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The abundance of data about social relationships allows the human behavior to be analyzed as any
other natural phenomenon. Here we focus on balance theory, stating that social actors tend to avoid
establishing cycles with an odd number of negative links. This statement, however, can be supported
only after a comparisonwith a benchmark. Since the existing ones disregard actors’heterogeneity,we
extend Exponential Random Graphs to signed networks with both global and local constraints and
employ them to assess the significance of empirical unbalanced patterns. We find that the nature of
balance crucially depends on the null model: while homogeneous benchmarks favor theweak balance
theory, according to which only triangles with one negative link should be under-represented,
heterogeneous benchmarks favor the strong balance theory, according towhich also triangleswith all
negative links should be under-represented. Biological networks, instead, display strong frustration
under any benchmark, confirming that structural balance inherently characterizes social networks.

Network theory has emerged as a powerful framework in many disciplines
tomodel different kinds of real-world systems, by representing their units as
nodes and the interactions between themas links. In social science, the study
of networks with signed edges has recently seen its popularity revived1–4,
because the signed character of links can be used to represent the positive as
well as the negative social interactions that are currently identifiable in
empirical data.

From a historical perspective, the interest towards signed networks is
rooted into the psychological theory named balance theory (BT), firstly
proposed by Heider5. The choice of adopting signed graphs to model it has,
then, led Cartwright and Harary6 to introduce its structural version (SBT),
which has found application not only in the study of human relationships,
but also in that of biological, ecological and economic systems7–10.

BTdealswith the concept ofbalance: a complete, signed graph is said to
be balanced if all its triads have an even number of negative edges, i.e. either
zero (in this case, the three edges are all positive) or two (see Fig. 1).
Informally speaking, BT formalizes the principles ‘the friend of my friend is
my friend’ and ‘the enemyofmy enemy ismy friend’. The so-called structure
theorem states that a complete, signed graph is balanced if and only if its set
of nodes can be partitioned into two, disjoint subsets whose intra-modular
links are all positive and whose inter-modular links are all negative.

Cartwright and Harary extended the definition of balance to incomplete
graphs6 by including cycles of length larger than three: a (connected) net-
work is said to be balanced when all cycles are positive, i.e. they contain an
even number of negative edges. Taken together, the criteria above form the
so-called structural strong balance theory (SSBT).

The framework of SSBT has been extended by Davis11 by introducing
the concept of k-balanced networks, according which signed graphs are
balanced if their set of nodes can be partitioned into k disjoint subsets with
positive intra-modular links and negative inter-modular links. This gen-
eralized definition of balance leads to the formulation of structural weak
balance theory (SWBT), according towhich triadswith all negative edges are
balanced, since each of their nodes can be thought of as a group on its own if
necessary (see Fig. 1).

Several metrics to decide whether signed networks are strongly or
weakly balanced have been proposed. For instance, the level of balance of a
signed network has been quantified as the number of edges that need be
removed, orwhose signneedbe reversed, in order toobtain anetworkwhere
each cycle has an evennumberof negative links12,13.Alternatively, it has been
defined as the number of balanced, closed walks (i.e. closed walks with an
even number of negative links) that are present in the network14–17. In18 an
incomplete, signednetwork is considered balanced if it is possible tofill in all
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its missing links to obtain a complete, balanced graph according to SSBT.
In19 the authors define three different levels of balance: at the micro-scale,
involving triads; at themeso-scale, involving larger subgraphs; at themacro-
scale, involving the entire network. Still, as firstly noticed in6, ‘it may happen
that only cycles of length 3 and 4 are important for the purpose of determining
balance’; this is further stressed in20, where it can be read that ‘this intuition
has been later justified empirically by demonstrating that it is easier for people
tomemorize the valences of ties in shorter cycles’, and confirmed in21, where it
is noticed that ‘analyses based on counting simple cycles demonstrated that
real networks often have a relatively low cycle length threshold after which the
degree of balance measures quickly decrease’.

Other approaches have been adopted in22–24, where the problem is
studied froma spectral perspective, and in25,where theproblem is studiedby
employing concepts borrowed from statistical physics (each signed triad is
assigned an energy and the networks at the ‘lowest temperature’ have tri-
angles without negative edges).

Other authors, instead, have focused on the complementary notion of
frustration, trying to quantify the extent to which signed networks are far
from balanced19,26–28. In26, the authors define the so-called balanced
decomposition number, i.e. the (minimum) number of balanced groups into
which nodes can be partitioned, and evaluate it by counting the (minimum)
number of edges whose removal increases a network balance. In29, instead,
the same index is evaluatedby adopting the so-called switching signsmethod
introduced in30 and prescribing to count the (minimum) number of signs
thatmust be reversed to balance a network. In22, the level of (im)balance of a
network is proxied by the magnitude of the smallest eigenvalue of the
Laplacian matrix.

Empirical observations seem to point out that real-world, signed net-
works tend to be k-balanced, i.e. to avoid establishing the patterns that are
considered as frustrated by SWBT: as an example, in24 the authors study a
pair of online, social networks induced by the relationships between users,
showing that balance increases as the number of clusters into which nodes
are partitioned is larger than two. In17, the authors notice that the weak
formulation of SBT allows a better performance in predicting signs to be
achieved.

In the present paper, we approach the concept of balance (or frustra-
tion) from a statistical perspective, comparing the empirical value of a
chosenmetricwith the outcomeof aproperly definedbenchmarkmodel, i.e.
a reference model preserving some of the network properties while ran-
domizing the rest. The most common null model for signed graphs is
perhaps the one obtained by keeping the positions of edges fixed while
shuffling their signs2,17. Reference31 implements what we may call (for rea-
sons that will be clear later) the canonical variant of the aforementioned
exercise, assigning signs by means of a Bernoulli distribution. Reference15

introduces a null model for randomizing both the presence and the sign of
links. In10, the signed version of the Local Rewiring Algorithm is imple-
mented (at each step, two edgeswith the same sign are selected and rewired,
to preserve the total number of signed links incident to each node). The
canonical variant of this model is implemented in32, where the Balanced
Signed Chung-Lu model (BSCL) is proposed (although it additionally
constrains also the average number of signed triangles each edge is part of).
Finally, refs. 33–36 define models constraining the structural properties of
signed networks within the framework of Exponential Random
Graphs (ERG).

Our contribution here focuses on binary, undirected signed networks
and ismotivatedby twokey considerations. First, real-world social networks
have different levels of sparsity and we therefore aim at extending the ERG
framework to include null models suitable for the analysis of signed graphs
with plus (positive),minus (negative) and additionally zero (missing) edges.
Second, as in the analysis of most other networks, we recognize the
importance of preserving the inherent heterogeneity of different nodes and
we therefore define new null models that can constrain the number of plus,
minus andzero edgesof eachnode separately.Aswe shall see, controlling for
the different tendencies of actors of establishing friendly and unfriendly
relationships can change the estimated statistical significance of balance
quite dramatically. After defining a suite of such null models, we will use
them to inspect the statistical significance of the most commonly studied
(un)balanced patterns at both local and global levels, i.e. signed triangles and
signed communities.

Results
Datasets description
We now employ the benchmarks introduced and discussed in ”Materials
and Methods” and summed up in Table 1 to analyze various real-world
networks. Although most of them represent social relationships, we have
also considered biological data as a comparison to check for specific patterns
characterizing social structures.

Thefirst dataset is theCorrelates ofWars (CoW)dataset37. It provides a
picture of the international political relationships over the years 1946–1997
andconsists of 13 snapshots of 4 years each.Apositive edgebetweenany two
countries indicates an alliance, a political agreement or the membership to
the same governmental organization. Conversely, a negative edge indicates
that the two countries are enemies, have a political disagreement or are part
of different, governmental organizations.

The second dataset collects information about the relationships among
the≃ 300.000 players of a massive multiplayer online game (MMOG)38. A
positive edge between two players indicates a friendship, an alliance, or an
economic relation. Conversely, a negative edge indicates the existence of an
enmity, a conflict, or a fight. Since the network is directed, we have made it
undirected by applying the following rules: if any two agents have the same
opinion about the other, the undirected connection preserve the sign
(i. e.+ 1 ⋅+ 1 =+ 1 and− 1 ⋅− 1 =− 1); if any two agents have opposite
opinions, we assume their undirected connection to have a negative sign
(i.e.+ 1 ⋅− 1 =− 1 ⋅+ 1 =− 1). Furthermore, in order to preserve the total
number of nodes, we treat non-reciprocal connections as reciprocal, by
preserving the original sign (i.e.+ 1 ⋅ 0 = 0 ⋅+ 1 =+ 1 and− 1 ⋅ 0 = 0 ⋅
− 1 =− 1).

The remaining datasets we consider are those collected in39 and ana-
lyzed in27. These include three socio-political networks (SPNs): N.G.H.
Tribes, Senate US,Monastery; two financial networks (FNs): Bitcoin Alpha
and Bitcoin OTC; and three gene-regulatory networks (GRNs): E. Coli,
Macrophage, Epidermal Growth Factor Receptor.

In the SPNs,N.G.H. Tribes collects data aboutNewGuineanHighland
Tribes (here, a positive/negative link denotes alliance/rivalry), Monastery
corresponds to the last frame of Sampson’s data about the relationships
between novices in a monastery40 (here, a positive/negative link indicates a
positive/negative interaction), and Senate US collects data about the
members of the 108th US Senate Congress (here, a positive/negative link
indicates trust/distrust or similar/dissimilar political opinions).

Fig. 1 | Balanced and unbalanced motifs. Fundamental triadic patterns, or motifs,
considered as balanced (blue) and unbalanced (red) by the strong (a) and weak (b)
versions of the balance theory.
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The FNs are ‘who-trust-whom’ networks of Bitcoin traders on an
online platform: a positive/negative link indicates trust/distrust between
users41. The networks representing the FNs are weighted, directed ones:
hence, after having binarized them by replacing each positive (negative)
weight with a+ 1 (− 1), we have made them undirected by applying the
same rules adopted for the MMOG dataset.

Lastly, in the GRNs each node represents a gene, with positive links
indicating activating connections and negative links indicating inhi-
biting connections. Specifically, E. Coli collects data about a transcrip-
tional network of the bacterium Escherichia Coli; Macrophage collects
data about a blood cell that eliminates substances such as cancer cells,
cellular debris and microbes; Epidermal Growth Factor Receptor collects
data about the protein that is responsible for cell division and survival in
epidermal tissues.

The vastmajority of the networks considered here is characterized by a
small link density c = 2L/N(N− 1) but a large fraction L+/L of positive links.
The density of the CoW network decreases over time from≃ 0.2 to≃ 0.1
and the percentage of positive links is roughly stationary around≃ 88%; on
the other hand, the link density of theMMOGnetwork is stationary around
0.003 and the percentage of positive links decreases from≃ 98% to≃ 60%.
TheSPNshave the largest values of linkdensity among the configurations in
our basket, ranging from≃ 0.3 to≃ 0.5, and percentages of positive links
ranging from≃ 50% to≃ 75%. Bitcoin Alpha has a link density of≃ 0.002
and a percentage of positive links of≃ 90%, while Bitcoin OTC has a link
density of≃ 0.001 and a percentage of positive links of≃ 85%. Lastly, the
GRNshave a link density ranging from≃ 10−3 to≃ 10−2 and a percentage of
positive links ranging from≃ 58% to≃ 66%. For more details on the basic
descriptive statistics of the networks considered in the present work, see the
Supplementary Note 4.

Assessing balance
In order to test the validity of the two formulations of SBT, at the local
level, we need to compare the empirical abundance of the triadic motifs
defined in the Methods section with the corresponding expected values
calculated under the null models we have introduced. To this aim, a very
useful indicator is represented by the z-score zm = [Nm(A

*)− 〈Nm〉]/
σ[Nm], where Nm(A

*) is the number of occurrences of pattern m in the
real network A*, 〈Nm〉 is the expected occurrence of the same pattern

under the chosen null model and σ½Nm� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2

mi � hNmi2
q

is the

standard deviation of Nm under the same null model. zm quantifies the
number of standard deviations by which the empirical abundance of
patternm differs from the expected one. For instance, after checking for
the Gaussianity of Nm under the null model (since it is a sum of
dependent random variables, this is ensured by the generalization of the
Central Limit Theorem - see the SupplementaryNote 6), a result ∣zm∣ ≤ 2
(∣zm∣ ≤ 3) indicates that the empirical abundance of pattern m is

compatible with the one expected under the chosen null model at the 5%
(1%) level of statistical significance. On the other hand, a value ∣zm∣ > 2
(∣zm∣ > 3) indicates that the empirical abundance of pattern m is
not compatible with the null model at those significance levels. In
the latter case, a value zm > 0 (zm < 0) indicates the tendency of the
pattern to be over- (under-)represented in the data with respect to the
null model.

z-scores can be evaluated either analytically or numerically: imple-
menting the first alternative requires employing the formulas provided in
the Supplementary Note 6; implementing the second alternative requires
numerically sampling the ensembles of graphs defined by our null models.
Since the entries of the adjacencymatrix are independent random variables,
the unbiased generation of a random matrix A 2 A can be carried out by
drawing a real number uij∈U[0, 1] and posing: for models with varying
topology, aij =− 1 if 0≤ uij ≤ p

�
ij , aij =+ 1 if p�ij <uij<p

�
ij þ pþij and aij = 0 if

p�ij þ pþij ≤ uij ≤ 1, for all pairs i < j; for models with fixed topology, aij =− 1
if 0≤ uij ≤ p

�
ij and aij =+ 1 if p�ij <uij ≤ 1, for all pairs i < j such that ja�ijj ¼ 1

(see the Supplementary Note 5 for an estimation of the time required to
sample the ensemble induced by each of our models, for each of our
datasets).

Testing structural balance at the microscopic scale
We report our results starting from the network datasets that have
several temporal snapshots (CoW and MMOG). Figure 2 shows the
temporal trends of the z-scores for the two networks under the homo-
geneous null models (SRGM and SRGM-FT). Panels (a)− (c) refer to
the SRGM and show that the z-scores for all triangles, irrespective of
their signs, are strong and positive. Thismeans that all triangles are over-
represented in the data, with respect to a null model that completely
randomizes the topology. This result is not unexpected, as it merely
indicates that, given the empirical density of links, it is very unlikely to
form triangles completely by chance. These results simply tell us that the
SRGM is uninformative about the (im)balance in the data, as it is entirely
biased by a purely topological effect. This conclusion is in line with the
results in17, which suggested that the SRGM-FT is to be preferred over
the SRGM as it provides a better explanation of empirical network
structures.

By contrast, the results generated under the SRGM-FT clearly support
SWBT (see panels (b)–(d)). Indeed, the only significantly over-represented
pattern in the data is precisely the only one that SWBT considers frustrated
(the trianglewith a single negative link),whereas the empirical abundanceof
the triangle with all negative edges (which SSBT would predict to be over-
represented as well) remains largely compatible with the null model. Notice
that also the empirical abundance of the balanced triangle with twonegative
edges is close to the one expected under the SRGM-FT, although its z-score
is typically smaller than the z-score of the all-negative triangle. In any case,
the abundance of the balanced triangle with three positive edges is

Table 1 | Descriptive summary of signed benchmarks

Null model Topology: free Topology: fixed

Homogenous SRGM: each pair of nodes is assigned a plus, a minus or a zero edge with a
probability that is pair-independent; all nodes are statistically equivalent.
Differently from the recipe adopted in15,49, the parameters defining our
SRGM can be unambiguously tuned to reproduce the empirical number of
plus and minus edges of any (binary, undirected, signed) network.

SRGM-FT: the topology is the same as in the real network and the con-
nected pairs of nodes are assigned either a plus one or a minus one, with a
probability that is pair-independent. Differently from the recipe adopted
in2,31, theparameters definingour SRGM-FT canbeunambiguously tuned to
reproduce the empirical number of plus and minus edges of any (binary,
undirected, signed) network. The SRGM-FT is the conditional version of
the SRGM.

Heterogenous SCM: each pair of nodes is assigned a plus, a minus or a zero edge, with a
probability that is pair-dependent and determined by the different tenden-
cies of nodes to establish positive and negative interactions. This model
represents the canonical variant of the one employed in10.

SCM-FT: the topology is the same as in the real network and the connected
pairs of nodes are assigned either a plus one or a minus one, with a prob-
ability that is pair-dependent and determined by the different tendencies of
nodes to establish positive and negative interactions. The SCM-FT is the
conditional version of the SCM.

Table summarizing the properties of the four, signed null models introduced in this article, i.e. the SignedRandomGraphModel (SRGM), theSignedRandomGraphModel with Fixed Topology (SRGM-FT),
the Signed Configuration Model (SCM), the Signed Configuration Model with Fixed Topology (SCM-FT).
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significantly over-represented on both datasets. This type of results con-
stitute the backbone of the narrative according to which the weak version of
SBT is the one that is better supported by data2,17.

.However, since both the SRGM and the SRGM-FT do not constrain
the local (node-specific) signed properties (i.e. the signed degrees of nodes),
they cannot disentangle the effects of node heterogeneity from the revealed
overall structural (im)balance. For this reason, In Fig. 3 we repeat the
analysis of the CoWandMMOGdatasets using the SCMand SCM-FT null
models. As expected, the resulting z-scores are much smaller in absolute
value, showing that node heterogeneity in the real networks is in general
strong and is responsible for a significant part of the overall measured (im)
balance. Therefore, controlling for the local signed degrees is a way to filter
out the effects of node heterogeneity in the statistical analysis of structural
balance. In general, we see that the triangle will all negative links has now
negative z-scores in both datasets, under both nullmodels. Similarly, the all-

positive triangle remains with positive z-scores in all cases. The level of
statistical significance (i.e. the absolute value of the z-score) is however quite
different in the various cases: in general we see an overwhelming over-
representationof the twobalanced triangles (the all-positive one and the one
with two negative links) in the MMOG data under both null models, while
for the CoW data the only clearly significant patter is the over-
representation of the all-positive triangle in the SCM. Nicely, the SCM-FT
gives always negative z-scores to both the frustrated triangles (the all-
negative one and the one with only one negative link), andmost of the time
positive z-scores to the two balanced triangles. Although the statistical
evidence is much stronger for the MMOG data, this result indicates that, if
any, the version of SBT supported by the data is SSBT, rather than SWBT.
Therefore, as soon as the heterogeneity of the signed degrees of nodes is
accounted for, SWBT loses its statistical support, and SSBT is favored by
the data.

Fig. 2 | Structural (im)balance in the Correlates of Wars and MMOG datasets
under homogeneous benchmarks. Structural (im)balance in the CoW andMMOG
datasets: evolution of the z-scores of signed triangles under homogeneous bench-
marks, i.e. the Signed Random Graph Model (SRGM) and the Signed Random
GraphModel with Fixed Topology (SRGM-FT). a,b 13 snapshots (of 4 years each) of
the CoW dataset, covering the period 1946–1997. c, d 10 snapshots of the MMOG
dataset. b–d The SRGM-FT supports the structural weak balance theory (SWBT)
because the only significantly under-represented pattern in the data is also the only
one that SWBT considers frustrated (triangle with only one negative link), while the
z-score of the triangle with all negative edges (which the structural strong balance

theory would expect to be under-represented as well) is very low. In any case, the
hypothesis that nodes tend to establish balanced triangles with all positive links is
supported on both datasets. Results of this type constitute the backbone of the
narrative according to which the weak version of the structural balance theory (SBT)
is the one that is better supported by data. a–c Note that the SRGM has all z-scores
positive, thereby not supporting any version of SBT, a result due to the complete
randomization of the topology along with the edge signs: the over-representation of
all patterns in the data is merely due to the fact that triangles form with small
probability at a purely topological level, given the low link density, irrespective of
their signs.
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We now move to the results obtained on datasets which include
other social networks as well as various biological networks, providing
a different real-world benchmark where structural balance theory is
not expected to apply. From Fig. 4 we confirm that the SRGM is
completely uninformative about structural (im)balance, as it produces
z-scores that are typically positive and very large for all triangles
(balanced and unbalanced) and all networks (social and biological).
This result simply means that the formation of any triangle, irrespec-
tive of its defining signs, is highly unlikely if the topology is completely
randomized. By contrast, under the SRGM-FT the only pattern that is
under-represented in social network data is the frustrated triangle with
a single negative link, a result that largely supports SWBT (on biolo-
gical data, this pattern is instead either not significant or over-repre-
sented). Heterogeneous null models (SCM and SCM-FT), instead,

assign positive z-scores to the two balanced triangles (all-positive and
with two negative links) and negative z-scores to the two frustrated
triangles (all-negative and with one negative link), thereby system-
atically supporting SSBT. When used on biological networks, they
instead highlight a strong tendency towards imbalance, as they tend to
assign opposite signs (w.r.t. social networks) to most z-scores. These
results confirm and extend what discussed above for the CoW and
MMOG datasets, and additionally show that biological networks
behave very differently from social networks, somehow favouring
frustration. This is an indication that structural balance is indeed an
inherent property of social networks.

As further evidence supporting the above conclusion, in Fig. 5 we
show, for all networks and under all null models, the z-scores of the
frustration indices SDoF and WDoF defined in Eqs. (9) and (10)

Fig. 3 | Structural (im)balance in the Correlates of Wars and MMOG datasets
under heterogeneous benchmarks. Structural (im)balance in theCoWandMMOG
datasets: evolution of the z-scores of signed triangles under heterogeneous bench-
marks, i.e. the Signed Configuration Model (SCM) and the Signed Configuration
Model with Fixed Topology (SCM-FT). a, b 13 snapshots (of 4 years each) of the
CoW dataset, covering the period 1946–1997. c, d 10 snapshots of the MMOG
dataset. The z-scores produced by the SCM (a)–(c) and the SCM-FT (b)–(d) are
much smaller, in absolute value, than the corresponding ones produced by the
Signed Random Graph Model and the Signed Random Graph Model with Fixed
Topology (see Fig. 2), showing that node heterogeneity contributes significantly to
the overall abundance of signed triangles. The all-positive (balanced) triangle is still

strongly over-represented in all cases, but additionally the all-negative (frustrated)
triangle is now always under-represented. Under the SCM-FT, the other frustrated
triangle (the onewith a single negative link) is also systematically under-represented,
and these combined results provide support for the structural strong balance theory
(SSBT) (particularly evidently for theMMOGdata). By contrast, the structural weak
balance theory (SWBT) (according to which one would expect the under-
representation of only the triangle with a single negative link) is no longer supported.
These results provide an alternative narrative w.r.t. the usual one: when the het-
erogeneity of the signed degrees of nodes is accounted for, statistical evidence
supports SSBT rather than SWBT.
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respectively. Note that, while the raw values of SDoF andWDoF would
not discount the effects of the imposed structural constraints on the
raw values of frustration, the z-scores measure the level of statistical
significance of the ‘residual’ frustration, after the structural constraints
are accounted for. We see that, under all null models, the z-scores
(when significant) are always negative for the social networks (sig-
naling under-representation of the frustration indices in the data) and
always positive for the biological networks (signaling over-
representation of frustration in the data). Moreover, for the models
with fixed topology, the z-scores for the heterogeneous null model
(SCM-FT) are systematically smaller (in absolute value) than the ones
for the corresponding homogeneous model (SRG-FT), indicating that,

compared with the latter, the former model ‘explains more’ of the level
of empirical frustration observed in the data. The same relation does
not apply systematically between the models with varying topology
(SCM and SRG), suggesting that models with fixed topology lead to
more robust conclusions, as already observed in terms of their support
for SWBT or SSBT.

Testing structural balance at the mesoscopic scale
Motivated by the last observation, we now use the null models with
fixed topology to probe the patterns of structural (im)balance at a
larger, mesoscopic level, i.e. as portrayed by the community structure
deriving from optimally partitioning the nodes into communities with

Fig. 4 | Structural (im)balance in social and biological networks under homo-
geneous and heterogeneous benchmarks. Structural (im)balance in social and
biological networks under homogeneous (a,b) and heterogeneous (c,d) nullmodels:
z-scores of signed triangles for three, socio-political networks (N.G.H. Tribes, Senate
US, Monastery), two, financial networks (Bitcoin Alpha, Bitcoin OTC) and, as a
comparison, three, biological networks (E. Coli, Macrophage, EGFR). The Signed
Random Graph Model (SRGM) produces z-scores that are almost always positive
and very large for all triangles (balanced and unbalanced) and all signed networks
(social and biological), a result confirming that this null model is completely
uninformative about structural (im)balance, as it merely highlights that the for-
mation of any triangle, irrespective of its signs, is highly unlikely if the topology is
randomized completely. By contrast, the Signed Random Graph Model with Fixed

Topology (SRGM-FT) largely supports the structural weak balance theory on social
networks, as the only pattern under-represented in the data is the frustrated triangle
with a single negative link. Heterogeneous null models, i.e. the Signed Configuration
Model (SCM) and the Signed ConfigurationModel with Fixed Topology (SCM-FT),
instead, systematically support the structural strong balance theory because they
assign positive z-scores to the two balanced triangles (all-positive and with two
negative links) and negative z-scores to the two frustrated triangles (all-negative and
with one negative link). Additionally, in biological networks they tend to assign
opposite signs (w.r.t. social networks) to most z-scores, highlight a strong tendency
towards imbalance. These results are fully in linewithwhat already observedwith the
Correlates of Wars and MMOG datasets in Figs. 2, 3.
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positive internal links and negative external ones. As anticipated, SSBT
predicts that the overall level of intra-community frustration, as
measured by the FI defined in Eq. (11), should be observed after
optimally partitioning the nodes into two communities, dominated by
positive signs internally and negative signs across. By contrast, SWBT
allows for potentially any number of communities, because it bases the

idea of balance precisely at the level of communities, so that all-
negative triangles (and in principle all-negative cycles of any length)
can be explained by placing the constituent nodes across distinct
communities. To extract information about the signed community
structure from our data, given a null model 〈aij〉 for the signed adja-
cency matrix entry aij, we look for the partition that maximizes the

Fig. 5 | Analysis of the z-scores of the degree of frustration indices. Analysis of
the z-scores of the strong degree of frustration defined in Eq. (9) and the weak
degree of frustration defined in Eq. (10). a, b 13 snapshots of 4 years each of the
Correlates of Wars dataset (covering the period 1946–1997). c, d 10 snapshots of
the MMOG dataset. e, f Set of social and biological networks. z-scores are
computed under the Signed Random Graph Model (SRGM) (•), the Signed

Random Graph Model with Fixed Topology (SRGM-FT) (•), the Signed Con-
figuration Model (SCM) (•) and the Signed Configuration Model with Fixed
Topology (SCM-FT) (•). We see that, with respect to all null models, frustration is
under-represented in all social network data and over-represented in all
biological data.
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signed modularity, as defined in42:

Q ¼
XN
i¼1

X
j>i

a�ij � haiji
h i

δcicj

¼
XN
i¼1

X
j>i

aþij
� ��

� a�ij
� ��

� pþij � p�ij
� �h i

δcicj

¼Lþ� � L�� � hLþ� � L�� i

¼ � Lþ
°
þ L��

� �
� hLþ

°
þ L�� i

� �
;

ð1Þ

where • indicates quantities inside and ∘ outside the communities (note
that Lþ� ¼ Lþ � Lþ

°
and that the total number of positive links is pre-

served under any null model considered here). For null models with
fixed topology, a stronger result holds true, i.e. Q =− L ⋅ (FI− 〈FI〉) so
that, since L > 0, maximizing Q becomes equivalent to minimizing the
difference between FI and its expected value (see the Supplementary
Note 7). The minimization of FI is another popular approach to finding
the optimal partition43 which, however, neglects the information
embodied in a null model. Here, we consider a varying number K = 2…
10 of communities and, for each value of K, look for the partition
maximizingQ, using as nullmodel both the SRGM-FT and the SCM-FT.
We then compute the value of FI as a function ofK, as plotted in Fig. 6 for
the CoWdataset. We find that the trends produced under the SRGM-FT
are quite flat, and in no case theminimumof FI is achieved byK = 2. This
result is in line with SWBT, under whose assumptions there is no specific
characteristic number of communities that would characterize real
networks. By contrast, the SCM-FT produces clearly increasing trends,
all starting from a minimum of FI at K = 2. This result strongly supports
SSBT, according to which structural balance can be achieved by placing
negative links between two communities, and positive links inside them.
Taken together, these results extend our finding that SWBT (SSBT) is
supported by homogeneous (heterogeneous) null models.

Discussion
Motivated by the widespread observation that actors in real social networks
are characterized by a strong heterogeneity (typically signaled by broad
distributions of node-specific topological properties), we have introduced a
class of null models for signed networks characterized by either global or
local constraints and with either fixed or varying topology. Our formalism
provides the equivalent of various important ERGs to the domain of signed
graphs. We have used our null models to address the problem of structural
balance in real social networks. Our results show that the nature (weak or
strong) and statistical strength of evidence of structural balance strongly
depends on the null model adopted. In particular, we have shown that the
occurrences of signed triangles favor SWBT when a homogeneous, global
null model is considered. By contrast, SSBT is favoured by heterogeneous
models with local constraints.

Generally speaking, adopting fixed-topology benchmarks seems to
enhance the detection of frustration with the corresponding, homogeneous
(heterogeneous) variant favouring SWBT (SSBT). As a possible behavioral
explanation, we may advance the following one. Social agents are char-
acterized by a certain level of tolerance. Such a level can be set by choosing
the proper benchmark: null models constraining global quantities assume
agents tobe characterizedonaverageby the same expected level of tolerance;
by contrast, null models constraining local quantities account for the dif-
ferent levels of tolerance characterizing different agents. Let us imagine that
relationships were established according to a random mechanism that
preserves the total number of friends and enemies: should this be the case,
our results indicate that equally tolerant agents would establish many more
(+ ,+ ,− ) motifs than observed; instead, real-world agents are found to
avoid engaging in relationships that lead to the formation of the (+ ,+ ,− )
pattern. Let us, now, refine the aforementioned picture and imagine that
relationships were established according to a random mechanism that
preserves the local number of friends and enemies: in this case, diversely
tolerant agents would establish many more (+ ,+ ,− ) and (− ,− ,− )
motifs thanobserved; instead, real-world agents are found to avoid engaging
in relationships that lead to the formation of both the (+ ,+ ,− ) and the

Fig. 6 | Values of the frustration index on several, optimal partitions of the
Correlates of Wars dataset. Value of the frustration index (FI) on several, optimal
partitions of the 13 snapshots (of 4 years each) of the CoWdataset, each obtained by
maximizing the modularity Q =− L ⋅ (FI− 〈FI〉) for a given number K of modules
(communities), using as null models the Signed Random Graph Model with Fixed

Topology (SRGM-FT) (a) and the SignedConfigurationModel with Fixed Topology
(SCM-FT) (b). While the SRGM-FT reveals a rather flat profile of FI as a function of
K, with the minimum obtained for a number of groups which is larger than two, the
SCM-FT reveals that FI is always clearly minimized for a number of groups K = 2.
Taken together, these results extend our findings at the mesoscale level.
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(− ,− ,− ) patterns.Overall, then, agents that cannot choosewithwhomto
interact, but only how, adopt a behavior strongly avoiding engagement in
frustrated relationships.

The same results have been extended to the mesoscale structural level,
by finding that the optimal number of communities minimizing the overall
level of frustration is K = 2 with respect to a heterogeneous null model
(strongly supporting SSBT), while there is no characteristic optimal number
with respect to a homogeneous null model (in line with SWBT). Impor-
tantly, we have considered a set of biological networks as a benchmark of
real-world systems for which structural balance theory is not expected to
apply. We have found a strong level of frustration in biological systems,
indicating that structural balance (in either strong or weak form) indeed
characterizes social networks.

Future directions along which the present analysis could be extended
concern the possibility of defining ERGs for directed, as well as weighted,
signed networks - themain technical difficulty lying in the proper definition
of (binary, directed; weighted, both undirected and directed) constraints.
The most natural application of such a formalism would be represented by
the statistical validation of the so-called status theory, describing social
interactions when hierarchies play a role2.

Methods
Formalism and basic quantities
A signed graph is a graph where each edge can be positive, negative or
missing. In what follows, we will focus on binary, undirected, signed net-
works: hence, each edge will be ‘plus one’, ‘minus one’ or ‘zero’. More
formally, for any two nodes i and j, the corresponding entry of the signed
adjacency matrix A will be assumed to be aij =− 1, 0,+ 1 (with

aij = aji, ∀ i < j). Since the total number of node pairs isNðN�1Þ
2 ¼ N

2

� �
and

any node pair can be positively connected, negatively connected or dis-
connected, the total number of possible graph configurations is

jAj ¼ 3

N
2

� �
. To ease mathematical manipulations, let us define the

following three quantities:

a�ij ¼ ½aij ¼ �1�; a0ij ¼ ½aij ¼ 0�; aþij ¼ ½aij ¼ þ1� ð2Þ

where we have employed Iverson’s brackets notation (see the Supplemen-
tary Note 1). These new variables are mutually exclusive, i.e.
fa�ij ; a0ij; aþij g ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg, sumto1, i.e.a�ij þ a0ij þ aþij ¼ 1,

and induce two non-negative matrices A+,A− such that A =A+−A−

and ∣A∣ =A+ +A−.
The numbers of positive and negative links are defined as

Lþ ¼
XN
i¼1

X
j>i

aþij and L� ¼
XN
i¼1

X
j>i

a�ij : ð3Þ

Analogously, the positive and negative degrees of node i are

kþi ¼
X
j≠i

aþij and k�i ¼
X
j≠i

a�ij ð4Þ

(naturally, 2Lþ ¼PN
i¼1k

þ
i and 2L� ¼PN

i¼1k
�
i ). The advantage of

adopting Iverson’s brackets is that each quantity is now computed from a
matrix with positive entries, so that all quantities of interest are positive
as well.

Let us now follow21, according towhich ‘localmeasures attain efficiency
by focusing only on cycles of particular, usually short, length, such as 3-cycles
(triads)’, and consider the signed triads depicted in Fig. 7. As mentioned
above, according to BT social systems tend to arrange themselves into
configurations satisfying the principles ‘the friend ofmy friend ismy friend’,
‘the friendofmy enemy ismyenemy’, ‘the enemyofmy friend ismy enemy’,
‘the enemy of my enemy is my friend’5. SSBT formalizes this concept by
stating that the overall network balance increases with the fraction of tri-
angles having an even number of negative edges (said to be balanced or
‘positive’ since the product of the edge sings is a ‘plus’) and decreases with
the fraction of triangles having an odd number of negative edges (said to be
unbalanced or ‘negative’ since the product of the edge sings is a ‘minus’).
SWBT, on the other hand, considers the triangle with all negative edges
balanced as well.

Notice that the product of an arbitrary number of matrices of typeA+

and A− allows us to count the abundance of closed walks whose signature
matches the sequence of signs of the matrices. For example, the expression
½AþA�Aþ�ii counts thenumber of closedwalks, starting fromand ending at
i, of length 3 and signature (+−+ ). Similarly, the expression
½AþAþA�Aþ�ii ¼ ½ðAþÞ2A�Aþ�ii counts the number of closed walks,
starting from and ending at i, of length 4 and signature (++−+ ).
Therefore, the level of balance of a network can be quantified by the
abundance of (non-degenerate) triangles with an even number of negative

Fig. 7 | Signed triadic motifs. Signed triangles involving three representative nodes
i, j, k. Solid lines denote positive edges while dashed lines denote negative edges.
According to the strong version of balance theory, triangles (a)–(d) are balanced

while triangles (e)–(h) are unbalanced. According to the weak version of balance
theory, triangles (a)–(d) and (h) are balancedwhile triangles (e)–(g) are unbalanced.
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links, i.e.

T ðþþþÞ ¼ 1
3

XN
i¼1

T ðþþþÞ
i ¼

Tr Aþ	 
3h i
6

; ð5Þ

T ðþ��Þ ¼ 1
2

XN
i¼1

T ðþ��Þ
i ¼ Tr AþðA�Þ2� �

2
: ð6Þ

Similarly, the level of frustration of a network can be quantified by the
abundance of (non-degenerate) triangles with an odd number of negative
links, i.e.

T ð���Þ ¼ 1
3

XN
i¼1

T ð���Þ
i ¼ Tr ðA�Þ3� �

6
; ð7Þ

T ðþþ�Þ ¼ 1
2

XN
i¼1

T ðþþ�Þ
i ¼

Tr ðAþÞ2A�
h i

2
ð8Þ

(see the Supplementary Note 2 for more details).
The above expressions form the basis for the definition of several

indices quantifying the level of balance of a network. For instance, the total
number of balanced patterns according to SSBT is
#sb

4 ¼ T ðþþþÞ þ T ðþ��Þ, while the total number of unbalanced patterns is
#su

4 ¼ T ð���Þ þ T ðþþ�Þ. Hence, we may naturally define a ‘strong degree
of balance’ index (SDoB) and a corresponding ‘strong degree of frustration’
index (SDoF) as

SDoB ¼ #sb
4

#sb
4 þ#su

4
; SDoF ¼ 1� SDoB : ð9Þ

On the other hand, the total number of balanced patterns according to
SWBT is #wb

4 ¼ T ðþþþÞ þ T ðþ��Þ þ T ð���Þ, while the total number of
unbalanced patterns is #wu

4 ¼ T ðþþ�Þ. Hence, we can introduce a ‘weak
degree of balance’ index (WDoB) and a corresponding ‘weak degree of
frustration’ index (WDoF) as

WDoB ¼ #wb
4

#wb
4 þ#wu

4
; WDoF ¼ 1�WDoB : ð10Þ

The indicesdefinedabove quantify imbalance by counting the abundanceof
locally frustrated, short cycles. Other indices of frustration account for the
effect of structural (im)balance at larger scales. In particular, at the mesco-
scopic level, the effect of structural balance would result in a signed network
being partitioned into communities of nodes, where intra-community links
would be preferentially positive and inter-community links would be
preferentially negative. Correspondingly, one can define the frustration
index

FI ¼
Lþ
°
þ L��

L
ð11Þ

measuring the percentage of misplaced links, i.e. the total number Lþ
°
of

positive links between communities, plus the total number L�� of
negative links within communities, divided by the total number L of
links (the formalism is adapted from the one in44). According to SSBT,
the node partitionminimizing frustration (and, correspondingly, the FI)
should be the one corresponding to only two communities, because such
bipartition can be realized without creating all-negative triangles. By
contrast, SWBT allows for a larger number of communities, because the
theory justifies the presence of all-negative triangles precisely by
assuming that the three participating nodes are all placed in different
communities.

Null models of binary, undirected, signed graphs
Here we generalize the ERG framework to account for models of binary,
undirected, signed graphs. We will follow the analytical approach intro-
duced in45, and further developed in46, aimed at identifying the functional
form of themaximum-entropy probability distribution (over all graphs of a
chosen type) that preserves a desired set of empirical constraints on average.
Specifically, this approach looks for the graph probability P(A) that max-
imizes Shannon entropy

S ¼ �
X
A2A

PðAÞ ln PðAÞ ð12Þ

(where the sum runs over the set A, of cardinality jAj ¼ 3

N
2

� �
, of all

binary, undirected, signed graphs) under a set of constraints enforcing the
expected value of a chosen set of properties. The formal solution to this
problem is the exponential probability P(A) = e−H(A)/Z where H(A) (the
Hamiltonian) is a linear combination of the constrained properties, each
multiplied by a corresponding Lagrange multiplier, and Z ¼PA2Ae

�HðAÞ

is the normalizing constant (or partition function).
In what follows, we will consider two classes of models, i.e. those

keeping thenetwork topologyfixedand those letting the topologyvary along
with the edge signs. Thefirst class is better suited for studying systemswhere
actors cannot choose ‘with whom’ to interact, but only ‘how’ (e.g. because
workers necessarily interact with colleagues at the same workplace or
because countries necessarily interact with each other). On the other hand,
the secondclass is better suited for studying systemswhere actors can choose
their neighbors aswell17.Whatever the situation, comparing the two typesof
models for the same network is in any case instructive, as it allows the role
played by signed constraints to be disentangled from the one played by non-
signed (purely topological) constraints.

Signed random graph model. As the simplest example, the Signed
Random Graph Model (SRGM) is defined by two, global constraints:
L+(A) and L−(A). The Hamiltonian

HðAÞ ¼ αLþðAÞ þ βL�ðAÞ ð13Þ

leads to a graph probability PSRGM(A) that factorizes over the individual
entries of the matrix A, which are i.i.d. random variables described by the
finite scheme

aij ∼
�1 0 þ1

p� p0 pþ

� �
8i < j ð14Þ

with p0≡ 1− p− − p+ and

p� � e�β

1þ e�α þ e�β
� y

1þ x þ y
; ð15Þ

pþ � e�α

1þ e�α þ e�β
� x

1þ x þ y
; ð16Þ

where x≡ e−α and y≡ e−β are transformed Lagrange multipliers (see the
Supplementary Note 3 for more details). In other words, positive, negative
and missing links appear with probability p+, p− and p0 respectively. The
parameters (x, y) determining these probabilities are tuned by maximizing
the log-likelihood function LSRGMðx; yÞ � ln PSRGMðA�jx; yÞ where A*

denotes the specific, empirical network under analysis. This maximization,
according to a general result47, leads to an equality between the expected and
the empirical values of the constraints, i.e. hLþiSRGM ¼ LþðA�Þ and
hL�iSRGM ¼ L�ðA�Þ. This leads to p0≡ 1− p− − p+ and

pþ ¼ 2LþðA�Þ
NðN � 1Þ ; p� ¼ 2L�ðA�Þ

NðN � 1Þ : ð17Þ
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Signed random graph model with fixed topology. We can also con-
sider a variant of the SRGM that keeps the topology of the network under
analysis fixed while (solely) randomizing the edge signs. The Hamilto-
nian is againH(A) = αL+(A)+ βL−(A), but the randomvariables are now
only the entries of the adjacency matrix corresponding to the connected
pairs of nodes in the original networkA*, i.e. the ones for which ja�ijj ¼ 1.
These entries obey the finite scheme

aij ∼
�1 þ1

p� pþ

� �
8 i < j

 a�ij ¼ 1 ð18Þ

with

p� � e�β

e�α þ e�β
� y

x þ y
; ð19Þ

pþ � e�α

e�α þ e�β
� x

x þ y
: ð20Þ

In other words, each entry forwhich ja�ijj ¼ 1 obeys a Bernoulli distribution
with probabilities determined by the (Lagrange multipliers of the) imposed
constraints (see the Supplementary Note 3 for more details). The max-
imization of the likelihood function LSRGM�FTðx; yÞ � ln PSRGM�FT
ðA�jx; yÞ (where FT stands for ‘fixed topology’) leads to

pþ ¼ LþðA�Þ
LðA�Þ ; p� ¼ L�ðA�Þ

LðA�Þ ð21Þ

with L(A*) representing the (empirical) number of links.
The SRGM and the SRGM-FT are related via the simple expression

PSRGMðAÞ ¼ PRGMðAÞ � PSRGM�FTðAÞ ð22Þ

involving the probability of the usual ‘unsigned’ (Erdős-Rényi) Ran-
dom Graph Model (RGM) and stating that the probability of con-
necting any two nodes with, say, a positive link can be rewritten as the
probability of connecting them with an unsigned link times the
probability of assigning the latter a ‘plus one’: in formulas,
pþSRGM=p

þ
RGM ¼ pþSRGM�FT (see the Supplementary Note 3 for more

details). Notice that if the network under analysis is completely con-
nected, the SRGM and the SRGM-FT coincide.

Although the recipes implemented in15 and2,31 are similar in spirit to the
SRGM and the SRGM-FT, we provide the rigorous derivation of both
models, together with the proof that the latter is nothing but the conditional
version of the former.

Signed configuration model. The two aforementioned versions of the
SRGM are defined by constraints which are global in nature. However,
real social networks are characterized by an inherent heterogeneity of
actors, which results in broad distributions of the number of connections
of actors. To avoid statistical conclusions about structural balance that are
biased by the application of homogeneous null models to intrinsically
heterogeneous networks, it is therefore important to introduce models
with local (node-specific) constraints.

We, therefore, introduce the Signed Configuration Model (SCM) via
the Hamiltonian

HðAÞ ¼
XN
i¼1

αik
þ
i ðAÞ þ βik

�
i ðAÞ

� � ð23Þ

which constraints the expected value of the signed degrees fkþi ðAÞg
N
i¼1

and fk�i ðAÞgNi¼1 of all nodes. The resulting graph probability PSCM(A) is
still factorized over independent entries of the matrix A, however these
entries are no longer identically distributed. Rather, they obey the finite

scheme

aij ∼
�1 0 þ1

p�ij p0ij pþij

 !
8 i < j ð24Þ

with

p�ij �
e�ðβiþβjÞ

1þ e�ðαiþαjÞ þ e�ðβiþβjÞ
�

yiyj
1þ xixj þ yiyj

; ð25Þ

pþij �
e�ðαiþαjÞ

1þ e�ðαiþαjÞ þ e�ðβiþβjÞ
� xixj

1þ xixj þ yiyj
ð26Þ

and p0ij � 1� p�ij � pþij (see the SupplementaryNote 3 formore details). In
other words, the two nodes i and j are connected by a positive, negative or
missing link with probability pþij , p

�
ij or p

0
ij respectively. The parameters of

the SCM are found by maximizing the log-likelihood
LSCMðfxigNi¼1; fyigNi¼1Þ � ln PSCMðA�jfxigNi¼1; fyigNi¼1Þ, and the result
ensures that hkþi iSCM ¼ kþi ðA�Þ and hk�i iSCM ¼ k�i ðA�Þ, ∀ i. Explicitly,

kþi ðA�Þ ¼
X
j≠i

xixj
1þ xixj þ yiyj

¼ kþi
� � 8 i; ð27Þ

k�i ðA�Þ ¼
X
j≠i

yiyj
1þ xixj þ yiyj

¼ k�i
� � 8 i; ð28Þ

which is a system of 2N coupled non-linear equations that have a unique
solution to be found numerically, e.g. following the guidelines provided
in48 (see the Supplementary Note 4). If xi≪ 1 and yi≪ 1 ∀ i, a ‘sparse’
approximation of the SCM holds true and one can factorize the
probabilities as pþij ’ xixj and p�ij ’ yiyj, ∀ i < j. Such a manipulation
leads us to

pþij ’
kþi ðA�Þkþj ðA�Þ

2LþðA�Þ ; p�ij ’
k�i ðA�Þk�j ðA�Þ

2L�ðA�Þ ; ð29Þ

a result that we may call the Signed Chung-Lu Model (SCLM).
To the best of our knowledge, the canonical SCMdescribedherehas no

precedents in the literature: Ref. 10 provides amicrocanonical version of the
model, while the variant considered in32 is just an approximation of the full
canonical model derived here. Notice that the bipartite version of the SCM
can be recovered as a special case of the Bipartite Score Configuration
Model, proposed in35.

Signed configuration model with fixed topology. As for the SRGM, a
variant of the SCM that keeps the topology of the network under
analysis fixed while (solely) randomizing the signs of the edges can be
defined. Again, the Hamiltonian reads HðAÞ ¼PN

i¼1½αikþi ðAÞ þ
βik

�
i ðAÞ� but the only random variables are those corresponding to the

connected pairs of nodes in the empirical graph, i.e. the ones for which
ja�ijj ¼ 1. Each of them obeys the finite scheme

aij ∼
�1 þ1

p�ij pþij

 !
8 i < j

 a�ij ¼ 1 ð30Þ

with

p�ij �
e�ðβiþβjÞ

e�ðαiþαjÞ þ e�ðβiþβjÞ
�

yiyj
xixj þ yiyj

; ð31Þ
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pþij �
e�ðαiþαjÞ

e�ðαiþαjÞ þ e�ðβiþβjÞ
� xixj

xixj þ yiyj
: ð32Þ

Maximizing the log-likelihood LSCM�FTðfxigNi¼1; fyigNi¼1Þ �
ln PSCM�FTðA�jfxigNi¼1; fyigNi¼1Þ leads to the equations

kþi ðA�Þ ¼
X
j≠i

a�ij xixj
xixj þ yiyj

¼ kþi
� � 8 i; ð33Þ

k�i ðA�Þ ¼
X
j≠i

a�ij yiyj
xixj þ yiyj

¼ k�i
� � 8 i; ð34Þ

which can be solved numerically - again, along the guidelines provided in48

(see the Supplementary Note 4 for more details).
Similarly to what has been observed for the SRGM and the SRGM-FT,

the SCM and the SCM-FT are related via

PSCMðAÞ ¼ PICMðAÞ � PSCM�FTðAÞ; ð35Þ

an expression involving the probability of an ordinary (unsigned) ‘induced’
Configuration Model (ICM) with probabilities such that
ðpþij ÞSCM=ðp

þ
ij ÞICM ¼ ðpþij ÞSCM=½ðp

þ
ij ÞSCM þ ðp�ij ÞSCM� ¼ ðpþij ÞSCM�FT

,
forany pair of nodes (see the Supplementary Note 3). Notice that, if the
network under consideration is completely connected, then the SCM and
the SCM-FT coincide.

Data availability
Data concerning CoW are described in37 and can be found at the address
http://mrvar.fdv.uni-lj.si/pajek/SVG/CoW/. Data concerning E. coli, Mac-
rophage, EGFR,N.G.H.Tribes andMonastery are are described in27 and can
be found at the address https://figshare.com/articles/dataset/Signed_
networks_from_sociology_and_political_science_biology_international_
relations_finance_and_computational_chemistry/5700832. Data concern-
ing Bitcoin Alpha and Bitcoin OTC are described in19 and can be found at
the address https://figshare.com/articles/dataset/Dataset_of_directed_
signed_networks_from_social_domain/12152628. Data concerning
MMOG, described in38 are subject to proprietary restrictions and cannot be
shared.

Code availability
The codes implementing the null models employed for the present analysis
are available upon request.
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