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The fast expansion of photon detection technology has fertilized the rapid growth of single-photon
sensing and imaging techniques. While promising significant advantages over their classical
counterparts, they suffer from ambient and quantum noises whose effects becomemore pronounced
at low light levels, limiting the quality of the acquired signal. Here, we study how photon-counting
noises degrade a single-pixel optical classifier via compressive sensing, and how its performance can
be restored by using quantum parametric mode sorting. Using modified National Institute of
Standards and Technology (MNIST) handwritten digits as an example, we examine the effects of
detector dark counts and in-band background noises and demonstrate the effectiveness of mode
filtering and upconversion detection in addressing those issues. We achieve 94% classification
accuracy in the presence of 500 times stronger in-band noise than the signal received. Our results
suggest a robust and efficient approach to single photon sensing in a practical environment, where
sunlight, ambient, and multiscattering noises can easily dominate the weak signal.

Optical sensing and metrology are crucial for a range of modern applica-
tions in biomedical, environmental, manufacturing, robotics, and autono-
mous driving applications. While conventional systems are bulk and
expensive, single-pixel compressive sensing has emerged as a cost-effective
alternative featuring high mechanical flexibility and with potential advan-
tages in size, weight, and power parameters1,2. Its applications span over
terahertz imaging3–5, short-wave infrared imaging6–9, and optical
microscopy10–12, as well as imaging through scattering media13–17 and three-
dimensional sensing18–20.

Among them, active optical compressive sensing uses a laser beam to
illuminate the target and a single-pixel detector to capture the back-reflected
signal21–24. The illuminating beamcan be encodedwith various patterns, like
random patterns2,25 and structured patterns, including those of Fourier
transformbases andHadamardmatrices2,26–28. These patternsunder-sample
the target’s optical properties for image reconstruction, recognition, and
assessment, albeit at the price of information loss. Recently, it has been
shown that artificial intelligence (AI) and machine learning can be
employed to process compressed data, where the quality of the recon-
structed image is improved by deep learning and recurrent neural
networks29–33.

Applying to single photon compressive sensing, however, those tech-
niques face challenges arising from background noise, including those from
the ambient environment, from detector dark counts, and due to the
inherent Poissonian fluctuations of the signal photon numbers. In

particular, satellite light detection and ranging (LiDAR) systems do not
performwell duringdaytimedue to the overwhelming sunlight background.
In recent years, there has been extensive research on mid and near infrared
(IR) upconversion imaging and detection, for enhanced sensitivity compare
to direct IR detection techniques34. In comparison, the direct detection
primarily uses thermal sensors, suffering limited sensitivity and high noise,
and usually requires expensive cryogenic cooling. In contrast, visible
detectors exhibit significantly lower noise, better sensitivity, anddonot need
cryogenic cooling. Thus far, frequency upconversion has been demon-
strated for photon starving imaging35,36, coincidence pumping
upconversion37, and mid-IR photon counting38. Also, encoding the object
withHadamardmatrices hasbeen studied to reduce thedistortion causedby
upconversion39.

Here, we report an experiment combining single-pixel compressive
sensing, single-photon detection, and machine learning for image classifi-
cation, aiming at understanding and addressing quantumnoise effects. Our
setup consists of a structured illuminating beam prepared in Walsh 2D
patterns created by a digital micromirror device (DMD)29,40,41, a spatial light
modulator to create target images, and two switchable single photon
counting systems to capture the reflected photons. The first system is an
avalanche photodiode to directly count single photons, used as our baseline
to study how photon counting and ambient noises affect the classification
accuracy. The second is an upconversion photon detector based on quan-
tum parametric mode sorting (QPMS), an exotic quantum frequency
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conversion capable of mode selectivity42–45. By using broadband pump
pulses with a spectral width comparable to the phase-matching bandwidth
of the frequency converter, QPMS is able to selectively convert single
photons in a custom spatiotemporal mode46, where the returning signal
photons are expected. As such, background photons in other modes will be
rejected efficiently, even when they have spatial and temporal overlap with
the probe. In this way, QPMS not only converts the signal to a more
favorable wavelength for detection—with higher efficiency, lower dark
counts, and smaller device volume—but also rejects the majority of the
background noise upfront and increases the detection signal-to-noise by as
muchas 40 dB47. Applying to image classification, it will rejectmost sunlight
or ambient backgroundnoise to achievehigh accuracy inpractical operation
environment. As such, high classification accuracy can be realized despite
high background noise44,47,48. Our resultsfind that for direct detection (DD),
the accuracy drops significantly when the mean photon numbers for one
digit pattern falls below300.To test the effect of ambient noise,we also inject
white noise from amplified spontaneous emission (ASE). For the data with
ASE noise, no notable change happens to QPMS detection even when the
SNR level drops to−20 dB. In contrast, the classification accuracy decreases
by ~30% for DD when the signal to noise ratio (SNR) level is 3 dB and the
classification fails for lowerSNR.These results demonstrate the sensitivity of
single-photoncompressive sensing tovarious typesofnoises and theways to
mitigate them, as applicable to many other single-photon sensing systems.

Results
Experimental setup
The experimental setup is sketched in Fig. 1. It involves the use of a fem-
tosecond Mode-Locked Laser (MLL, CALMAR LASER, FPL-03CFF) at

~1550 nm with FWHM about ~60 nm and operating at a repetition rate of
50MHz. The optical pulse train from the MLL is passed through a Wave-
length Division Multiplexing (WDM, 200 GHz bandwidth) filters, which
separates the optical pulse into two wavelengths. The resulting pulses for
both signal and pump, after further filtering and amplification, to be 6
picosecond. As the phase matching bandwidth for the QPMS waveguide is
1 nm, such pulses lead to high mode-selectivity47. In Fig. 1, inset (a) repre-
sents the spectrumof 6 ps probe pulse centered at 1554.3 nm,while inset (b)
represents the 6 ps pumppulse centered at 1564.3 nm.The probe andpump
pulses are then amplified using erbium-doped fiber amplifiers (EDFAs) and
further filtered using additional WDMs. The probe passes through an
electrically controlled variable attenuator (V1550A, Thorlabs) and the 1%
port of a 99:1 fiber beamsplitter to decrease the power of the probe to the
nanowatt level. The probe pulses are collimated into free space via a fiber
coupler and illuminated on a DMD, where we select its first negative dif-
fracted order. This selected order is directed toward a Spatial Light Mod-
ulator (SLM) for further manipulation. To facilitate this setup, 4-f relay
lenses are employed for both theDMDand SLM. TheDMD is composed of
an array of micromirrors with high reflectivity. We would like to note that
our current choice of a DMD followed by a SLM is merely due to the
equipment availability in our lab. Other setup configurations, including
those both use DMD or SLM are applicable for this work.

WeuploadWalsh 2Dpatterns onto theDMD, as illustrated in the inset
of Fig. 1. The SLM (SLM210, Santec) contains the phase patterns from the
MNIST49 dataset. Each pixel in the phase patterns is expressed as a binary
phase value of either 0 or 3π/8. To ensure the MNIST 28 × 28 digit images
align with the probe beam diameter on our SLM, we resize them to
240 × 240 images. Then the resulting probe is coupled into a single-mode

Fig. 1 | Experimental setup for single-pixel compressive sensing with single
photon counting. Block a is for the single and pump generation; Block b is for the
noise generation; Block c is for the direct detection; Block d is for QPMS detection.
Insets e–i show the normalized spectrum of the probe, the pump, the ASE (amplified
spontaneous emission), the wavelength selected ASE noise, and the upconverted
probe and pump respectively. They are taken from corresponding five different
positions in the setup. The DMD (Digital micromirror device) exhibits Walsh 2D
patterns, while the SLM displays MNIST digit images. The components used in the

setup include an MLL (Mode Lock Laser), SLM (Spatial Light Modulator), DMD,
EDFA (ErbiumDoped Fiber Amplifier),WDM(Wavelength divisionmultiplexing),
FC (Fiber Coupler), PPLN Module (Fiber-coupled Magnesium-doped Periodic
Poled LithiumNiobate waveguide), InGaAs-SPD (IndiumGalliumArsenide single-
photon detector) and Si-SPD (Silicon single-photon detector), L1 and L2, L3 and L4,
and L5 and L6 are three couples of 4-f relay lenses. Fiber polarization controller
(FPC) 1 is used to adjust the probe polarization for SLM. FPC 2 and FPC3 are used to
adjust the polarization of the probe and pump, respectively.
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fiber and subsequently divided into two equal parts using a 50:50 fiber
beamsplitter. One part is directed towards DD, where the photons are
counted directly using an InGaAs SPD (ID210, IDQ). In this experiment,
the quantum efficiency of the gated (1 ns effective gate width) InGaAs-SPD
is set to be 20%, with losses in fiber connectors and filters, giving a total
detection efficiency of 4.2% for the DD channel.

The other part is combined with the pump using aWDM fiber before
coupling into periodic poled lithium niobate (PPLN) module (see Supple-
mentary Fig. 1) for QPMS detection. The pump pulse train is delayed by an
optical delay line (ODL) and polarization is controlled via a polarization
controller to generate an efficient upconverted output, as shown in inset (e).
The resulting output, operating at a wavelength of 779.59 nm (see Supple-
mentary Fig. 2), is then detectedusing a silicon SPD (Si-SPD, Excelitas). The
maximumnormalized internal conversion efficiency of the PPLNmodule is
207.7%W−1cm−2 and the Si-SPDhas a quantumefficiency of 66%. Together
with losses in fiber connectors and filters, the total detection efficiency for
the QPMS channel is 12.0%.

Both outputs from the InGaAs SPD and Si-SPD are captured sepa-
rately using a time tagger (Time Tagger Ultra, Swabian Instruments). To
evaluate the performance of our setup, we introduce ASE noise using an
EDFA, as shown by inset (c) in Fig. 1 having an identical spectrum to the
signal. TheASEnoise is then combinedwith the probe by passing it through
a 1554.1 nm WDM, which aligns the noise within the same wavelength
range as the probe. Subsequently, the noise is amplified by another EDFA
and its level is adjusted using a mechanically controlled variable attenuator.
The normalized spectrum is shown in Fig. 1, inset (d). Finally, the noise is
introduced into the setup by connecting it to the last port of the 50:50 fiber
beamsplitter. Thedata collected fromthe time tagger is post-processedusing
MATLAB.

Model
The deep neural network (DNN) consists of a total of 7 layers including the
input layer, five hidden layers, and the output layer. Rectified linear unit
(ReLU) activation functions are applied to the hidden layers, while a log-
softmax function is used between the second last layer and the last layer. In
our experiment, there are 100 different images for each digit from the
MNIST dataset. For 10 digits, the amounts to a total of 1000 samples, each
containing 300 mean photon counts. For classification, we allocate 75% of
the samples as the training data and 25% as testing. The changing pattern
time on the DMD is ~100 μs. When we process the data from the experi-
ment setup, disregard these photon-counting events during the changing
pattern time on the DMD.

For each handwritten digit, 300 photon counts for 300 Walsh 2D
patterns are acquired as shown in Fig. 2a, b. Figure 2a shows as an example a
part of the original photon counting events by QPMS for the first image of
digit “0" for QPMS detection with no ASE noise added. Figure 2b shows
their average for each of the 300 patterns uploaded onto the DMD, which
extracts 300 features from each digit image. These features serve as the
inputs to the DNN as illustrated in Fig. 2c.

In the experiment, two white patterns are added to the end of the
existing 300 pattern sequence, to serve the purpose of distinguishing each
target uploaded onto the SLM. This is manifested by the first two-photon
counting events of Fig. 2a.

Measurements and classification accuracy
In the experiment, thephotoncounts for each sample are variedbychanging
the integration time of the single photon detectors, allowing us to study the
effects of quantum noise. When taking measurements at the single photon
level, it is crucial to choose the SPD dwell time. If the time is too short, the
impact of shot noise is significant. Conversely, if it is too long, the SPD is
likely to become saturated. As an example, Fig. 3 shows the confusion
matrices for bothDDBlock c) in Fig. 1) andQPMSBlock d) in Fig. 1) under
different integration times and different probe powers (corresponding to
Fig. 1Blocka)onandBlockb)off).As shown inFig. 3a,when the integration
timepermask is 600 μs for the InGaAsSPDand the probepower is ~14 nW,

the average photon counts per mask is 398.6, which gives an 82.8% classi-
fication accuracy. In Fig. 3b, aswe increase it to 800 μs but keeping the probe
power, the average photon count per mask becomes 551.2, and the classi-
fication accuracy improves to 90%.On the other hand, with the same 800 μs
integration time but reducing the probe power to ~8.5 nW, the average
photon counts per mask is 391.5, and the classification accuracy drops to
80.4%, as shown in Fig. 3c. These results highlight the accuracy dependency
on the photon counts, whose fluctuations are governed by shot noise. As
such, with higher photon counts, the measurement uncertainty is reduced,
so that the recognition accuracy is higher. To further illustrate this, as the
probe power drops down to ~4 nW (while keeping the same 800 μs inte-
gration time), the averagephotoncounts is 299.7, forwhich the classification
accuracy is only 31.6%. Data details in Supplementary Table 1 and Sup-
plementary Figs. 7–9.

In comparison, in Fig. 3d we show the classification accuracy
obtained with the QPMS detection system. With an integration time of
200 μs and probe power of ~14 nW, the average photon count per DMD
mask is 485.8. The higher photon counts despite a shorter integration
time is a result of a higher total detection efficiency for QPMS 12.0%
versus 4.2% for the DD channel. The classification accuracy in this case is
98%, which is significantly higher than the DD case with similar or even
higher photon counts.

The much better performance in QPMS over DD as seen in Fig. 3 is
mainly attributed to its much lower dark counts. To check this, Fig. 4 plots
themeasured dark counts of the two detection channels. As shown, the dark
count is about 0.29 per 10 microsecond integration time for DD, and about

Fig. 2 | Steps for Process Data. Example experimental data and the processing
neural network. a Example raw photon counts recorded byDD (direct detection) for
the first image of digit “0", where each event counts photons for 100 μs, and there are
10 events for eachDMD (digital micro-mirror device) pattern (thus the figure shows
the results for 80 patterns). b Example raw photon counts recorded by QPMS
(quantum parametric mode sorting) for the first image of digit “0", where each event
counts photons for 40 μs, and there are 25 events for each DMD pattern (thus the
figure shows the results for 80 patterns). c Example mean photon counts of QPMS
for eachDMDpattern by averaging over 20 of the 25 events, where the first three and
last two events are dropped as the systems settle during the pattern transition. The
effective integration time of photon counting is thus 0.8 millisecond in this case.
Mean photon counts of DD for each DMD pattern by averaging over 8 of the 10
events, where the first and last events are dropped as the systems settle during the
pattern transition. dThe neural network architecture, used for the handwritten digit
classification, consists of input, hidden, and output layers.
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0.21 per 10 μs for QPMS. The Raman scattering noise in the QPMS is
7.5 × 10−4 photons per pulse. They translate to 234 per 800 μs integration
time for theDDchannel in Fig. 3b,which is about half of the average photon
count. In contrast, the dark count is only 40 per 200 μs integration time for
the QPMS channel in Fig. 3d, about 8.2% of the average count (see Sup-
plementary Figs. 5 and 6). This leads to the significantly better performance
for QPMS. In both cases, the dark count fraction in the total photon counts
can be reduced by improving the quantum efficiency of the avalanche
photodiodes (APD’s). However, there is always a trade-off among APDs’
quantumefficiency, dark counts, and saturation counts. For example, in our
experiment, the dark count for the InGaAs SPD can be reduced to only 0.01
per 10 microseconds by setting quantum efficiency to 15%. However, the
saturation counts will be lowered by more than a half, so that the dynamic
range of detected signal photons is reduced. In comparison, Si-SPD has a
much better performance in this perspective, with orders of magnitude
lower dark counts, at least 10 times higher saturation counts, and several

times higher efficiency. This is a practical advantage of QPMS as an
upconversion single photon detector.

Figure 5a summarizes the classification accuracy as a function of the
average detected photon number per DMD mask, for both detection
channels and different numbers of DMDmasks used. For QPMS, when the
average photon number is 119.7 per mask, the accuracy is 97.2% with 300
masks and 93.2% with 100 masks. For higher photon counts, the accuracy
fluctuates a bit but quickly saturates to 99.2% for both cases, when the
average photon count increases to around 500. In contrast, the accuracy for
the DD is much lower for the same average photon counts. For example,
with a 59.5 average photon count, it is 42.4%with 300masks andonly 26.4%
with 100 masks. As the average count increases to 550, the accuracy
increases to around 90%and82.8%, respectively, for the twomasknumbers,
which is still much lower than the QPMS results. Due to the InGaAs-SPD
saturation, the average photon count cannot be further increased for theDD
channel. Again, themuch better performance of QPMS over DD is due to a

Fig. 3 | Classification Accuracy without in-Band Noise Added. Normalized con-
fusion matrices for DD (direct detection) (a–c) and QPMS (quantum parametric
mode sorting) (d), using 300 training epochs for DD and 200 training epochs for
QPMS. aNormalized confusionmatrix of DDwith 600 μs integration time permask
with average photon counts as 398.6 when the probe power is ~14 nW.Classification
accuracy is 82.8%, b Normalized confusion matrix of DD with 800 μs integration
time per mask with average photon counts as 551.2 when the probe power is

~14 nW. Classification accuracy is 90%, cNormalized confusion matrix of DD with
800 μs integration time per mask with average photon counts as 391.5 when the
probe power is ~8.5 nW. Classification accuracy is 80.4%, d Normalized confusion
matrix of QPMS detection with 200 μs integration time per mask with average
photon counts as 485.8 when the probe power is ~14 nW. Classification accuracy
is 98%.
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much higher total detection efficiency (12.0% vs 4.2%) and a lower dark
count, so the percentage of true signal photons in the total photon counts is
much higher. Reducing the integration time on the SPD leads to dark noise
becoming the primary source of noise in the data. The observed trend in
classification accuracy for DD versus the average photon counts permask is
consistent with previous findings50, where the relationship between the
optical energy per inference and classification accuracy. Also, as shown in
Fig. 5a, as we decrease masks for DD andQPMS, the classification accuracy
of QPMS drops less than DD.

Figures 3–5a present the results without external background noise,
where the noise photon counts are from within the detection systems,
including SPD dark counts and Raman scattering noises in the QPMS
module. In practical applications, however, there are external background
photons from ambient environment, such as sunlight and city light. They
will add to thenoise counts and lower the classificationaccuracy.To simulate
their effects, we addASE noise into the system and apply the samemachine-
learning technique to test the recognition accuracy. As shown in Fig. 1, the
ASEnoise is generated by anEDFAwithout input, followedby aWDMfilter
and another EDFA to create in-band noise with a nearly flat spectrum. Its
amplitude is controlled using the mechanically controlled variable
attenuator, before split equally into the DD and QPMS channel through a
50:50 fiber beamsplitter. Its strength relative to the signal, i.e., the signal-to-
noise ratio (SNR), is definedas 10log10 ðNoff � NdarkÞ=ðN tot � Noff Þ

� �
.Here

Noff is the photon countswithoutASE, as registered by the InGaAs SPDwith

the first image of digit 1 fromMNISTdataset on SLMand set the 31stWalsh
2D pattern we generated on DMD, which gives the highest photon counts
over all combinations used in this experiment. Ndarkis the same photon
counts, but with the probe shut off.Ntot is the same photon counts, but with
the added ASE noise.

To ensure the reliability of our data, we first examine the detection
results without ASE noise. This is done to establish a baseline and confirm
the validity of our results before introducing ASE noise under the same
parameter settings, including the effective dwell time of each mask on the
DMD, integration time on the SPDs, settings on EDFAs, and polarization
conditions. In this particular case, which corresponds to both Block a) and
Block b) in Fig. 1 being on, the effective dwell time of eachWalsh 2Dpattern
on theDMD is set to 800 μs. The integration time on InGaAs SPD is 100 μs,
while the integration time on Si SPD is always 40 μs. Under this condition,
the classification accuracy for DD is 80.4%with 300masks after 300 epochs
of training, as shown in Fig. 3c with the probe power ~8.5 nW and the SPD
dark counts ~234. If we further reduce the probe power, the dark counts will
dominate and significantly lower the classification performance. For
example, the classification accuracy drops to 41.2% with the probe power
~6 nW, and to 31.6% with the probe power ~4 nW. In contrast, for the Si
SPD, the dark counts are much less and the saturation level is much higher,
we are able to attenuate the prob power to around ~6 nW so that the SNR
can be as low as−27 dB for QPMS.

Next, we inject the ASE noise into the setup, whose power level is
adjusted through amechanically controlled attenuator. At each level, we use
75%of data for training and the remaining for testing. The results are shown
in Fig. 5b. For DD, the probe power after the FC1 is set to be about 8.5 nW.
The ASE power is first set to be the same as the probe when they are
combined at the 50:50 beamspliter, for which the SNR is 0 dB. In this case,
the photon counts for all patterns vary between 67 and 115, well below the
InGaAs SPD saturation level. The classification accuracy is only 22.0% after
300 training epochs with 300 masks on the DMD. Halving the ASE power
increases the SNR to 3 dB and improves the accuracy to 51.6%. As we
attempt todouble theASE to reduce theSNR to−3 dB, the SPDsaturates. In
contrast, QPMS performs much better. As shown in Fig. 5b, the classifi-
cation accuracy remains above 98% when the signal is down to 100 times
weaker than thenoise. EvenwhenSNR is−27 dB, forwhich the signal is 500
times weaker, the classification accuracy is still 94%. This advantage comes
from two reasons. The first is the noise rejection. In our experiment, QPMS
rejects over 99.9%ofnoise51, so that the actually detectednoise by the Si-SPD
is only on the dark count level, muchweaker than the signal, leading to high
accuracy. The second reason is with the much lower noise equivalence of
dark counts (NEDC), defined as the detector dark count divided by the total
detection efficiency. For DD, per 40 μs, the dark count is 11.8 and the

Fig. 5 | Classification Accuracy in Different Cases. a The classification accuracy is
plotted for two different detection methods with 40, 100, or 300 Walsh 2D patterns
to sample targets (each corresponding to 0.07%, 0.17%, and 0.52% compression
ratio): QPMS (quantum parametric mode sorting) represented by the green, the red,
and the black curves with 200 training epochs, and DD (direct detection) repre-
sented by the yellow and the blue curves with 300 training epochs. The efficiency and
integration time of Si SPD (single photon detector) and InGaAs SPD are different.

As observed, the InGaAs SPD has more background noise than the Si SPD, which
causes the classification accuracy of DD to be lower than the QPMS detection with
comparable photon counts. The QPMS encodes the probe optically, which helps
us go further in the compressive ratio. b The classification accuracy of DD and
QPMS single photon detection vs SNR (signal to noise ratio) (dB) of the ASE
(amplified spontaneous emission) noise with 100 or 300 input values into the neural
network.

Fig. 4 | Dark Counts. The background counts versus the integration time on the
InGaAs SPD (single photon detector) and Si SPD. For the dark counts of the DD
(direct detection), the probe and the pump are off. The red triangle sign is the
experiment background counts of the InGaAs SPD, whose fitting curve (the blue
line) is a quadratic function. For the dark counts of the QPMS (quantum parametric
mode sorting) with the input pump power as 16.5 dBm. The green diamond sign is
the experiment shot noise of the QPMS detection, whose fitting curve (the brown
line) is a quadratic function.
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efficiency is 4.2%, so that the NEDC is 281. For QPMS, the dark count is 8.5
per 40 μs, and the efficiency is 12.0%,which gives aNEDCof 71.As such, the
baseline photon counts for the DD are much higher, thus blurring the
feature mapping onto the changes in the photon counts as the DMDmasks
are changed.Due to these reasons, the registered photon counts change over
amuch larger dynamic range forQPMS thanDD, as seen in Supplementary
Note 2, so that the features are more pronounced and the neural network is
better and easier to recognize them. More data are in the Supplementary
Figs. 9–10 present the normalized confusion matrices, and in Supplemen-
tary Table 2 gives the range of average photon counts over photon counting
events.

Also, the high timing resolution of QPMS might offer another
advantage. That is, the photons reflected off different pixel locations on
the SLM and DMD could experience different times of flight. In our

experiment setup, this difference is on the order of picoseconds. While it
is well within the timing resolution of typical SPD, it approaches that of
QPMS (about 10 ps). As such, those photons could be detected with
different efficiency, so that the photon counts not only contain the
aggregated phase information of the digits as sampled by the DMD but
also their relative distribution information. However, we have not been
able to verify it yet in this study.

Finally, to test the robustness of our system,weperform trainingonone
ASE noise level and testing on a different level. The results are shown in the
Fig. 6, with (a) for the training at 0 dB SNR and testing without noise and
Fig. 6b for the training at -10 dB SNR and testing at−17 dB. In both cases,
the classification accuracy remains rather high, no less than 98% with 300
masks. These findings demonstrate the robustness of compressive sensing
and recognition via QPMS, as it rejects most of the noise, has a low NEDC,

Fig. 6 | Classification Accuracy of QPMS with Different Levels of Noise for
Training and Testing.QPMS (quantum parametric mode sorting): In this case, the
training process involves using a specific level of ASE (amplified spontaneous
emission) noise as the training dataset (200 training epochs), while other levels of

ASE noise are used as the testing dataset. aNormalized confusion matrix with SNR
(signal to noise ratio) = 0 dB as training and no noise as testing. b Normalized
confusion matrix with SNR =−10 dB as training and SNR =−17 dB as testing.

Fig. 7 | Core of the Experiment Setup. Photos of the
experimental setup: a side view and b top view of the
free-space setup. The labels refer to the following
components: (1) MLL: Mode-locked laser sends out
pulse trains for the probe and pump. (2) FC1: Fiber
coupler couples the probe out to free space. (3)
DMD: Digital micromirror device projects Walsh
2Dmasks. (4) SLM: Spatial light modulator uploads
digit images from theMNIST dataset. (5) FC2: Fiber
coupler couples the probe into a fiber. (6) PPLN
module: Periodically poled lithium niobate module
upconverts the probe and pump into high fre-
quency. (7) ODL: Optical delay line helps the probe
and pump achieve temporal alignment. (8) InGaAs
SPD: Indium gallium arsenide single-photon
detector is used for direct detection (DD) at the
single-photon level. (9) Si SPD: Silicon single-
photon detector is used for quantum parametric
mode worting (QPMS) detection at the single-
photon level. (10) Time Tagger: Device used for
collecting data.
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andmay capture the relative pixel distribution of the digits. There are more
cases testes (see Supplementary Fig. 11).

Conclusion
We have explored single-pixel, single-photon counting for remote com-
pressive sensing and image recognition, focusing on studying the effects of
background and inherent quantum noise. Our results identify their sig-
nificance and demonstrate an effective way of mitigation by quantum
parametric mode sorting. By rejecting the noise while improving the
detection efficiency, it allowshighly accurate classificationofMNIST images
even if the signal is mixed with orders of magnitude stronger in-band noise.
Our technique may find applications in remote sensing areas where infor-
mation compression is desirable, yet the signals are either weak or con-
taminated, or both, such as those in astronomy observation and biomedical
diagnosis. In particular, itmayhelp compressive imagingwith single photon
detection, by greatly suppressing the background noise and reducing
detector saturation39. It also allows efficient detection of mid-IR photons
with low noise and compact single-photon detectors at room temperature,
to extend compressive imaging to mid-infrared38.

Methods
The pictures of the experimental setup are shown in Fig. 7a a side view and b
a top view. In Fig. 7a, theMode-Locked Laser (MLL, CalmarMendocino) is
labeled as (1). The probe light propagates through a fiber coupler (FC1,
C220TMDC,Thorlabs) labeled as (2) to transmit into free space. TheDMD
is indicated as (3), while the SLM is labeled as (4). The probe light is
subsequently coupled into the FC2 (C230TMDC, Thorlabs) labeled as (5).
Before we take data at single photon level, we try with classical power level
(the scheme of the setup is in Supplementary note 1), likemWand get good
result with that power level (see Supplementary Figs. 3 and 4.)

We have augmented the training and testing with much more data,
including those direct detection data without noise, QPMS data without
noise, and QPMS data with different levels of noise; see below. In all cases,
the classification accuracies remain the same. As a further validation, we
have takemore data for 2000 images, and found that the confusionmatrix to
be nearly identical when compared with 1000 images (see Supplemen-
tary Fig. 12).

Data availability
Original data files are available from the corresponding author on reason-
able request.
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