Gμμ0 ðq;ωÞ) in this case can be expressed as:

Gμμ0 ðq;ΩÞ ¼ Ω2δμμ0 � Dð2Þ
μμ0 ðqÞ � Πμμ0 ðq;ΩÞ

h i�1
:

Here Dð2Þ
μμ0 ðqÞ is the dynamical matrix constructed from the SSCHA

auxiliary force constants andΠμμ0 ðq;ωÞ is phonon self-energy that depends
on the SSCHA anharmonic force constants (Dð3ÞðqÞ;Dð4ÞðqÞ):

Πðq;ΩÞ ¼ Dð3ÞðqÞ : Λðq;ΩÞ : 1�Dð4ÞðqÞ : Λðq;ΩÞ� ��1
: Dð3ÞðqÞ:

The double-dot productX:Y indicates the contraction of the last two indices
of X with the first two indices of Y. If we denote the eigenvalues of the
SSCHA auxiliary dynamicalmatrices asωμ(q) and associated Bose-Einstein
factors as nμ(q), the above Λ(q, Ω) is given as:

Λμμ0 ðq;ΩÞ ¼ 1
4ωμðqÞωμ0 ðqÞ

ωμðqÞ � ωμ0 ðqÞ
� �

nμðqÞ � nμ0 ðqÞ
� �

ðωμðqÞ � ωμ0 ðqÞÞ2 �Ω2 þ iϵ

2
4

� ðωμðqÞ þ ωμ0 ðqÞÞð1þ nμðqÞ þ nμ0 ðqÞÞ
ðωμðqÞ þ ωμ0 ðqÞÞ2 �Ω2 þ iϵ

#
:

ð2Þ

Πμμ0 ðq;ωÞ is not purely real and describes the realistic broadening of the
phonon spectral functions. However, in the static limit (Ω→0), the con-
tributions from these terms are again only real and can be included to
further renormalize the SSCHA second-order auxiliary force constants.
Force constants obtained in this manner are Hessians of the total free
energy, Gμμ0 ðq; 0Þ. If any of the eigenvalues of the Hessian of the total free
energy is negative, the structure is unstable. These force constants can

alternatively be used to describe the vibrational properties of thematerial. In
the static limit, for the calculation of the Hessian of total free energy, we
include the contributions of both the third and fourth-order SSCHA
anharmonic force constants.

However, a physically more relevant representation of the vibrational
properties of materials comes from the phonon spectral functions obtained
in the dynamical dressed-bubble approximation, using auxiliary force
constants and third-order force constants from SSCHA as described in
refs. 54–57:

σμμ0 ðq;ΩÞ ¼ �Ω

π
ImGμμ0 ðq;ΩÞ:

The anharmonicity, in general, leads to the mixing of the phonon modes,
and the matrices of phonon spectral functions at different values of the
frequency (energy)Ωdonot commute.Usually, this is disregarded, andonly
the diagonal part μ ¼ μ0 of the phonon spectral function (in the space of
eigenvectors that diagonalize auxiliary SSCHA force constants) is taken into
account. This approximation is referred to as a no-mode-mixing
approximation in this work. Alternatively, one can use the true phonon
spectral function, including the off-diagonal terms in the phonon spectral
functions, and that approach is termed full in this work.

The sampling of atomic positions and forces for SSCHA calculations
was done on a 5 × 5 × 5 primitive cell repetition for the atomic phase,
2 × 2 × 2 for the molecular phase VI, and 2 × 1 × 2 for the molecular phase
III. The number of configurations used for the stochastic sampling was 500
for the atomic phase, 600 for molecular phase VI, and 6000 for molecular
phase III. To calculate third-order force constants needed to calculate the
spectral functions, we used a finer stochastic sampling of 3000 structures for
the atomic phase and 20000 structures for phase VI. SSCHA calculations
were performed at 0 K. For the calculation of the phonon spectral functions
we used the dynamical bubble term in the phonon self-energy expansion. In
the static limit, the peaks of the phonon spectral function coincide with the
frequencies obtained from the free energy Hessian. For the Hessian calcu-
lations, in the molecular phase, we used the static bubble term from the
third-order anharmonicity and fourth-order anharmonicity double bubble
term, and for the atomic phase, we used only the third-order static bubble
term. The SSCHA auxiliary force constants already include the effects of so-
called tadpole and loop terms, as well as higher orders of anharmonicity.

Finally, we performed a convergence study of the electron-phonon
coupling constant and the critical temperature with respect to the q point
grid inDFPT calculations.Wehave found that reasonably converged results
were obtained with a 12 × 12 × 12 q point grid for the atomic phase,
8 × 8 × 8 for phase VI, and 8 × 4 × 8 for phase III (see Supplementary
Note 5). The calculated electron-phonon coupling constants from DFPT
wereprojectedontoSSCHAphononmodes25.k-point grids for thenon-self-
consistent calculations for the electron-phonon coupling were done on
100 × 100 × 100 grids for the atomic phase, 44 × 44 × 44 for phase VI, and
44 × 22 × 44 for phase III withGaussian smearing of 0.012Ry for the energy
conservation Dirac deltas. Finally, to calculate superconducting transition
temperatures, we used the isotropic approximation of the Migdal-
Eliashberg (ME) equations in the constant DOS approximation37. We use
μ* = 0.16 for the Coulomb pseudopotential and a cutoff for the Matsubara
frequencies of 10 times the highest phonon frequency37. We have checked
that this approximated approach to solving ME equations yields accurate
results despite the use of the μ* parameter. For example, in LaH10, where
superconductivity is dominated by the hydrogen sublattice, this approach
only yields an overestimation of TC of 7% with respect to anisotropic ME
equations and the use of the random phase approximation to calculate the
Coulomb repulsion (to avoid the use of the simple μ* parameter)24,58.

Data availability
All the data supporting the presented results are available from the corre-
sponding author upon request.
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Code availability
BothQuantumEspresso and SSCHAare free software codes freely available
from the followingwebsites: https://www.quantum-espresso.org and http://
sscha.eu.
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