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Chiral limit and origin of topological flat
bands in twisted transition metal
dichalcogenide homobilayers
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The observation of zero field fractional quantum Hall analogs in twisted transition metal
dichalcogenides (TMDs) asks for a deeper understanding of what mechanisms lead to topological flat
bands in two-dimensional heterostructures, and what makes TMDs an excellent platform for
topologically ordered phases, surpassing twisted bilayer graphene. To this aim, we explore the chiral
limits of massive Dirac theories applicable toC3-symmetric moiré materials, and show their relevance
for both bilayer graphene and TMD homobilayers. In the latter, the Berry curvature of valence bands
leads to relativistic corrections of the moiré potential that promote band flattening, and permit a limit
with exactly flat bands with nonzero Chern number. The relativistic corrections enter as a layer-orbit
coupling, analogous to spin-orbit coupling for relativistic Dirac fermions, which we show is non-
negligible on themoiré scale. The Berry curvature of the TMDmonolayers therefore plays an essential
role in the flattening of moiré Chern bands in these heterostructures.

Extremely narrow bands near magic angle in twisted bilayer graphene
(TBG) are natural hosts for strongly correlated phenomena. At the core
of the understanding of the TBG phase diagram nevertheless lie single-
particle insights1 that only weakly account for the full interactions of the
system. This stems from a hierarchy of energy scales2 enabling to impose
stronger symmetry constraints on theoretical models of TBG at only
small costs in their experimental pertinence3. The prime example of such
physically relevant yet approximatemodel is the first chiral limit of TBG4,
in which interlayer hopping is neglected where the graphene sheets stand
furthest apart in the moiré unit cell. This extreme limit provides Landau-
level like5,6 exact flat bands (EFBs)7–9 for a twist angle close to the
experimental magic value10. Relying on this structure, and adapting
analytical results on ferromagnetism11,12 and exact zero modes13–15 from
multi-component Hall systems, it is possible to rationalize the quantum
anomalous Hall (QAH) state observed at filling n = 3 in presence of
aligned hBN16,17 and the fractional quantumHall (FQH) states evidenced
at low magnetic fields18.

Twisted transition metal dichalcogenide (TMD) homobilayers have
also been identified as prominent platforms for strongly interacting topo-
logical phases19 due to their predicted topological20 andextremelynarrow21,22

topmost valence bands. Recently, refs. 23,24 have reported clear signatures
of strongly correlated physics using compressibility and optical

measurements on twisted MoTe2 homobilayers at twist angles θ ~ 3.5°.
Independently, these two experiments have detected a robust spin-valley
polarized QAH state at unit filling of the moiré unit cell20,21, which hands
down its ferromagnetism below unit filling to realize a half-metal25 that acts
as aprecursor to the fractionalChern insulator (FCI), the zeromagneticfield
analog of the FQHE26–30, measured at 2/3 filling23,24.

At the moment, these moiré semiconductors lack the deep analytical
structure offered by the approximate models available for TBG, preventing
the same level of understanding. This absence of well-controlled theoretical
limit for TMDs does not stem from a fundamental opposition with TBG.
Indeed, the only difference between moiré TMDs and TBG is a large C2-
symmetry breaking mass term gapping out the Dirac cones, analogous to,
but much stronger than, the effect of aligned hBN on TBG31.

In this article, we comprehensively explore all the chiral limits of
perturbed Dirac field theories applicable to C3-symmetric moiré materials.
We find that that only two exist, one of which is guaranteed to feature
EFBs4,32,33. For massless fermions, they reproduce the two chiral limits
identified in TBG3,4. Extending these limits to massive Dirac theories, we
observe that the one possessing topological EFBs perfectly captures the
physics of twisted TMD homobilayers. In fact, we argue that, due to larger
corrugation effects, TMDs are a better realizationof thefirst chiral limit than
TBG itself.
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This firstmassive chiral limit explains the emergence of topological flat
bands in TMD homobilayers. Moreover, our approach qualitatively cap-
tures the special angles θ ~ 3.5° where experiments have observed zero-field
FCIs23,24. The topological character of the flat bands can be understood as a
consequence of layer–orbit coupling, the analog of spin–orbit coupling in
the standard relativistic Dirac theory. Contrary to the relativistic case
however, we show that this term, which to our knowledge does not appear
elsewhere, is non-negligible on the moiré scale since the Dirac velocity
divided by the moiré period v/am ~ 10meV is of similar magnitude as the
interlayer hybridization scale.

Index theorems32–34 guarantee that theflatness of the bands in the chiral
limit are, tofirst order, immune to both gauge and potential disorder akin to
the zeroth Landau level of graphene35. The existence of this limit, evenwhen
fine-tuned, can therefore explain how delicate correlated phases such as
FCIs appear in twisted TMDs near their first magic angle despite their
disorder and strain.

Results and discussion
EFBs and chiral anomalies
To guide our search for EFBs and magic angles, we build on the physics of
TBG, wherein bands closest to charge neutrality perturbatively flattenwhen
the velocity of theDirac cones vanishes1, and become fully degenerate under
slight modifications of the model that provide a chiral anomaly with non-
trivial index33. Here, we briefly review these arguments and characterize the
most general chiral symmetry applicable to C3 symmetric moiré materials
with Dirac cones.

We consider a two-dimensional heterostructure composed of two
layers of massive or massless Dirac materials that hybridize with one
another via slowly varying coupling terms on a large moiré scale am set by
the interlayer lattice mismatch and twist, as described by the generic
Hamiltonian

hðrÞ ¼ σμDþ
μ TyðrÞ

TðrÞ σμD�
μ

" #
; ð1Þ

where D±
μ ¼ ½± δμ; iðv ± δvÞ∂1; iðv ± δvÞ∂2; ðm± δmÞ� includes different

velocities v ± δv, masses m ± δm and charge neutrality points ± δμ for the
two layers; while the slowly varying hybridizationmatrix is for the moment
left unconstrained and parameterized by T(r) = (tj+ iλj)σ

j− (t0+ iλ0)σ
0

with j = 1, 2, 3. The σ μ Pauli matrices represent the spinor structure of the
low-energy Dirac fermions, which are distinguished by a layer pseudo-spin
τ μ providing the additional block structure of Eq. (1) with τ3 defining the
layers. Using the gammamatrices γ0 = τ1σ0, γ j=1,2,3 = iτ2σ j, and γ5 = iγ0γ1γ2γ3,
the action corresponding to h can be compactly recast as (see
Supplementary Note 1)

S ¼
Z

d3x �ψ i =DþM
� �

ψ; ð2aÞ

where x0 = vt represents time, ψ is the fermionic operators with conjugate
�ψ ¼ ψyγ0, and we have defined

=D ¼ γa½v∂a þ itaγ
5 þ iλaðiγ3Þ� � δvγ3γ5γj∂j; ð2bÞ

M ¼ δmþ δμγ0γ3γ5 �mγ3γ5 � t3γ
3 � iλ3γ

5; ð2cÞ
with a = 0, 1, 2 and j = 1, 2. Our search for EFBs in this generic model relies
on a necessary and a self-consistent condition that we now detail.

First, when the Dirac cones’ position is locked by crystalline symme-
tries, such as C3 for TBG, perturbative flattening of the bands due to a
vanishing Dirac cone velocity serves as a pre-requisite to EFBs. Such van-
ishing generically occurs upon tuning a single microscopic parameter, e.g.,
the twist angle, when the co-dimension of the velocity operator is equal to
one in the space of possible parameters36. The co-dimension of the velocity

depends on the symmetries of the Hamiltonian, and in particular cannot
equal one in absence of particle-hole (PH) symmetry36. Our necessary
condition for finding EFBs is therefore that themodel Eq. (2a) possess a PH
symmetry.

Turning to the self-consistency condition, let us assume the exis-
tence of EFBs in our problem. Projected onto these flat bands, the action
of Eq. (2a) loses its time dependence and reduces from (2+ 1) to (2+ 0)
dimensions, e.g., via �ψðvγ0∂0Þψ ¼ 0 in the case of degenerate flat bands at
zero energy33. The previously imposed PH symmetry provides an
operator exchanging positive and negative energy states that anti-
commutes with the Hamiltonian and plays the role of a chiral symmetry.
Since chiral Dirac fermions in even dimensions exhibit a chiral anomaly,
the model in Eq. (1) in presence of EFBs must satisfy additional con-
straints. More precisely, the chiral anomaly forces the effective gauge
fields descending from ta and λa, respectively, carried by γ5 and γ3 in Eq.
(2a), to yield a non-zero integer Atiyah–Singer index32,37. This is the self-
consistency condition for EFBs, first pioneered in ref. 33, that we will use.
This self-consistency condition can be intuitively understood as a
Landau-like quantization, since it restrains the flux of chiral gauge fields
on elementary real-space patches to integer values; suggesting a deeper
connection between such flat bands and generic Landau levels6.

In fact, thenon-trivialAtiyah–Singer index of graphene’s Landau levels
is the reason why they remain exactly flat even under a non-uniform
magnetic field or weak scalar potentials35,38. The robustness against varying
gauge fields and small perturbations provided by the index theorem is the
hidden underlying reason explaining why the phase diagram of TBG is so
remarkably reproducible, andwhy it is so closely connected to thefirst chiral
limit in spite of non-negligible AB-hoppings. Deriving a chiral limit for
moiré semiconductors does not only provide a fine tuned EFB model for
these materials, but rather argues that such EFBs are resilient to local per-
turbations through the same anomaly protection present in TBG.

Relying on index theorems32, PH/chiral symmetries provide self-
consistent conditions enabling to localize EFBs in models of coupled Dirac
cones33. We now exhaustively use this method on our original model
Eq. (2a) assuming a moiré pattern with C3 symmetry.

The chiral limits of C3 symmetric moiré
We have enumerated all possible PH/chiral symmetries compatible with
v ≠ 0 or δv ≠ 0 that our model may possess after dimensional reduction, see
Supplementary Note 2 that includes refs. 1,3,4,39,40. Focusing on the most
relevant case ofC3-symmetricmoiré homobilayers and assuming the lowest
harmonics of T(r) are non-zero, we have demonstrated that only two
inequivalent PH/chiral symmetries can emerge in our setup (Higher har-
monics respecting the C3-symmetry can be included to the hybridization
T(r). They will not change the possible chiral symmetries of the model, but
can alter the value of the magic αc

9.). They correspond to the two inequi-
valent chiral limits previously identified in TBG3,4.

The first PH/chiral symmetry, γ0γ3γ5, becomes a faithful anti-
commuting symmetry of the dimensionally reduced (2+ 0)d action pro-
vided that it has nomass termsM = 0 and that its hybridization assumes the
form

TstðrÞ ¼ t
X2
n¼0

eiðκn�rÞ
0 ωn

ω�n 0

� �
; α ¼ t

jvκ0j
; ð3Þ

with ω ¼ expð2iπ=3Þ and κn the clockwise 2nπ/3 rotation of the moiré
Brillouin zone corner κ0 along ð�ŷÞ, see inset of Fig. 1. This (2+ 0)dmodel
exactly reproduces the first chiral limit of TBG4, whose spectrum only
depends on the dimensionless parameter α that is inversely proportional to
the twist angle θ. It is known to feature EFBs for equally spaced values ofα7–9.
This result was recovered in ref. 33 by direct evaluation of theAtiyah–Singer
index corresponding to Eq. (3), providing integer values n for α = nαc (see
also Supplementary Note 3 that includes refs. 4,33,37). The largest value
α ¼ αc ¼ 1=

ffiffiffi
3

p
gives an estimate of the first magic angle

θc ¼ 3
ffiffiffi
3

p
ta=ð4πvÞ ’ 1:1°33 close to the experimentally observed value10.
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The second PH/chiral symmetry available, γ0, requires the (2+ 0)d
theory to have δμ = δm =m = 0 and a specific hybridization matrix

TndðrÞ ¼ t
X2

n¼0
eiðκn�rÞ

1þ ϵ 0

0 1� ϵ

� �
; ð4Þ

with ϵ a real parameter. When the system possess an additional C2 sym-
metry exchanging the layers’ sublattices, ϵ = 0 and the previous form exactly
matches the second chiral limit of TBG, describing a perfect metal in which
all bands are connected3,39. We show in the Supplementary Note 3 that the
Atiyah–Singer index vanishes in this second chiral limit, preventing the
appearance of EFBs.

Using generic principles and starting from the generic coupled Dirac
Hamiltonian Eq. (1), we have identified the two sole chiral limits of C3-
symmetricmoirématerials, only one ofwhich provides EFBs due to its non-
zero Atiyah-Singer index. The obtained chiral limits reproduce those
identified in TBG, which bolsters our approach but also highlights that all
EFBs of C3-symmetric moiré materials feature TBG-like behaviors, in the
sense that they derive from the same chiral anomaly.

Consequences for moiré semiconductors
Moiré semiconductors can be described using the (2+ 1)d action inEq. (2a)
withm ≠ 0. At first sight, this seems to preclude the realization of the chiral
limits identified above (Eqs. (3) and (4)) since they both requirem = 0 in the
dimensionally reduced action in (2+ 0)d where the chiral anomaly occurs.
Fortunately, these two apparently conflicting theories do not only differ
through their mass, but also through their dimensionality. We can thus
devise a more general dimensional reduction scheme, compatible with
particle-hole symmetry, that transforms the semiconducting (2+ 1)d
actionwith non-zeromass to amassless (2+ 0)d action. This is achieved by
projecting the (2+ 1)d action onto flat bands at ±m using
�ψvγ0∂0ψ ¼ mψyðγ0γ3γ5Þψ, which exactly compensates for the mass terms
and yields massless effective (2+ 0)d theories and enables to realize the
chiral limits obtained above.

Transposing our previous discussion, we predict that the first massive
chiral limit, featuring the hybridizationmatrix Eq. (3) and amassm, still has

EFBs located at energies ±m. We numerically checked this fact for different
m, as shown in Fig. 1a, where we clearly see the originally degenerate flat
bandswith non-trivial and oppositeChern number splitting to ±m energies.
We have also checked that, as in chiral TBG5, these flat bands are idea (see
Supplementary Note 4 that includes refs. 4–6,41), i.e., equivalent to the
physics of a Landau level with non-uniform magnetic field6. For small m,
this describes the effect of an aligned hBN substrate on chiral TBG31. The
Chern numbers of the flat bands are inherited from those obtained for TBG
in the first chiral limit, and can be understood by analogy with the zeroth
Landau levels of graphene, which also split into two groups that can be fully
localized on opposite sublattices. Upon adding a sublattice potential dif-
ference—equivalent to the mass term in Eq. (1)—these groups with pair-
wise opposite Chern number acquirefinite and opposite energies.While the
second chiral limit cannot realize EFBs, we nevertheless highlight that the
additional mass term considered here gaps out the perfectly connected
bands obtained form = 0, and, for sufficiently large values, produces narrow
and isolated trivial bands around charge neutrality (see Fig. 1b).

Compared to TBG, both the first and the second chiral limit yields
isolated narrow bands enhancing the interaction effects providing a fertile
playground for the emergence of strongly correlated phases. The main
difference lies in the topology of these narrow bands: they carry a non-zero
Chern number in the first chiral limit and are topologically trivial in the
second chiral limit. We finally notice that our method does not work for
heterobilayers, for which all four coefficients (v, δv,m, δm) are non-zero in
the (2+1)d theory and cannot be simultaneously accounted for in the
dimensional reduction (see Supplementary Note 2), which suggests that no
EFBs exists for semiconducting heterobilayers.

Dirac to Schrödinger and layer–orbit coupling
In presence of large gaps between the conduction and valence bands, an
alternative description of the physics of p/n-doped moiré semiconductors
should be possible in terms of hole/electron degrees of freedom only. We
now derive such description by downfolding ourDirac theory using second
order perturbation in the large gapm. We focus on the first massive chiral
limit, for it features flat bands and non-trivial topology, and obtain an
effective hole-like continuummodel describing bands below the band gap.
We find a crucial term, neglected in previous works, that differentiates
between gapped Dirac physics and simple quadratic bands and provides a
simple explanation for the non-trivial topology of the flat bands.

Up to the moiré potential terms, the derivation is identical to the
transformation of themassiveDirac equation into the Schrödinger equation
with quadratic dispersion. In relativistic settings, small corrections that
appear, such as spin–orbit coupling, are inversely proportional to the speed
of light. Usually, they can be safely discarded. For moiré materials, they
cannot. These corrections are inversely proportional to the Dirac velocity,
but α ¼ t

jvκ0j ∼ 1 implies that they are of the same order as the typicalmoiré
hybridization strength.

Including deviations from the first chiral limit using a hybridization
function T ¼ Tst þ jvκ0j

2m βTnd, where β plays a role analogous to w0/w1 in
the usual language of TBG1,39, standard second-order perturbation theory
(see Supplementary Note 5 that includes refs. 20,42) gives the effective
continuum theory for the valence bands of the moiré semiconductor

~hðrÞ ¼ _2

2m� ∇2τ0 � 2V
P

n¼0;1;2
cosðgn � r þ τ3ψÞ

� iW
P

n¼0;1;2
eiκn�r 1þ iβþ 2λðκn ×∇Þ

jκ0j2
h i

τ� þ hc;
ð5aÞ

with gn = κn− κn−1 (see inset of Fig. 1), and the global i factor in front of the
interlayer-hopping can be gauged away. The coefficients of the downfolded
model are inferred from those of the first chiral limit

_2

2m� ¼
v2

2m
; W ¼ αj_κ0j2

2m� ; V ¼ αW; ψ ¼ 2π
3
; λ ¼ 1: ð5bÞ

Fig. 1 | Band structure in the two solemassive chiral limits ofC3 symmetricmoiré
material withDirac cones in presence of an additional massm.The first (a–c) and
second (d–f) chiral limits reproduce those of TBG when m = 0 (a, d) and feature
isolated narrow bands for large values of the mass (c, f). Exact flat bands with
opposite Chern numbers appear in the first chiral limit (a-c) for anym due to a chiral
anomaly with non-zero Atiyah-Singer index—analogous to the zeroth Landau level
of graphene in presence of sublattice potential difference.We used α = αc in (a–c, see
Eq. (3)), α = 1.2αc and r = 0 in (d–f, see Eq. (4)), and the inset shows high symmetry
points in reciprocal space, with gn = κn− κn−1.
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Thus, up to an overall scaling coefficient, this Hamiltonian only depends on
two dimensionless constants (α, β), or only one if we focus on the first chiral
limitwhere β = 0. The parameters in Eq. (5a) can be combined inmagic rule
for moiré bilayers with gapped Dirac cones

_2jκ0j2
2m�

V
W2 ¼ 1 or EkinEintra ¼ E2

inter; ð6Þ

where Ekin/inter/intra stand for the typical kinetic, inter- and intra-layer
potential energies on themoiré scale. The ruleEq. (6) determining themagic
angle is exact for themassive chiralmodelwith β = 0. Beyond thismodel, we
speculate that the second formulation in Eq. (6) still provides a good rule of
thumb to estimate the twist angle at which correlated physics appears in
moiré semiconductors (see SupplementaryNote 6 that includes refs. 21,43).

Themain difference betweenEq. (5a) and previous continuummodels
formoiré semiconductors20,21,44 is the advertised layer–orbit coupling λ. This
is a non-negligible analog of spin–orbit coupling in relativistic systems. We
now stress that this layer–orbit coupling, necessary for a complete down-
folding of the Dirac theory, is crucial for the emergence of non-trivial
topological properties in moiré semiconductors. For this purpose, we con-
sider Eq. (5a) in the first chiral limit (β = 0) and consider the effects of
turning off λ. In Fig. 2a, we plot the gap between the two topmost valence
bands as a function of twist angle, measured by αc/α = θ/θc, and λ. We
observe a topological gap closure as λ goes from its natural value, one, to
zero. This proves the crucial role of layer–orbit coupling in Eq. (5a) to
capture the topological character of the EFBs obtained in the first massive
chiral limit (Fig. 1a).

Includingdeviations from thefirst chiralmodelusingβ ≠ 0,we can also
drive a topological gap closure for sufficiently large values of β (Fig. 2b). The
topological character of the topmost valence bandobtained in thefirst chiral
limit remains unchanged in a large regime of parameters. For instance, the
transition to topologically trivial bands occurs for β≃ 0.8 at the magic
angle α = αc.

Chirality of TMD homobilayers
Wenowrelate our theory to thephysics of twistedK-pocket semiconducting
TMD homobilayers, the prime example of exfoliable gapped Dirac cone
materials.We argue that, due to corrugation effects, these bilayers lie close to
the magic limit than TBG.

In their monolayer form, the considered TMDs display a direct gap
between electron and hole pockets at the corner of the Brillouin zone, which
can be described as massive Dirac cones of gaps m ~ 1–2 eV with

conduction/valence orbitals mostly of the dz2 /d ± ¼ dx2�y2 ± idxy type near
the ±K corners of the monolayer Brillouin zone. The minimal k ⋅ p model
describing the twisted TMD homobilayers is thus precisely of the form of
Eq. (1). The symmetry of these orbitals determine the form of the interlayer
hybridization at high-symmetry stacking points. We focus on R-type (or
AA) stacking of the bilayers whose interlayer tunneling matrix T, deter-
mined by the symmetry of the bilayer in the lowest-harmonics approx-
imation, is precisely in the form considered aboveT = T st+WβT nd, ref. 45,
with β the ratio between direct interlayer hopping between d± orbitals
andW.

Whether the firstmassive chiralmodel correctly captures the universal
physics of these semiconducting TMD homobilayers only depends on the
magnitude of β.Wenowestimate the ratioβusing density functional theory
results obtained in the literature for specificTMDs (WSe2 andMoTe2)

21,46,47.
In these references, large-scale ab initio calculations of homobilayers were
performed for commensurate twist angle θ ~ 4–5°, and the parameters of an
effective continuummodel describing the bilayer were fitted to the obtained
band structure. The resulting continuum model, used to describe ±K-
pockets C3-symmetric moiré semiconducting homobilayers20,21,44, is related
to the one obtained in Eq. (5a) by setting λ = β = 0 and treating ðV 0;W 0;ψ0Þ
as free parameters, where primed variable are used to differentiate from our
models.

Neglecting the layer–orbit coupling terms inEq. (5a) to put bothmodels
on the same level, we can identifyW 0 ¼ Wð1� iβÞ up to an irrelevant global
phase that can be gauged away. This justifies treating V 0 and W 0 as inde-
pendentparameters of the theory, but also allows to infer the typical values for
β from the fitted parameters using β ’ jW 0=

ffiffiffiffiffiffiffiffiffiffiffiffi
V 0Ekin

p
� 1j with

Ekin = ∣ℏκ0∣2/2m*. These estimates are given in Table 1, showing that β≃ 0.45
for both MoTe2 and WSe2 at similar twist angles ~4.5–5° 21,46.

As a final consistency check, we have fitted the full model Eq. (5a), i.e.,
including layer–orbit coupling, to the band structure of 5.08°-twistedWSe2
bilayers21. To avoid over-fitting, we have first fixed λ = 1 and used α and β as
only free parameters, yielding β = 0.54(9) in close agreement with Table 1
(see Supplementary Note 7). To test the relevance of the layer–orbit cou-
pling term, we finally fitted the band structure leaving λ free but keeping α
and β fixed to the previously obtained values. This analysis provided the
non-negligible best-estimate λ = 0.75(8) (see Supplementary Note 7), sub-
stantiating the non-negligible role of the layer–orbit coupling high-
lighted above.

Recall that, in TBG, the dimensionless number playing the role of β
is the ratio between AA and AB tunneling amplitudes w0/w1 ≃ 0.6–0.8,
which is larger than our estimate β ≃ 0.5. Our estimates therefore suggest
that twisted TMDs lie closer to the chiral limit than twisted bilayer,
providing a simple argument to understand why theymay be better hosts
for FCIs23,24. This difference with TBG is mostly attributable to the stiffer
lattice of graphene compared to those of TMDs. Indeed, the stronger
lattice relaxation effects in twisted TMDs largely influence the β ratio,
because they increase and reduce the inter-layer distance of the homo-
bilayer, respectively, when identical atoms overlap (Rh

h stacking)—
decreasing the value of β—and when opposite elements do (RX

M=R
M
X

stacking)—increasing the value of t—where the change in hopping
amplitude is exponential in inter-layer distance variations45.

Fig. 2 | Topological phase diagram of chiral moiré semiconductors. a Upon
turning off the layer–orbit coupling λ—the analog of spin–orbit coupling in the
relativistic Dirac theory, which is non-negligible for moiré materials—the topmost
valence band from the first chiral limit (Fig. 1a) loses its topological character. All
parameters except λ are fixed by Eq. (5a) and β = 0.bDeviations away from the chiral
limit (Eq. (5a) with λ = 1), measured by β, do not spoil the physics of the firstmassive
chiral limit for a wide range of parameters. In both panels,m = 2∣vκ0∣ was used, and
θ/θc = αc/α since α is inversely proportional to the twist angle.

Table 1 | Estimate of the parameters in Eq. (5a) from large-
scale ab-initio calculations

Monolayer m* a0[Å] Twist [°] V 0 [meV] W 0 [meV] β

WSe2
21 0.38 3.317 5.08 9 18 0.465

MoTe2
46 0.62 3.472 4.4 11.2 13.3 0.453

MoTe2
47 0.62 3.472 3.89 20.8 23.8 0.187

The parameters V 0 andW 0 obtained in refs. 21,46,47 for twisted transition metal dichalcogenides
homobilayersprovide anestimate for β, whichplaysa role analogous tow0/w1 in TBG

1. It agreeswith
the result β ≃ 0.54(9) obtainedby adirect fit of themodel Eq. (5a) on theDFTdataof ref. 21, described
in the Supplementary Note 7.
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Because such elastic deformations become increasingly dramatic as the
twist angle approaches zero48, the value ofβ is expected to further decrease in
TMDhomobilayers at lower twist angles, which can be seen from themuch
smaller value β≃ 0.2 obtained for the fitted parameters of ref. 47 for 3.9°-
twistedMoTe2. This argument also reveals that smaller elastic constants are
desirable to reach the first massive chiral limit and realize its topological flat
band physics in themost pristine fashion. Among all semiconducting TMD
monolayers with hexagonal lattice, MoTe2 features the lowest Young
modulus49,50 suggesting its twisted homobilayer form is a slightly better
candidate for the emergence of topological correlated phases.

Let us finally comment on the fitted values of ψ0 obtained in the
literature, which consistently providedψ0 ’ �π=2 forMoTe2

20,46 and ψ0 ¼
2π=3 forWSe2

21,43. To grasp the physical consequences of this difference,we
investigate the model Eq. (5a) with all parameters fixed in the massive first
chiral limit except ψ. Although the PH/chiral symmetry only ensures the
presence ofEFBswhenψ = 2π/3,weobserve that our downfoldedmodel still
displays an extremely narrow topmost valence band in a wide range of
angles−5π/6 ≤ ψ ≤ 2π/3 (see Fig. 3a), albeit for different values of the twist
angle θ. This feature of themodel is experimentally desirable for at least two
reasons. First, moving along the line of near-zero bandwidth allows to reach
parameter regimes for which the gap between the first two valence bands is
larger than in the chiral limit (see Fig. 3b). Second, the parameter θ at which
the bandwidth almost vanishes are always larger than θc, leading to larger
magic twist angle.The results of Fig. 3 and thefittedvalues forψ0 givenabove
provide a simple qualitative insight explaining why MoTe2 (ψ0 ¼ �π=2)
realizes correlated topological physics for twist angles twice as large asWSe2
(ψ0 ¼ 2π=3). Our magic rule applied to WSe2, for which ψ0 agrees with
Eq. (5a), provides amagic angle θc≃ 1.6° in agreement with ref. 21.We thus
infer θc≃ 3.2° asmagic angle forMoTe2,which is very close to the values3.4°
and 3.7° where FCIs have been recently observed23,24.

In summary, we have shown that band flattening and exact magic
angles inmoiré semiconductors can be designed akin to TBG, including the
existence of chiral limits. Exact magic angles can be described by chiral
anomalies in (2+ 0)d dimensions, which we have fully listed for C3 sym-
metric moiré material featuring (gapped or massive) Dirac cones. Only the
first chiral limit possess a non-zero Atiyah–Singer index necessary for the
emergence of EFB. Our estimates suggests that twisted TMDs lie closer to
that limit than TBG with a ratio β≃ 0.5 smaller than w0/w1≃ 0.6− 0.8,

providing a natural explanation for the emergence of Landau-level like
physics in these systems. Owing to significant corrugation effects, twisted
TMDsare arguably amorenatural realizationof the chiral limit than twisted
bilayer graphene itself.

Received: 24 August 2023; Accepted: 22 April 2024;

References
1. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer

graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).
2. Bultinck, N. et al. Ground state and hidden symmetry of magic-angle

graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).
3. Song, Z.-D., Lian, B., Regnault, N. & Bernevig, B. A. Twisted bilayer

graphene. II. Stable symmetry anomaly. Phys. Rev. B 103, 205412
(2021).

4. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic
angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405
(2019).

5. Wang, J., Zheng, Y., Millis, A. J. & Cano, J. Chiral approximation to
twisted bilayer graphene: exact intravalley inversion symmetry, nodal
structure, and implications for highermagic angles.Physi. Rev.Res.3,
023155 (2021).

6. Estienne, B., Regnault, N. & Crépel, V. Ideal Chern bands as Landau
levels in curved space. Phys. Rev. Res. 5, L032048 (2023).

7. Ren, Y., Gao, Q., MacDonald, A. & Niu, Q. WKB estimate of bilayer
graphene’s magic twist angles. Phys. Rev. Lett. 126, 016404 (2021).

8. Watson, A. B. & Luskin, M. Existence of the first magic angle for the
chiral model of bilayer graphene. J. Math. Phys. 62, 091502 (2021).

9. Becker, S., Humbert, T. & Zworski, M. Integrability in the chiral model
of magic angles. Commun. Math. Phys. 403, 1153 (2023).

10. Cao, Y. et al. Unconventional superconductivity in magic-angle
graphene superlattices. Nature 556, 43 (2018).

11. Sondhi, S. L., Karlhede, A., Kivelson, S. & Rezayi, E. Skyrmions and
the crossover from the integer to fractional quantum Hall effect at
small Zeeman energies. Phys. Rev. B 47, 16419 (1993).

12. Girvin, S. M. Spin and isospin: exotic order in quantum Hall
ferromagnets. Phys. Today 53, 39 (2000).

13. Haldane, F. D.M. Fractional quantization of theHall effect: a hierarchy
of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605
(1983).

14. Trugman, S. & Kivelson, S. Exact results for the fractional quantum
Hall effect with general interactions. Phys. Rev. B 31, 5280 (1985).

15. Crépel, V., Regnault, N. & Estienne, B. Matrix product state
description and gaplessness of the Haldane-Rezayi state. Phys. Rev.
B 100, 125128 (2019).

16. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters
filling in twisted bilayer graphene. Science 365, 605 (2019).

17. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré
heterostructure. Science 367, 900 (2020).

18. Xie, Y. et al. Fractional Chern insulators inmagic-angle twisted bilayer
graphene. Nature 600, 439 (2021).

19. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat.
Nanotechnol. 17, 686 (2022).

20. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological
insulators in twisted transition metal dichalcogenide homobilayers.
Phys. Rev. Lett. 122, 086402 (2019).

21. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition
metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

22. Crépel, V. & Millis, A. Bridging the small and large in twisted transition
metal dicalcogenide homobilayers: a tight binding model capturing
orbital interference and topology across a wide range of twist angles.
Preprint at https://arxiv.org/abs/2403.15546 (2024).

23. Cai, J. et al. Signatures of fractional quantumanomalousHall states in
twisted MoTe2. Nature 622, 63 (2023).

Fig. 3 | Localization of the magic angles for different TMDs. a Bandwidth of the
topmost valence band, and b direct gap between the two highest valence bands as a
function of the twist angle θ and the angle ψ, using m = 2∣vκ0∣. Minima of the
bandwidth are highlightedwithwhite dots.We show in (c,d) the flat band appearing
at the points, respectively, identified with a square and a circle in (a, b). Current
literature estimates suggest that (c, d) are, respectively, relevant for WSe2

21,43 and
MoTe2

20,46. All parameters are fixed by Eq. (5a) except ψ.

https://doi.org/10.1038/s42005-024-01641-6 Article

Communications Physics |           (2024) 7:146 5

https://arxiv.org/abs/2403.15546
https://arxiv.org/abs/2403.15546


24. Zeng, Y. et al. Integer and fractional Chern insulators in twisted bilayer
MoTe2. Preprint at https://arxiv.org/abs/2305.00973 (2023).

25. Crépel, V. &Fu, L. AnomalousHallmetal and fractionalChern insulator
in twisted transition metal dichalcogenides. Phys. Rev. B 107,
L201109 (2023).

26. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum
Hall states at zeromagnetic field.Phys. Rev. Lett. 106, 236804 (2011).

27. Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall
effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

28. Regnault, N. & Bernevig, B. A. Fractional Chern insulator.Phys. Rev. X
1, 021014 (2011).

29. Zhao, S. et al. Fractional quantum Hall effect in valley-layer locked
Landau levels in bilayer MoS2. Preprint at https://arxiv.org/abs/2308.
02821 (2023).

30. Crépel, V. & Regnault, N. Attractive Haldane bilayers for trapping non-
Abelian anyons. Preprint at https://arxiv.org/abs/2403.05622 (2024).

31. Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned
with hexagonal boron nitride: anomalous Hall effect and a lattice
model. Phys. Rev. Res. 1, 033126 (2019).

32. Atiyah,M. F. & Singer, I. M. The index of elliptic operators on compact
manifolds. Bull. Am. Math. Soc. 69, 422 (1963).

33. Parhizkar, A. &Galitski, V.Ageneric topological criterion for flat bands in
two dimensions. Preprint at https://arxiv.org/abs/2301.00824 (2023).

34. Crépel, V., Ding, P., Verma, N., Regnault, N. & Queiroz, R.,
Topologically protected flatness in chiral moiré heterostructures.
Preprint at https://arxiv.org/abs/2301.00824 (2024).

35. Kailasvuori, J. Pedestrian index theorem à la Aharonov-Casher for
bulk threshold modes in corrugated multilayer graphene. Europhys.
Lett. 87, 47008 (2009).

36. Sheffer, Y.,Queiroz, R. &Stern, A. Symmetries as the guidingprinciple
for flattening bands of Dirac fermions.Phys. Rev. X 13, 021012 (2023).

37. Fujikawa, K. Path-integral measure for gauge-invariant fermion
theories. Phys. Rev. Lett. 42, 1195 (1979).

38. Kawarabayashi, T., Hatsugai, Y. & Aoki, H. Quantum Hall plateau
transition in graphenewith spatially correlated randomhopping.Phys.
Rev. Lett. 103, 156804 (2009).

39. Bernevig, B. A., Song, Z.-D., Regnault, N. & Lian, B. Twisted bilayer
graphene. I. Matrix elements, approximations, perturbation theory,
and a k⋅ p two-band model. Phys. Rev. B 103, 205411 (2021).

40. Crépel, V., Dunbrack, A., Guerci, D., Bonini, J. & Cano, J. Chiral model
of twisted bilayer graphene realized in amonolayer.Phys. Rev. B 108,
075126 (2023).

41. Crépel, V., Estienne, B., Bernevig, B. A., Lecheminant, P. & Regnault,
N.Matrix product statedescriptionofHalperin states.Phys.Rev.B97,
165136 (2018).

42. Crépel, V., Guerci, D., Cano, J., Pixley, J. H. & Millis, A. Topological
superconductivity in doped magnetic moiré semiconductors. Phys.
Rev. Lett. 131, 056001 (2023).

43. Morales-Durán, N. et al. Pressure-enhanced fractional Chern
insulators along a magic line in moiré transition metal
dichalcogenides. Phys. Rev. Res. 5, L032022 (2023).

44. Pan, H., Wu, F. & Sarma, S. D. Band topology, Hubbard model,
Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted
bilayer wse 2. Phys. Rev. Res. 2, 033087 (2020).

45. Tong, Q., Yu, H., Zhu, Q., Wang, Y., Xu, X. & Yao, W. Topological
mosaics in moiré superlattices of van der Waals heterobilayers. Nat.
Phys. 13, 356 (2017).

46. Reddy, A. P., Alsallom, F., Zhang, Y., Devakul, T. & Fu, L. Fractional
quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2.
Phys. Rev. B 108, 085117 (2023).

47. Wang, C. et al. Fractional Chern insulator in twisted bilayer mote 2.
Phys. Rev. Lett. 132, 036501 (2024).

48. Carr, S., Massatt, D., Torrisi, S. B., Cazeaux, P., Luskin, M. & Kaxiras,
E. Relaxation and domain formation in incommensurate two-
dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).

49. Zeng, F., Zhang,W.-B. & Tang, B.-Y. Electronic structures and elastic
properties of monolayer and bilayer transition metal dichalcogenides
MX2 (M=Mo,W; X=O, S, Se, Te): a comparative first-principles study.
Chin. Phys. B 24, 097103 (2015).

50. Kastuar, S., Ekuma, C. & Liu, Z.-L. Efficient prediction of temperature-
dependent elastic and mechanical properties of 2D materials. Sci.
Rep. 12, 3776 (2022).

Acknowledgements
N.R. is grateful to B.A. Bernevig for previous collaboration on related works
and enlightening discussions. V.C. thanks L. Fu for insightful discussions on
closely connected topics, and X. Petitcol for his hospitality during the critical
phase of this work. N.R. acknowledges support from the QuantERA II
Programme that has received funding from the European Union’s Horizon
2020 research and innovation programme under Grant Agreement No
101017733. N.R. were also supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101020833). Research on topological
properties of moiré superlattices is supported as part of Programmable
QuantumMaterials, an Energy Frontier Research Center funded by the U.S.
Department of Energy (DOE), Office of Science, Basic Energy Sciences
(BES), under award DE-SC0019443. The Flatiron Institute is a division of the
Simons Foundation.

Author contributions
V.C., N.R. and R.Q. conceived of the presented idea. V.C. performed the
analytical calculations. All authors discussed the results and contributed to
the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01641-6.

Correspondence and requests for materials should be addressed to
Valentin Crépel.

Peer review information Communications Physics thanks Dmitry Efimkin
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01641-6 Article

Communications Physics |           (2024) 7:146 6

https://arxiv.org/abs/2305.00973
https://arxiv.org/abs/2305.00973
https://arxiv.org/abs/2308.02821
https://arxiv.org/abs/2308.02821
https://arxiv.org/abs/2308.02821
https://arxiv.org/abs/2403.05622
https://arxiv.org/abs/2403.05622
https://arxiv.org/abs/2301.00824
https://arxiv.org/abs/2301.00824
https://arxiv.org/abs/2301.00824
https://arxiv.org/abs/2301.00824
https://doi.org/10.1038/s42005-024-01641-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Chiral limit and origin of topological flat bands in twisted transition metal dichalcogenide homobilayers
	Results and discussion
	EFBs and chiral anomalies
	The chiral limits of C3 symmetric�moiré
	Consequences for moiré semiconductors
	Dirac to Schrödinger and layer–orbit coupling
	Chirality of TMD homobilayers

	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




