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Three-dimensional spontaneous flow
transition in a homeotropic active nematic
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Active nematics are driven, non-equilibrium systems relevant to biological processes including tissue
mechanics and morphogenesis, and to active metamaterials in general. We study the three-
dimensional spontaneous flow transition of an active nematic in an infinite slab geometry using a
combination of numerics and analytics. We show that it is determined by the interplay of two
eigenmodes – called S- and D-mode – that are unstable at the same activity threshold and
spontaneously breaks both rotational symmetry and chiral symmetry. The onset of the unstable
modes is described by a non-Hermitian integro-differential operator, which we determine their
exponential growth rates from using perturbation theory. The S-mode is the fastest growing. After it
reaches a finite amplitude, the growth of the D-mode is anisotropic, being promoted perpendicular to
the S-mode and suppressed parallel to it, forming a steady state with a full three-dimensional director
field and a well-defined chirality. Lastly, we derive a model of the leading-order time evolution of the
system close to the activity threshold.

Active matter is a class of materials that lie outside of thermodynamic
equilibrium due to the conversion of energy consumed by the constituent
particles to mechanical work1–3. Active matter can be considered an active
nematic when the constituent particles display orientational order akin to a
nematic liquid crystal4. Such systems can be natural, such as cell colonies5–7,
epithelial tissues8,9, bacterial suspensions10–12, and microtubule and motor
protein mixtures13, or artificial, such as vibrated granular rods14,15. A key
property of activematter is the emergence of spontaneous, collectivemotion
on scales much larger that that of the individual constituents. This has
important real-world implications. In biology, for example, collective
motion plays a role during organ formation and development16 and wound
healing17. There is also potential to harness the self-generated flows of active
nematic materials to create self-operating microfluidic devices that do not
rely on external forcing, or to incorporate other aspects of passive liquid
crystals, such as utilising colloidal inclusions18–20.

Active nematic systems may be modelled by adapting the well-
established dynamical equations of passive nematic liquid crystals21,22 to
include active terms4,23. One key triumph of the theory of active nematics is
the prediction that such systems will spontaneously transition to a flowing
state on their own accord due to their fundamental hydrodynamic
instability 23. In unbounded systems, this instability sets in at arbitrarily long
perturbation wavelengths and the system eventually transitions to a chaotic
state known as active turbulence4,10,12,13,24. Confinement of active nematic

systems can suppress the onset of active turbulence and instead the
hydrodynamic instability acts to produce non-chaotic flows, first predicted
theoretically by ref. 25 and later confirmed in simulations performed by
ref. 26. The spontaneous flow transition has been observed in experiments
on spindle-shaped cells in confined strips27, demonstrating potential rele-
vance to cell transport in development or cancer.

The confinement of active nematics and the resulting spontaneous
flows have been a topic of great interest to the scientific community 28. Most
research has focused on two-dimensional systems11,29–40, but more recently
the attention has shifted towards understanding three-dimensional
systems41–49.

Of particular interest to us are the spontaneous flow transitions within
rectangular channels. Different flow states can be found, depending the
boundary conditions and parameters. Flows can be roughly separated into
two categories: streaming flow states and swirling flow states28. These two
categories can be further sub-divided. For example, the streaming flow
category can be subdivided into Poiseuille-like flows33,43, shear-like flows27,
oscillatory flows33,43, grinder train flows and double helix-like flows48. The
latter two are only seen in three dimensions and possess non-zero helicity
and are yet to be seen experimentally.

Here,we study the spontaneousflow transition for an active nematic in
a three-dimensional cell with normal anchoring and no-slip boundary
conditions. This geometry is analogous to the Frederiks transition in a
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homeotropic cell, and is a complement to the well-known analysis of
refs. 25,26 in two-dimensional geometry with planar anchoring. The three-
dimensional cell geometry with normal anchoring has been considered
recently for the case of stress-free boundary conditions49. We find that the
transition we are considering leads to a twisted director field and a spon-
taneous flow that has both Poiseuille-like and shear-like components. The
twist is right-handed or left-handed with equal probability and represents a
spontaneous chiral symmetry breaking, in addition to the spontaneous
rotational symmetry breaking of the direction of thePoiseuille-likeflow.We
identify the reason for this as the degeneracy of two eigenmodes of the linear
stability operator for the system at the threshold of instability. The degen-
eracy is accidental, rather than arising from an underlying symmetry, and
clarifies someaspects of the existing literature forplanar anchoring.We label
these modes the S-mode and the D-mode. We develop a hierarchical per-
turbative analysis of the growth of both modes above threshold that
reproduces all aspects of the instability in excellent agreement with full
numerical simulations.

Results and discussion
Spontaneous flow transition
We consider an extensile, uniaxial active nematic confined between two
infinite, parallel plates with a fixed cell gap, d. We assume no slip boundary
conditions and strong homeotropic anchoring on both plates. For this
anchoring condition and with the normal of the plates being ez, the ground
state (i.e., the state that the system is in below threshold) director field is
n = ez which possesses evident rotational symmetry around the z axis.

We establish the basic character of the active instability and spon-
taneous flow transition by performing numerical simulations with ran-
dom initial perturbations to the ground state. We find that there is a
threshold in activity, below which the system remains in the ground state
and above which the system spontaneously starts flowing. The flow field
consists of a Poiseuille-like component and a shear-like component
perpendicular to it. The Poiseuille-like flow component results in a net
flux within the system, the direction of which is random and represents
spontaneous rotational symmetry breaking. The director field is twisted
with either a right or left handedness, occurring with equal probability.
Hence, the system also undergoes spontaneous chiral symmetry break-
ing. We note that the shear-like component of the flow is reversed
between the two possible twist configurations. The director and flow
fields are shown in Fig. 1.

This twisted flow state arises from the coupled evolution of two
degenerate eigenmodes that both become unstable at the activity threshold.

We believe that this is an accidental degeneracy, rather than arising due to
some underlying symmetry. The degeneracy may be lifted by applying a
generic perturbation, such as the application of an electric field. We label
these modes the S-mode and the D-mode. The different chiralities emerge
from the fact that the D-mode can evolve in one of two possible directions
perpendicular to the S-mode, with each direction being equally probable.
The flow components associated with the S-mode and D-mode are the
Poiseuille-like and shear-like flows respectively.

Linear instability and threshold
Activenematic systems canbemodelled by the activeBeris-EdwardsEqs. 4,21

∂tρþ ∇ � ρv
� � ¼ 0; ð1Þ

ρ∂tv þ ρv � ∇v ¼ ∇ �Π; ð2Þ

∂t þ v � ∇� �
Q ¼ ΓHþ S; ð3Þ

which describe the coupled evolution of the fluid density, ρ, velocity, v, and
the nematic order paramerter, Q. We solve the Beris-Edwards equations
numerically using a hybrid lattice Boltzmann (LB) algorithm50, with full
details given in theMethods.Theactivity is incorporated into (2) in theusual
way by adding an additional contribution to the stress, Πa =− ζLBQ,
modelling a force dipole at themicroscopic level with a strength given by the
phenomenological activity parameter, ζLB. Extensile activity corresponds to
ζLB > 0 and contractile activity to ζLB < 0.

In the analytical analysis, we work in terms of the director field,
reducing the Beris-Edwards nematodynamic equations to the Ericksen-
Leslie form26. Assuming low Reynolds number, constant density, and a
uniaxial form for the nematic order parameter,Qij ¼ 3S

2 ðninj � δij=3Þ, with
constant S, one writes:

∇ � v ¼ 0; ð4Þ

�∇pþ μ∇2v þ ∇ � σel þ σa
� � ¼ 0; ð5Þ

∂tnþ v � ∇nþΩ � n ¼ 1
γ
h� ν D � n� n �D � nð Þn½ �: ð6Þ

In (5), σ el denotes the elastic stresses coming from the nematic director
and the active stress is σ a =− ζnn, where ζ ¼ 3S

2 ζLB. We consider only the
flow aligning regime, where the flow aligning parameter ν <− 122. Further

Fig. 1 | Director and flow fields of the spontaneous flow transition. a Steady-state
director and velocity fields after the spontaneousflow transition to the state with left-
handed chirality. We show also the decomposition into x and y components of both

fields in a three-dimensional cell of cell gap d. b Steady-state director and velocity
fields after the spontaneous flow transition to the state with right-handed chirality.
We show also the decomposition into x and y components of both fields.
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relevant aspects of the correspondence between the Beris-Edwards and
Ericksen-Leslie equations are given in the Methods.

We start by considering the Ericksen-Leslie formalism in quasi-one-
dimensional geometry where the spatial dependence is only along the cell
normal (z-direction) but the flow field, v, and active nematic director,n, can
be in any direction. This part of our analysis parallels that of ref. 25, with the
difference being that they considered parallel anchoring. The continuity
equation then implies that vz = 0 and the Stokes Eq. (5) can be integrated
directly to give

p ¼ σelzz þ σazz þ constant; ð7Þ

vi ¼
1
μ

z σeliz þ σaiz
� �� Z z

0
σeliz þ σaiz du

� �
: ð8Þ

Here, the notation h� � � i ¼ 1
d

R d
0 � � � du represents the average of the

argumentover the cell gap; these termsarise fromtheno slip conditionat the
two cell boundaries, z = 0, d. For the director dynamics, we will find it
convenient to write n in the form

n ¼ cosφ cos θ ez þ sin θ ex
� �þ sinφ ey; ð9Þ

parameterised by two angles θ and φ, in terms of which the director
dynamics (6) becomes

∂tθ ¼ 1
cosφ

mθ �
1
γ
h� Ω � nþ νD � nð Þ

� 	
; ð10Þ

∂tφ ¼ mφ �
1
γ
h� Ω � nþ νD � nð Þ

� 	
; ð11Þ

where we have defined the unit vectors

mθ ¼ � sin θ ez þ cos θ ex; ð12Þ

mφ ¼ � sin φ cos θ ez þ sin θ ex
� �þ cosφ ey: ð13Þ

Substituting theflow solution (8) forD andΩ, (10) and (11) reduce to a
pair of coupled, nonlinear integro-differential equations for the two angles,
which we give in full in the Methods. Both equations have the same line-
arisation, which we write only for θ,

∂tθ ¼ K
γ
∂2zθ þ

Kð1� νÞ2
4μ

∂2zθ � ∂2zθ
� �� �

þ ζð1� νÞ
2μ

θ � θh ið Þ � L θ:

ð14Þ

The uniform state (θ = 0) is linearly unstable when the linear integro-
differential operator, L, has a positive eigenvalue, λ. A perturbation along
the associated eigenfunction then grows exponentially with rate λ until it
saturates at a steady-state solution of the full nonlinear equations. The
eigenfunctions of L separate into two symmetry classes according to whe-
ther they are odd or even about the cell midplane.

For the odd eigenfunctions, the integral terms in (14) vanish and L
reduces to a Schrödinger-type operator whose eigenfunctions are

θ ¼ AS sin
2nπz
d

; n 2 N; ð15Þ

where AS is an amplitude. The lowest mode, n = 1, becomes unstable first,
which happens at the threshold activity

ζ th ¼
8π2μK

γð1� νÞd2 1þ γð1� νÞ2
4μ

� 	
: ð16Þ

In theflow aligning regime (ν <−1), whichwe restrict our attention to,
the instability is for extensile activity. We note, however, that the instability
will be for extensile activities in the flow tumbling regime (∣ν∣ < 1) as well.
For ν > 1, the instability arises for contractile activity. A more extensive
discussion of the effects of flow alignment can be found in ref. 32. The
unstable mode (15) is associated with a flow

v ¼ 4πKAS

γð1� νÞd 1� cos
2πz
d

� �
; ð17Þ

that is even about the cell midplane and represents a fluid flux along a
spontaneously chosen direction. We refer to this unstable mode, and the
steady spontaneous flow state it evolves into, as the ‘S-mode’ due to the
appearance of the director across the cell gap.

For the even eigenfunctions of L, the integral terms in (14) do not
vanish and we have not found closed-form expressions for all of the
eigenfunctions. However, one can verify directly that

θ ¼ AD

2
1� cos

2πz
d

� �
; ð18Þ

is an eigenfunction with eigenvalue zero at the threshold activity, ζ = ζth.AD

is an amplitude for the mode. The associated fluid flow

v ¼ � 2πK AD

γð1� νÞd sin
2πz
d

; ð19Þ

is shear-like and odd about the cell midplanewith no net flux. As before, the
direction is chosen spontaneously.We refer to this unstablemode as the ‘D-
mode’, again due to the appearance of the director across the cell gap.

Numerically, we seed an S-mode of the form (15) and aD-mode of the
form (18) separately and let them evolve into steady state for activities very
close to the threshold. To effectively isolate the individual eigenmodes (and
speed up simulations), we perform quasi-2D simulations, consisting of
201 × 45 bulk points. The same results are obtained with full three-
dimensional simulations (for examplewith 201 × 201 × 45bulkpoints). The
results of the S- and D-modes are shown with their associated flow fields in
Fig. 2, along with direct comparison to analytical predictions, where there is
excellent agreement.

Overall, the spontaneousflow instabilitywith homeotropic and no-slip
boundary conditions is characterised by having two degenerate modes, one
in each symmetry class, that become linearly unstable at the same threshold
activity, each with a spontaneously chosen in-plane direction. This degen-
eracy in the linear instability distinguishes the active spontaneous flow
transition from the Frederiks transition in a passive system, where the
instability is to the fundamental mode in the even sector at a threshold well
below that of the first mode in the odd sector22.

Finally, we remark that (14) is derived using the one elastic constant
approximation. However, as the linear director perturbation is pure bend,
the general case would yield the same equation with K3 replacing K. In
particular, this shows that anisotropy in the elastic constants does not lift the
degeneracy of the S- and D-modes at threshold.

Growth rates above threshold
Above the threshold activity both unstablemodeswill grow exponentially at
rates given by their respective eigenvalues of the linear stability operator L.
We first determine these for the S- and D-modes separately and subse-
quently consider how they coevolve. The S-mode (15) is an eigenfunction of
L for all values of the activity, with eigenvalue

λS ¼
1� ν

2μ
ζ � ζ th
� �

: ð20Þ

For the D-mode, the expression (18) is an exact eigenfunction only at
the threshold activity, ζ = ζth,where the eigenvalue is zero.Wedonothave its
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closed formmore generally.However, for activities close to thresholdwe can
determine the eigenvalue fromperturbation theory, expanding tofirst order
in ζ− ζth. We provide the details in the Methods and state here only the
result

λD ¼ 1� ν

6μþ γð1� νÞ2 ζ � ζ th
� �

: ð21Þ

Comparing against the eigenvalue of the S-mode gives a ratio

λS=λD ¼ 3þ γð1�νÞ2
2μ , from which we see that the S-mode will grow fastest

above threshold. As a result, unless it is suppressed, it will dominate the
initial evolution of the system post instability.

To acquire the growth rates numerically, we individually seed S- and
D-modes with the forms given by (15) and (18) respectively, and simulate
their evolution using quasi-two-dimensional simulations at different values
of ζLB. To extract their linear growth rates, we plot themode amplitude over
time on a logarithmic scale and use the gradient to extract the mode’s
exponential growth rate.We plot the exponential growth rates vs activity in
Fig. 3, fromwhichwe can extract the growth rate coefficient and the activity
threshold. To allow for comparisonwith numerical simulations, we convert
(20) and (21) to simulation units

λS ¼ 0:0178 ζLB � 0:0629
� �

; ð22Þ

λD ¼ 0:00307 ζLB � 0:0629
� �

: ð23Þ

We see a very good agreement with both the growth rate magnitude
and the threshold for both the S- and D-mode, with percentage differences
not exceeding 5%. The small difference in the simulated thresholds for the
emergence of the S- and D-modes (which is predicted to be the same from
theoretical analysis) is due tonumerically challenging stabilisationof pure S-
andD-modes. Finally, as expected, the growth rates eventually deviate from
a linear scaling at a large enough activities above threshold.

The difference in the numerical values of the two growth rates suggests
a separation of timescales that allows us to treat the instability as effectively a
two-stage process. Initially, the S-mode grows fastest and attains a finite
amplitude and steady state, while the D-mode remains infinitesimal. Sub-
sequently, the D-mode evolves on top of the established S-mode. As the
S-mode spontaneously breaks rotational symmetry within the cell, the
problem is no longer isotropic and we consider separately growth of the
nascent D-mode parallel and perpendicular to the established S-mode.

We denote by θ*(z) the steady state solution of (10) with φ = 0, cor-
responding to a fully established pure S-mode. It is given by

K
γ
∂2zθ

� þ ζ 1� ν cos 2θ�ð Þ sin 2θ�
4μþ γ 1� ν cos 2θ�ð Þ2 ¼ 0; ð24Þ

and reduces to the quadrature

jz � d=4jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jνjK=ζ

p ¼
Z A�

S

θ�
ln

1þ γ
4μ ð1� ν cos 2θ0Þ2

1þ γ
4μ ð1� ν cos 2A�

SÞ2
" #�1=2

dθ0; ð25Þ

where the expression applies for 0 ≤ z ≤ d/2; for d/2 ≤ z ≤ d we use the odd
symmetry θ*(z) =− θ*(d− z). The amplitude of themode isA�

S ¼ θ�ðd=4Þ,
which may be obtained implicitly as a function of ζ by setting z = θ* = 0 in
(25). We show this dependence in Fig. 4. The behaviour close to threshold
has the square root form A�

S ∼ ðζ � ζ thÞ1=2, which may be found from an
expansion of (25) (with z = θ* = 0) to linear order inAS. Explicitly, to leading
order we find the amplitude is

A�
S
2 ¼

2ð1� νÞ 1þ γð1�νÞ2
4μ

� �
1� 4ν þ γð1�νÞ2ð1þ2νÞ

4μ

ðζ � ζ thÞ
ζ th

: ð26Þ

We now determine the growth rate of the D-mode, to linear order in
ζ− ζth, in the presence of a steady state S-mode. This amounts to retaining
all terms up to OðA�

S
2Þ from the steady-state S-mode in the linearised

dynamics for the D-mode, which therefore modifies the growth rates as
compared to (21).Weconsider separately the growthof theD-modeparallel
and perpendicular to the (spontaneously chosen) direction of the estab-
lished S-mode. For the perpendicular case we substitute θ = θ*(z),
φ = δφD(z, t) into (11) and linearise in δφD. The calculation of the growth
rate uses the sameperturbation theory as before and is given in theMethods.

Fig. 3 | Unstable mode growth rates. Exponential growth rates vs activity for an
individually seeded S-mode (blue), and D-mode (red). The black dashed lines are
linear fits of the numerical data close to threshold, where the growth rates exhibit a
linear relation with activity.

Fig. 2 | Linearly unstablemodes at threshold.Comparison of the simulation results
of the director and flow profiles (solid blue and red curves) with the corresponding
analytical predictions (black dashed curves) for activity in the vicinity of the
threshold activity, ζLB = 0.063. The blue curves show the director (left) and velocity
(right) profiles of the S-mode, so called because of its ‘S’-like appearance across the
cell gap. The red curves show the director (left) and velocity (right) profiles of the D-
mode, again, named after the ‘D’-like appearance of its director profile. The observed
amplitude of the S-mode profile is AS = 0.0043 and the velocity amplitude is
vS = 1.71 ⋅ 10−4 ΓL/ξn. Observed ratios between S- and D-mode areAD/AS = 0.95 and
vD/vS = 0.25.
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For theparallel casewe substitute θ = θ*(z)+ δθD(z, t) into (10) and linearise
in δθD; the analysis is again given in theMethods. The two growth rates are

λ? ¼
4� 2ν þ γ

2μ ð1� νÞ2ð2þ νÞ
1� 4ν þ γ

4μ ð1� νÞ2ð1þ 2νÞ λD; ð27Þ

λk ¼
8ν þ 2γ

μ νð1� νÞ2

1� 4ν þ γ
4μ ð1� νÞ2ð1þ 2νÞ λD; ð28Þ

which in simulation units read

λ? ¼ 0:00747 ζLB � 0:0629
� �

; ð29Þ

λk ¼ �0:0166 ζLB � 0:0629
� �

: ð30Þ

The main result is that λ∥ < 0 and λ⊥ > 0 so that the D-mode only
remains linearly unstable along the direction perpendicular to that set by
the S-mode. As a result, the director evolves into a truly three-
dimensional configuration with the S- and D-modes growing along
orthogonal in-plane directions. This interplay between the two modes
leads to twisted director fields with

n �∇×n ¼ cos θ cosφ sinφ ∂zθ � sin θ ∂zφ; ð31Þ

≈� π

d
ASAD 1� cos

2πz
d

� �
; ð32Þ

where in the second form we have linearised in θ and φ and taken them
to have the threshold forms (15) and (18), respectively. The twist
maintains a single sign (handedness) throughout the cell, vanishing only
on the two boundaries. Since the S-mode spontaneously breaks rotational
symmetry in the plane, we define our coordinate system around it,
labelling its direction as ex. Consequently, its amplitude AS is always
positive. In contrast, the amplitude of the D-mode, AD, can be positive or
negative (corresponding to the two directions orthogonal to the
established S-mode, ± ey); when it is positive the twist is right-handed
and when negative it is left-handed. In a nematic material we expect both
to occur with equal probability and any particular realisation represents a
spontaneous chiral symmetry breaking. This general mechanism for
confined active nematics may also be relevant to the emergence of twist
in bulk three-dimensional systems42,51 and possibly also to the prevalence
of twist loops in the statistics of their defect loops52,53.

The growth rate λ⊥(27) for the orthogonal D-mode can be verified
numerically by initialising the director with an S-mode along ex and a small
amplitude D-mode along ey. Tracking the exponential growth of the
D-mode as a function of activity allows for a fit of the growth rate and
threshold activity as before. This is shown in Fig. 5. The agreement with the
theoretical prediction is again excellent. We note, particularly, that we
obtain better agreement for the threshold activity ζth than we found from
simulations with only the D-mode.

Mode evolution and steady state
We now summarise and describe the full evolution of the instability to
the steady spontaneous flow state. This can be studied systematically in
numerical simulations with a full three-dimensional simulation box. We
seed a small amplitude director perturbation consisting of an S-mode
along ex and a D-mode along ey and track their amplitudes—the max-
imum values of θ and φ – over time. This is shown in Fig. 6. The
evolution can be divided into three distinct regimes: in the first (I), there
is exponential growth of both modes, but with the S-mode growing
significantly faster. This corresponds to the independent and isotropic
mode dynamics described in Fig. 3. In the second regime (II), the S-mode
amplitude attains a plateau and there is an increase in the exponential
growth rate of the D-mode. The S-mode amplitude at its plateau cor-
responds to the value A�

S and the enhanced growth rate of the D-mode is
the cross-over to the rate λ⊥ as described in Fig. 5. Finally, in the third
regime (III) the D-mode amplitude attains its steady state value and
promotes a small further increase of the S-mode amplitude to its
steady state.

This joint evolution can be cast as a coupled dynamical system for the
amplitudes AS,AD of the S- and D-modes

dAS

dt
¼ gS AS;AD

� �
;

dAD

dt
¼ gD AS;AD

� �
; ð33Þ

where the growth rate functions gS and gD have the fixed point structure
shown in Fig. 7. We define AS to be strictly positive, meaning that AD can
take either sign. There are three important fixed points: the origin and the
two points corresponding to the right- and left-handed states. Below
threshold, the origin is a stable fixed point, but above it becomes unstable to

Fig. 5 | D-mode growth rate. Plot of the D-mode’s growth rate perpendicular to an
established S-mode. The black dashed line is a linear fit of the numerical data in the
selected range of data close to the threshold for three-dimensional simulation box
with 201 × 201 × 45 mesh points.

Fig. 4 | S-mode amplitude.Plots of the S-mode amplitude against ζ/ζth. The blue line
shows the quadrature solution, Eq. (25), and the black, dashed line the leading order
part of the expansion ofA�

S , given by Eq. (26). The black data points show numerical
data of an individual S-mode in steady state, using the quasi-two-dimensional setup.
The numerical data is scaled with a threshold activity of ζth = 0.062 to fit the ana-
lytical prediction, again in good agreement with the theoretical prediction.
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all S- and D-mode perturbations. Depending on the sign of AD,
perturbations around the origin will either flow to the left-handed or the
right-handed stable fixed points, corresponding to the handedness of the
resulting flow state’s chirality. These flows are shown by lines in Fig. 7.
Trajectories starting close to the origin follow closely to theAS axis untilAS is
large and then rapidly moves away from the axis to one of the stable fixed
points. This corresponds physically to the S-mode growing to a large
amplitude before there is any significant D-mode growth. Finally, we note
that in the absence of a D-mode, the S-mode grows to the semi-stable fixed
point labelled asA�

S ,whichhas a slightly smaller amplitude than the left- and
right-handedfixed points. Thisfixed point is described in (25). For activities
close to threshold, the fixed points are close to the origin andwe can expand

the growth functions as

gS AS;AD

� � ¼ λSAS � Λ1A
3
S þ Λ2ASA

2
D þ � � � ; ð34Þ

gD AS;AD

� � ¼ λDAD þ Λ3A
2
SAD � Λ4A

3
D þ � � � ; ð35Þ

where the non-linear terms are those allowed by symmetry. We give the
calculation of theΛ coefficients in theMethods. This system connects to our
previous results and reproduces the numerically observed dynamics of
Fig. 6. The amplitude A�

S of the S-mode plateau in regime II is given by
ðλS=Λ1Þ1=2 and matches the value in (26). Similarly, the enhanced growth
rate of the D-mode in regime II is given by λD+ (Λ3/Λ1)λS andmatches the
rate λ⊥ in (27). At this leading order, we obtain the steady state amplitudes

AS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ4λS þ Λ2λD
Λ1Λ4 � Λ2Λ3

s
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ � ζ th

p
; ð36Þ

AD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ1λD þ Λ3λS
Λ1Λ4 � Λ2Λ3

s
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ � ζ th

p
: ð37Þ

We note that

A2
S ¼ A�

S
2 þ Λ2

Λ1
A2
D: ð38Þ

This coincides with the numerical observation that there is an increase
in the S-mode amplitude when the D-mode comes into steady state. In the
numerical observations, this increase in small, implying that the D-mode
coupling to the S-mode evolution is small, i.e., Λ2/Λ1≪ 1. Indeed, in
simulationunits,Λ2/Λ1 = 0.08.With thisweak coupling, the evolutionof the
S-mode can be approximated by

dAS

dt
≈ λS � Λ1A

2
S

� �
AS; ð39Þ

which gives

ASðtÞ ¼ ASð0Þ eλSt 1þ ASð0Þ2
A�
S
2 ðe2λSt � 1Þ

" #�1=2

: ð40Þ

Fig. 6 | Evolution ofmode amplitudes. aComparison of the numerical evolution of
the S-mode amplitude andD-mode amplitude (blue and red lines, respectively), with
the analytical predictions of the leading order amplitude evolution from Eqs. (40)
and (41) (black, dashed lines) at ζLB = 0.0675. The plot has a logarithmic scale on the

vertical axis.b S-mode profile (S) along the cell gap at three different times of the time
evolution (I, II and III, as seen in (a)). D-mode profile (φ) along the cell gap at the
same three time points. We used time frames 0.3 × 105τ, 1.2 × 105τ and 2.7 × 105τ for
I, II and III respectively.

Fig. 7 | Phase portrait of the spontaneous flow transition. The phase portrait for
the system above threshold as obtained from full three-dimensional numerical
simulations. The vertical blue line is the S-mode trajectory, where the S-mode grows
independently of the D-mode, whereas the horizontal red line is the D-mode tra-
jectory where the D-mode grows independently of the S-mode. Black lines show the
trajectories of the coupled evolution of the S- and D-modes to the left- and right-
handed chiral stationary states. Trajectories are initialised with weakly perturbed
pure S- and D-modes. Dots represent significant stable (full), unstable (empty), and
saddle-like (empty with a line) fixed points.
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We can substitute this into the leading order part of gD and solve to give the
approximate the evolution of AD as

ADðtÞ ¼ADð0Þ eλDt 1þ ASð0Þ2
A�
S
2 e2λSt � 1
� �" #Λ3=2Λ1

× 1þ ADð0Þ2Λ4

λD
1� ASð0Þ2

A�
S
2

 !Λ3=Λ1
2
4

e2λDt2F1
λD
λS

;�Λ3

Λ1
; 1þ λD

λS
;
ASð0Þ2e2λSt

ASð0Þ2 � A�
S
2

" # 

� 2F1
λD
λS

;�Λ3

Λ1
; 1þ λD

λS
;

ASð0Þ2
ASð0Þ2 � A�

S
2

" #!#�1=2

;

ð41Þ

where 2F1 is Gauss’s hypergeometric function.
We compare (40) and (41) with numerical data of mode ampli-

tude evolution in Fig. 6 for ζ = 0.0675. The analytical model captures
the qualitative, triphasic nature of the system well. For the S-mode, the
agreement is very good up to phase III, where the second plateau is not
captured due to the decoupling approximation that was made. For the
D-mode, the analytical prediction of the growth rate in phase I, (23), is
larger than the numerics, although this is consistent with what we have
already observed when we seeded an independent D-mode. Recall that
the numerical isotropic growth rate for a D-mode has a shifted
threshold compared to (23) which has a significant effect on the
growth rate close to threshold, thus making the numerical growth rate
noticeably smaller than what is analytically predicted. Nevertheless,
the analytical prediction tracks the numerical data very well thereafter,
albeit translated upwards due to the first phase growth rate being
too large.

As we move further and further above threshold, the analytical
model becomes increasingly worse. If, however, θ and φ are in odd and
even symmetry classes respectively, then the functions ∂tθ and ∂tφ are
also odd and even respectively which can be checked by inspection of
each term in (10) and (11). This implies that if θ and φ start off as odd
and even respectively, then the functions will remain in the same
symmetry class for the entirety of their non-linear, coupled time
evolution. Furthermore, we can analyse the symmetry of v and upon
inspection of the formula, if θ and φ are in their aforementioned
symmetry classes then vx will be an even function and vy will be and
odd function. Hence, we expect that the generation of a chiral director
field is a general property of the system, rather than just a feature close
to threshold.

Conclusions
We have studied a spontaneous flow transition in an active nematic fluid
with an infinite slab geometry and normal surface anchoring. We find the
existence of two independentflow instabilities, the S-mode and theD-mode,
that occur at the same threshold but have different growth rates above
threshold,whichwe calculate using perturbation theory of a non-Hermitian
integro-differential operator. Above threshold, the S-mode with its larger
growth rate grows in a random direction to steady state, breaking the initial
rotational symmetry of the system. Thereafter, any perturbations within the
system are subject to an anisotropic environment. In particular, D-mode
perturbations that are parallel and perpendicular to the direction of aniso-
tropy decay and grow respectively. The growth of the D-mode perpendi-
cular to the S-mode yields a steady-statewith a full, three-dimensional chiral
director field, with spontaneously broken chiral symmetry. We analytically
describe themode growth with a leading-order model that captures the key
characteristics of the system and its evolution into the spontaneously
flowing state.

The first natural extension of this work is to explore the possible
inhomogeneity of the flow within the cell plane, enabling the study of the
chiral flowing state’s stability to the Goldstone mode coming from the
breaking of rotational symmetry and the umbilic defect lines associated to
this. Furthermore, in large systems, the spontaneous chiral symmetry
breaking could yield domains of different chirality, leading to an effective
non-conserved binary mixture. We hope the novel three-dimensional flow
instability we have uncovered can provide motivation for experimental
research of active nematic systems with normal anchoring.

Active nematics are fundamentally analogous to passive (i.e., non-
active) nematic liquid crystals, with the orientational ordering of the ani-
sotropic material building blocks crucially determining the material
dynamics, including at the surface. Today, surface anchoring in passive
nematics can be realised experimentally in different configurations, ranging
from uniform planar and degenerate planar to homeotropic and even tilted
and tilted degenerate. Such advanced control over surface alignment was
shown together with control over confinement geometries to diverse
material structures and phenomena, such as realisation of colloidal andfield
knots54–56, self-assembly57, hexadecapolar and 32-pole field
configurations58,59, memory60,61, static and dynamic solitons62–64, tunable
positioning of topological defects65,66. Clearly, advancing the ability to
control different surface anchoring regimes in combination with
confinement67 could open diverse research directions in confined active
nematics, especially at the experimental level. Even rather simple surfaces
like spheres imposing homeotropic anchoring on active nematics would
lead to the emergence of topologically imposed and conditionedbulk Saturn
ring defect states that are commonly observed in passive nematics but not
seen in active nematics. For example, could combining three-dimensional
self-assembly of (active) nano-objects (e.g., bacteria) combined with con-
finement lead to different effective anchoring beyond the typical planar?68

Another possibly emerging direction from this work is the obser-
vation of the spontanenous chiral symmetry in an active (nematic) sys-
tem, for example speculatively in the three-dimensional active nematic
material of extensile microtubule bundles in a passive colloidal liquid
crystal, provided that appropriate homeotorpic surface anchoring could
be realised52. At least in non-active nematic materials, chiral symmetry
breaking naturally leads to the emergence of different phenomena, such
as chiral domains and associated topological defects such as solitonic-like
nematicons69. In active systems, chiral activity can lead to topological
edge modes70 and odd elastic responses71. Combining spontaneous chiral
symmetry breaking with activity in more advanced geometries and set-
ups – beyond the simple homeotropic cells studied in this work – could
lead to an exciting advancement of the control and design of novel active
functional matter.

Methods
Numerical methods
We solve the Beris-Edwards Eqs. (1)–(3) using a hybrid lattice Boltzmann
algorithm. In these equations, Π is the stress tensor defined by

Πij ¼� pδij þ μð∂ivj þ ∂jviÞ þ QikHjk � HikQjk

þ 2χ Qij þ
1
3
δij

� �
QklHkl � χHik Qkj þ

1
3
δkj

� �

� χ Qik þ
1
3
δik

� �
Hkj � ∂iQkl

δF
δ∂jQkl

� ζLBQij;

ð42Þ

where p is the pressure, μ is an isotropic shear viscosity, χ is the flow
alignment parameter, Γ is a rotational viscosity and ζLB is the activity
parameter.Hij ¼ � δF

δQij
þ 1

3 δijTrð δF
δQkl

Þ are the components of themolecular
field, in which

F ¼
Z

FB dV þ
Z

F S dS; ð43Þ
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is the free energy, where

F B ¼ A
2
QijQji þ

B
3
QijQjkQki þ

C
4
ðQijQijÞ2 þ

L
2

∂kQij

� �2
; ð44Þ

F S ¼
1
2
Wh Qij � Q0

ij

� �2
: ð45Þ

The bulk part of the free energy is described via phenomenological
constants for phase transition A, B, C, one constant approximation for the
elastic part L, and the surface part is described via homeotropic anchoring
with strength Wh and orientation Q0

ij corresponding to the preferred per-
pendicular director on the surface plate n = ± ez. Finally, the tensor S with
components

Sij ¼ χDik �Ωik

� �
Qkj þ

1
3
δkj

� �

þ Qik þ
1
3
δik

� �
χDkj þΩkj

� �

� 2χ Qij þ
1
3
δij

� �
QklDlk;

ð46Þ

describes the coupling between the nematic order parameter and the flow
field. We useD andΩ to represent the symmetric and antisymmetric parts
of the velocity gradient tensor respectively.

In the lattice Boltzmann simulations, the fundamental scaling para-
meters are the nematic correlation length

ξn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L= Aþ BSþ 9CS2=2
� �q

ð47Þ

and the nematic time scale

τn ¼ ξ2n=ΓL: ð48Þ

All of the parameter values are expressed in units of the elastic constant L.
We used the following Landau-de Gennes parameters A ¼ �0:687 L=ξ2n,
B ¼ �3:53 L=ξ2n andC ¼ 2:89 L=ξ2n, describing the phase transition part
of the free energy and the rotational viscosity Γ ¼ ξ2n

τnL
. Under this choice of

parameters S = 0.651. This corresponds to the use of Beris-Edwards
parameters χ = 1, μ = 1.38/Γ and ρ ¼ 0:031× 1

LΓ2. We performed simula-
tions with a cell size of 201 × 201 × 45 bulk points confined between the two
plates using homeotropic anchoring with strength Wh ¼ 2

3 L=ξn and
periodic boundary conditions on the side. We used disretisation of spatial
coordinates Δx = 1.5 ξn and a time step Δt = 0.025 τn.

The nematic director, n, is obtained as the eigenvector associated with
the largest eigenvalue of Q, which represents the magnitude of the order
parameter, S.

Details of the Ericksen-Leslie Equations
In the Ericksen-Leslie Eqs. (4), (5) and (6), γ ¼ 9S2

2Γ and ν ¼ � ð3Sþ4Þ
9S χ.

hi ¼ � δF
δni

þ δF
δnj

njni is the molecular field, in which we use the Frank free
energy with the one-elastic constant approximation,

F ¼ K
2

Z
∂inj∂inj dV; ð49Þ

where K ¼ 9S2

2 L. We explicitly separate out the stress tensor. The elastic
contribution is

σelij ¼
1
2

nihj � hinj
� �

þ ν

2
nihj þ hinj
� �

� K∂ink∂jnk ð50Þ

and the active contribution, σaij ¼ �ζninj, where ζ ¼ 3S
2 ζLB.

Full evolution equations
Using equation (8), we can eliminate velocity from (10) and (11) to obtain
evolution equations for the director angles θ and φ, giving

∂tθ ¼ K
γ

∂2zθ � 2 tanφ ∂zφ ∂zθ
� �

� 1� ν cos 2θ
2μ

σelxz þ σaxz � σelxz þ σaxz
� �� �

� 1þ ν

2μ
tanφ sin θ σelyz þ σayz � σelyz þ σayz

D E� �
;

ð51Þ

∂tφ ¼ K
γ

∂2zφþ sinφ cosφ ∂zθ
� �2� �

� 1� ν cos 2φ
2μ

cos θ σelyz þ σayz � σelyz þ σayz

D E� �
� ν

4μ
sin 2φ sin 2θ σelxz þ σaxz � σelxz þ σaxz

� �� �
;

ð52Þ

where

σelxz þ σaxz ¼� ζcos2φ sin θ cos θ

� Kð1� ν cos 2θÞ
2

cos2φ ∂2zθ � sin 2φ ∂zφ ∂zθ
� �

� Kν
4

sin 2φ sin 2θ ∂2zφþ sinφ cosφ ∂zθ
� �2� �

;

ð53Þ

σelyz þ σayz ¼� ζ sinφ cosφ cos θ

� Kð1� ν cos 2φÞ cos θ
2

∂2zφþ sinφ cosφ ∂zθ
� �2� �

� Kð1þ νÞ
2

sinφ sin θ cosφ ∂2zθ � 2 sinφ ∂zφ ∂zθ
� �

:

ð54Þ

Eigenvalues above threshold
We solve for the leading order correction to the eigenvalue, λ, of the stability
operator equation Lθ ¼ λθ when ζ > ζth. To do so, we perform a pertur-
bation expansion,L ¼ L0 þ L1 þ . . . (and likewise for λ and θ), in powers
of ζ− ζth, withL0 corresponding toL when ζ = ζth (and likewise for λ0 and
θ0). In the main text, L is defined by (14). However, it is important to note
that the analysis provided in this section is valid for all operators, L, that
linearise to

L0θ ¼K
γ
∂2zθ þ

Kð1� νÞ2
4μ

∂2zθ � ∂2zθ
� �� �

þ ζ thð1� νÞ
2μ

θ � hθið Þ;
ð55Þ

when ζ = ζth. We proceed in the usual way of expanding Lθ ¼ λθ and
equating order by order, giving

L0θ0 ¼ λ0θ0 ¼ 0 ð56Þ

L0θ1 þ L1θ0 ¼ λ0θ1 þ λ1θ0 ¼ λ1θ0: ð57Þ

L0 is non-Hermitian over the interval z∈ [0, d] due to the h∂2z � i term,
meaning thatwe cannot apply standardmethods forHermitianoperators to
solve for λ1; wemust instead take a slightly different approach that is unique
to operator (55). Firstly, we take the average of all terms in (57) and
rearrange to get

L0θ1
� � ¼ K

γ
∂2zθ1
� � ¼ λ1 θ0

� �� L1θ0
� �

: ð58Þ
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Next, we multiply (57) by θ0 and average, giving

θ0L0θ1
� �þ θ0L1θ0

� � ¼ λ1 θ20
� �

: ð59Þ

To simplify this, we make use of the result

θ0L0θ1
� � ¼ θ1L0θ0

� �
� Kð1� νÞ2

4μ
θ0
� �

∂2zθ1
� �� θ1

� �
∂2zθ0
� �� �

;
ð60Þ

¼ �Kð1� νÞ2
4μ

θ0
� �

∂2zθ1
� �

; ð61Þ

where the second equality comes from the fact that hθ1L0θ0i ¼ 0 and
h∂2zθ0i ¼ 0. We can combine (58), (59) and (61) to eliminate h∂2zθ1i and
solve for λ1, giving

λ1 ¼
θ0L1θ0
� �þ γð1�νÞ2

4μ θ0
� � L1θ0

� �
θ20
� �þ γð1�νÞ2

4μ θ0
� �2 : ð62Þ

Wenote that in the casewhere themode is antisymmetric about the cell
midplane, all of the integral terms in (55) vanish,makingL0 Hermitian over
the interval z∈ [0, d]. As expected, (62) reduces to λ1 ¼ hθ0L1θ0i=hθ20i, the
standard result of perturbation theory onHermitian operators.We use (62)
to calculate the isotropic and anisotropic growth rates for the D-mode,
separating into different cases.

Isotropic D-mode growth rate
We calculate the exponential growth rate of a D-mode perturbation to the
ground state,n = ez, which is isotropicwithin the cell plane. In this case, both
θ and φ are infinitesimal, meaning we consider the stability operator given
by (14) (recall that the equations for θ and φ both linearise to the same
equation in this case).We recall that theD-mode eigenfunction at threshold
is

θ0 / 1� cos
2πz
d

: ð63Þ

Next, we expand (14) in powers of ζ− ζth to give

L1θ0 ¼
ð1� νÞðζ � ζ thÞ

2μ
θ0 � θ0

� �� �
: ð64Þ

We now substitute these results into (62) to obtain

λD ¼
ðζ � ζ thÞð1� νÞ θ20

� �� θ0
� �2� �

2μ θ20
� �þ γð1�νÞ2

4μ θ0
� �2� � ; ð65Þ

¼ 1� ν

6μþ γð1� νÞ2 ζ � ζ th
� �

: ð66Þ

This is the result given in equation (21) in the main text.

Anisotropic D-mode growth rates
In this section, we calculate the exponential growth rates of D-mode per-
turbations on topof ananisotropic steady state due to anS-mode established
in the spontaneously chosen direction, ex. The S-mode is denoted by θ*(z)
and is the solution to (24). We consider the two cases: a D-mode pertur-
bation to φ, θ = θ*(z) and φ = δφD(z, t), and a D-mode perturbation to θ,
θ = θ*(z)+ δθD(z, t). In the small angle regime close to threshold, these
perturbations have leading order contributions along ey and ex respectively,

thus we interpret them as perpendicular and parallel perturbations to the
direction of anisotropy.

Perpendicular growth rate. We substitute θ = θ*(z) and φ = δφD(z, t)
into equation (52) and linearise about δφD, giving

∂tδφD ¼K
γ
∂2zδφD þ K

γ
∂zθ

�� �2
δφD

þ Kð1� νÞ2
4μ

cos2θ� ∂2zδφD þ δφD ∂zθ
�� �2� ��

� cos θ� cos θ� ∂2zδφD þ δφD ∂zθ
�� �2� �D E�

þ K 1� ν2
� �
4μ

cos θ� sin θ� ∂2zθ
� δφD

�
� cos θ� sin θ� ∂2zθ

� δφD

� ��
þ Kν

4μ
sin 2θ�∂2zθ

� 1� ν cos 2θ�ð Þ�
� sin 2θ� ∂2zθ

� 1� ν cos 2θ�ð Þ� ��
δφD

þ ð1� νÞζ
2μ

cos2θ� δφD � cos θ� cos θ� δφD

� �� �
þ νζ

4μ
sin22θ� � sin 2θ� sin 2θ�

� �� �
δφD:

ð67Þ

The right-hand side is the stability operator, L, of δφD. In the limit
ζ→ ζth, θ

*→ 0 and the right-hand side of (67) reduces to the form given in
(55), meaning that we can apply the perturbation theory outlined in the
subsection Eigenvalues above Threshold. Close to threshold,
θ� ¼ A�

S sin
2πz
d þ higher order terms , where A�

S ∼ ðζ � ζ thÞ
1
2. Therefore,

upon expanding the stability operator in θ*, we obtain the expansion
L ¼ L0 þ L1 þ . . . , with termsOθ�2 contributing to L1

L1δφD ¼K
γ

∂zθ
�� �2

δφD

þ Kð1� νÞ2
4μ

∂zθ
�� �2

δφD � ∂zθ
�� �2

δφD

D E� �

þ K 1� ν2
� �
4μ

θ�∂2zθ
�δφD � θ�∂2zθ

�δφD

� �� �
þ Kνð1� νÞ

2μ
θ� ∂2zθ

� � ∂2zθ
�� �� �

δφD

� Kð1� νÞ2
8μ

θ�ð Þ2 ∂2zδφD � ∂2zδφD

� �� �
� Kð1� νÞ2

8μ
θ�ð Þ2∂2zδφD � θ�ð Þ2∂2zδφD

� �� �
þ ðζ � ζ thÞð1� νÞ

2μ
δφD � δφD

� �� �
� ζ thð1� νÞ

4μ
θ�ð Þ2 δφD � δφD

� �� �
� ζ thð1� νÞ

4μ
θ�ð Þ2δφD � θ�ð Þ2δφD

� �� �
þ ζ thν

μ
θ� � θ�

� �� �
θ�δφD:

ð68Þ

Only the leading order term of θ* contributes to this order. Thus, to
calculate the growth rate, we evaluate (62) with δφD;0 / 1� cos 2πzd and
θ� ¼ A�

S sin
2πz
d . The result is given by Eq. (27).

ParallelGrowthRate. The calculation is the essentially the same as in the
preceding subsection. We substitute θ = θ*(z)+ δθD(z, t) and φ = 0 into
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(51) and linearise about δθD, giving

∂tδθD ¼K
γ
∂2zδθD þ Kν

2μ
1� ν cos 2θ�ð Þ

× sin 2θ�∂2zθ
� δθD � sin 2θ�∂2zθ

� δθD
� �� �

þ K
4μ

1� ν cos 2θ�ð Þ 1� ν cos 2θ�ð Þ ∂2zδθD
�

� 1� ν cos 2θ�ð Þ ∂2zδθD
� ��

þ Kν
2μ

sin 2θ�∂2zθ
� 1� ν cos 2θ�ð Þ�

� sin 2θ� ∂2zθ
� 1� ν cos 2θ�ð Þ� ��

δθD

þ ζ

2μ
1� ν cos 2θ�ð Þ cos 2θ� δθD � cos 2θ� δθD

� �� �
þ νζ

2μ
sin 2θ� sin 2θ� � sin 2θ� sin 2θ�

� �� �
δθD:

ð69Þ

From this, we expand in θ* to obtain

L1δθD ¼Kνð1� νÞ
μ

θ�∂2zθ
� δθD � θ�∂2zθ

� δθD
� �� �

þ Kνð1� νÞ
2μ

θ�ð Þ2 ∂2zδθD � θ�ð Þ2 ∂2zδθD
� �� �

þ Kνð1� νÞ
2μ

θ�ð Þ2 ∂2zδθD � ∂2zδθD
� �� �

þ Kνð1� νÞ
μ

θ� ∂2zθ
� � ∂2zθ

�� �� �
δθD

þ ð1� νÞðζ � ζ thÞ
2μ

δθD � δθD
� �� �

� ζ thð1� νÞ
μ

θ�ð Þ2δθD � θ�ð Þ2δθD
� �� �

þ ζ thν

μ
θ�ð Þ2 δθD � δθD

� �� �
þ 2νζ th

μ
θ� θ� � θ�

� �� �
δθD:

ð70Þ

We again evaluate (62) with δθD;0 / 1� cos 2πzd and θ� ¼ A�
S sin

2πz
d .

The result is given by Eq. (28).

Amplitude evolution above threshold
Weobtain the leading order time evolution equations of the S- andD-mode
amplitudes close to threshold. We take θ to be an S-mode and φ to be a D-
mode, and then make the usual expansion θ = θ0+ θ1+… and
φ = φ0+ φ1+… in powers of ζ− ζth. We substitute these expansions into
(10) and (11) and equate order by order. The leading order balance gives us
the now familiar eigenfunctions which we write as θ0 ¼ ASðtÞ sin 2πz

d :¼
ASðtÞψSðzÞ and φ0 ¼ ADðtÞ

2 1� cos 2πzd
� �

:¼ ADðtÞψDðzÞ. The subsequent
analysis is given in terms of θ, but is the same for φ. At the next order in
ζ− ζth, we obtain

ψ
dA
dt

¼ L1θ0 þ L0θ1; ð71Þ

We can now solve for dAdt in the same way as we solved for λ1 in the previous
sub-section, giving us

dA
dt

¼
hψL1θ0i þ γð1�νÞ2

4μ hψihL1θ0i
hψ2i þ γð1�νÞ2

4μ hψi2
: ð72Þ

This is the equation used to obtain the leading order parts of (34) and
(35) in the main text.

Calculation of the S-mode amplitude evolution equation
We first expand (51) up to combined cubic order in θ and φ, giving

∂tθ ¼K
γ
∂2zθ � 2

K
γ
φ ∂zφ ∂zθ þ

Kð1� νÞ2
4μ

∂2zθ � ∂2zθ
� �� �

þ Kνð1� νÞ
μ

θ2∂2zθ �
1
2

θ2∂2zθ
� �� 1

2
θ2 ∂2zθ
� �� �

þ Kνð1� νÞ
2μ

φθ∂2zφ� φθ∂2zφ
� �� �

þ Kð1� νÞð1þ νÞ
4μ

φθ∂2zφ� φθ ∂2zφ
� �� �

� Kð1� νÞ2
4μ

φ2∂2zθ � φ2∂2zθ
� �� �

� Kð1� νÞ2
2μ

φ∂zφ∂zθ � φ∂zφ∂zθ
� �� �

� ζð1� νÞ
2μ

φ2θ � φ2θ
� �� �

þ ζð1� νÞ
2μ

θ � θh ið Þ � ζð1� νÞ
3μ

θ3 � θ3
� �� �

þ ζν

μ
θ3 � θ2 θh i� �þ ζð1þ νÞ

2μ
θφ2 � φθ φ

� �� �
:

ð73Þ

Only θ0 and φ0 contribute to L1θ0, meaning that

L1θ0 ¼
Kνð1� νÞ

μ
θ20∂

2
zθ0 �

1
2

θ20∂
2
zθ0

� �� 1
2
θ20 ∂2zθ0
� �� �

þ Kνð1� νÞ
2μ

φ0θ0∂
2
zφ0 � φ0θ0∂

2
zφ0

� �� �
þ Kð1� ν2Þ

4μ
φ0θ0∂

2
zφ0 � φ0θ0 ∂2zφ0

� �� �
� 2

K
γ
φ0 ∂zφ0 ∂zθ0

� Kð1� νÞ2
4μ

φ2
0∂

2
zθ0 � φ2

0∂
2
zθ0

� �� �
� Kð1� νÞ2

2μ
φ0∂zφ0∂zθ0 � φ0∂zφ0∂zθ0

� �� �
þ ð1� νÞðζ � ζ thÞ

2μ
θ0 � θ0

� �� �
� ζ thð1� νÞ

3μ
θ30 � θ30

� �� �þ ζ thν

μ
θ30 � θ20 θ0

� �� �
� ζ thð1� νÞ

2μ
φ2
0θ0 � φ2

0θ0
� �� �

þ ζ thð1þ νÞ
2μ

θ0φ
2
0 � φ0θ0 φ0

� �� �
:

ð74Þ

In this case (72) reduces to

dAS

dt
¼ hψSL1θ0i

hψ2
Si

; ð75Þ

After evaluating (75), we obtain the coefficients

Λ1 ¼
ð1� 4νÞ þ γð1�νÞ2

4μ ð1þ 2νÞ
4 1þ γð1�νÞ2

4μ

� � ζ th
μ
; ð76Þ

https://doi.org/10.1038/s42005-024-01611-y Article

Communications Physics |           (2024) 7:127 10



Λ2 ¼
ð1� 2νÞ γð1�νÞ2

4μ � 1
� �

16 1þ γð1�νÞ2
4μ

� � ζ th
μ
: ð77Þ

Calculation of the D-mode amplitude evolution equation
Following the samemethod as the preceding subsection, we expand (52) up
to cubic order, giving

∂tφ ¼K
γ
∂2zφþ Kð1� νÞ2

4μ
∂2zφ� ∂2zφ

� �� �
þ Kνð1� νÞ

2μ
φθ∂2zθ � φθ ∂2zθ

� �� �þ K
γ
φð∂zθÞ2

þ Kνð1� νÞ
2μ

2φ2∂2zφ� φ2∂2zφ
� �� φ2 ∂2zφ

� �� �
þ K 1� ν2

� �
4μ

φθ∂2zθ � φθ∂2zθ
� �� �

þ Kð1� νÞ2
4μ

φð∂zθÞ2 � φð∂zθÞ2
� �� �

� Kð1� νÞ2
8μ

2θ2∂2zφ� θ2∂2zφ
� �� θ2 ∂2zφ

� �� �
þ ζð1� νÞ

2μ
φ� φ

� �� �� ζð1� νÞ
3μ

φ3 � φ3
� �� �

þ ζν

μ
φ3 � φ2 φ

� �� �
þ ζν

μ
θ2φ� φθ θh i� �

� ζð1� νÞ
4μ

2θ2φ� θ2φ
� �� θ2 φ

� �� �
;

ð78Þ

from which we extract

L1φ0 ¼
K
γ
φ0ð∂zθ0Þ2 þ

Kνð1� νÞ
2μ

2φ2
0∂

2
zφ0

�
� φ2

0∂
2
zφ0

� �� φ2
0 ∂2zφ0

� ��
þ Kð1� νÞ2

4μ
φ0ð∂zθ0Þ2 � φ0ð∂zθ0Þ2

� �� �
� Kð1� νÞ2

8μ
2θ20∂

2
zφ0 � θ20∂

2
zφ0

� �� θ20 ∂2zφ0

� �� �
þ Kνð1� νÞ

2μ
φ0θ0∂

2
zθ0 � φ0θ0 ∂2zθ0

� �� �
þ Kð1� ν2Þ

4μ
φ0θ0∂

2
zθ0 � φ0θ0∂

2
zθ0

� �� �
þ ð1� νÞðζ � ζ thÞ

2μ
φ0 � φ0

� �� �
� ζ thð1� νÞ

3μ
φ3
0 � φ3

0

� �� �þ ζ thν

μ
φ3
0 � φ2

0 φ0

� �� �
þ ζ thν

μ
θ20φ0 � φ0θ0 θ0

� �� �
� ζ thð1� νÞ

4μ
2θ20φ0 � θ20φ0

� �� θ20 φ0

� �� �
:

ð79Þ

In this case (72) is evaluated as

dAD

dt
¼

hψDL1φ0i þ γð1�νÞ2
4μ hψDihL1φ0i

hψ2
Di þ γð1�νÞ2

4μ hψDi2
; ð80Þ

from which we obtain the coefficients

Λ3 ¼
ð3þ 2νÞ þ 3γð1�νÞ2

4μ

4 3þ γð1�νÞ2
2μ

� �
1þ γð1�νÞ2

4μ

� � ζ th
μ
; ð81Þ

Λ4 ¼
5ð1� 4νÞ þ γð1�νÞ2

4μ ð5� 6νÞ
16 3þ γð1�νÞ2

2μ

� �
1þ γð1�νÞ2

4μ

� � ζ th
μ
: ð82Þ
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