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Eigenstate coalescence in non-Hermitian systems is widely observed in diverse scientific domains
encompassing optics and open quantum systems. Recent investigations have revealed that adiabatic
encircling of exceptional points (EPs) leads to a nontrivial Berry phase in addition to an exchange of
eigenstates. Based on these phenomena, we propose in this work an exhaustive classification
framework for EPs in non-Hermitian physical systems. In contrast to previous classifications that only
incorporate the eigenstate exchange effect, our proposed classification gives rise to finer Z2

classifications depending on the presence of a πBerry phase after the encircling of the EPs.Moreover,
bymapping arbitrary one-dimensional systems to the adiabatic encircling of EPs,we can classify one-
dimensional non-Hermitian systems characterized by topological phase transitions involving EPs.
Applying our exceptional classification to various multiband systems, we expect to enhance the
understanding of topological phases in non-Hermitian systems.

Non-Hermitian physical systems exhibit a unique type of singularity,
known as exceptional points (EPs), where distinct eigenstates of the
Hamiltonian coalesce with each other1–7. EPs have garnered significant
interest due to their potential applications in diverse fields such as optics,
acoustics, and open quantum systems8–15. As a system undergoes an
adiabatic deformation that encircles an EP or EPs, the eigenstates
exchange in a nontrivial manner. This eigenstate switching effect allows
for the classification of EPs based on the conjugacy class of the permu-
tation group16.

Concurrently, the study of Hermitian topological phases has focused
on the classification of topological invariants associated with the Berry
phase17–20. The quantized Zak phases in the Su–Schrieffer–Heeger (SSH)
model are one representative example21–26. In EPs, the wave functions can
accompany an additional geometric (Berry) phase shift of π after the
encircling of an EP. This connection between EPs and nontrivial Berry
phases has been both theoretically and experimentally explored27–31 and
suggests a more complex structure for EPs. As we show below, these two
seemingly unrelated phenomena—namely the nontrivial Berry phase and
EPs—are intimately tied together.

In this work, we demonstrate that the EPs are characterized by
exceptional classifications, a scheme we propose to incorporate the infor-
mation of both eigenstate switching and the additional Berry phase. The
entangled relation between the state switching and additional Berry phase

makes constraints of topological invariants. In addition, by viewing one-
dimensional (1D) systems as adiabatic deformations encircling EPs, we
achieve a full characterization of 1D non-Hermitian topological systems.
This characteristic reveals topological phase transitions between different
phases, where the phase transitions accompany the EPs. Our identification
of this exceptional class lays the groundwork for further exploration of the
rich physics of non-Hermitian systems.

Results
Classification scheme
We consider a general N-state non-Hermitian system with two external
parameters. When encircling the system’s EPs through adiabatic defor-
mation, the eigenstates exhibit the exchange effect,which canbe represented
by a permutation of the N states32,33. The cyclic structure of such permuta-
tions canbe formallymapped by the conjugacy class [σ] (with representative
permutation σ), which forms a product of cycles. Specifically, we can use the
following notation to represent the permutation properties of the EPs, as
in16,34:

½σ� ¼ 1n1 2n2 � � �NnN ;
XN
q¼1

qnq ¼ N: ð1Þ
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Each cycle is represented in the form cnc , where c indicates the cycle length
(number of encirclings required to return to the initial state), and the
superscript nc∈ {0, 1,⋯ ,N} denotes the number of c-cycles in [σ]. For
instance, in a two-state system, there exist two possible exchanges of
eigenstates after the encircling of adiabatic deformations, represented by the
conjugacy classes [e] = 12, [σ] = 21, where e represents the identity
permutation and σ denotes a transposition.

Furthermore, in addition to the conjugate classification there exist
Berry phases of the wave functions. The complex Berry phase35–38 can be
defined as

γ ¼ i
I

C

<ϕðλÞj∂λψðλÞ>
<ϕðλÞjψðλÞ> dλ: ð2Þ

Here,C is a closed path inM×CwhereM is the parameter space andC is
the complex number space, λ is a parameterization of the pathC, and ϕ and
ψ respectively are the left and right eigenstates of theHamiltonianH(λ).Due
to the complexnatureof the energyofnon-HermitianHamiltonians,wewill
concentrate on a two-dimensional parameter space (or, codimension two).
Since the double encircling of a single EP in parameter space induces a
nontrivial π Berry phase for the states (see Methods and Supplementary
Note 1), the conjugate classifications of the EPs are further sub-classified
depending on the presence of the Berry phase. We refer to these finer
classifications of the conjugacy class as the exceptional class. In the following
discussion, we use the notation �c for the c-cycles with π Berry phases.

A constraint arises from the consistency between the switching effect
and the Berry phase: the sum of the Berry phases of the cycles in the
conjugacy classes should be 0 and π for even and odd permutations,
respectively31. Note that the parity of permutations remains invariant under
conjugation. As an example, consider a two-state system having two con-
jugacy classes, [e] = 12, [σ] = 21. Under the consistency constraint, the

exceptional classes are

½e� ¼ 12; �12; ½σ� ¼ �21; ð3Þ

where the sumsof theBerryphases for all bands are 0 (mod2π) for 12 and�12,
and π for �21. This is consistent with the parities of e (even) and σ (odd). The
switching effect and theBerry phases for 12,�21, and�12 cases are illustrated by
in Fig. 1a–c, respectively. Note that �12 can only appear in systems with
multiple EPs. This classification scheme can be generalized to N-state sys-
tems. Using signed holonomy matrices, the classes can be obtained sys-
tematically. We note that some conjugacy classes are connected by gauge
transformation and should be identified; details are inMethods and Section
II of SI.

Non-reciprocal SSH model
In the following, we apply the exceptional classification framework to 1D
systems. As an example, we consider the non-reciprocal
Su–Schrieffer–Heeger (SSH) model39–43, where the Hamiltonian is given as

H ¼
X
i

teθayiþ1bi þ te�θbyi�1ai þ dayi bi þ dbyi ai: ð4Þ

Here, d represents intra-unit-cell hopping, t denotes inter-unit-cell
hopping, and θ describes the non-reciprocity between left and right
directional hopping [Fig. 2a]. The energy is measured in d, or d = 1. It is
noted that our classification scheme based on the EPs in general non-
Hermitian systems does not require any symmetry constraints since the
additional Berry phase after encircling EPs is always quantized without
consideration of symmetry. When we apply our classification scheme to
one-dimensional lattice models, the topological invariant associate with
Berry phases is Zak phases, which can be quantized only when the
Hamiltonian possesses additional symmetries. In the above non-

Fig. 1 | Illustration of the switching effect and
Berry phase after an encircling of Exceptional
Points (EPs) in parameter space. The figures depict
the evolution of the topological winding on the real
energy band across parameter space (α, β), as indi-
cated by the Berry phase color bar on each energy
band (see Supplementary Note 2). Each set consists
of three representations: (i) a parameter space
mapping, (ii) an unfolded band structure, and (iii) a
corresponding schematic of a strip. The color coding
within each figure notes the energy band index, with
the normal strip symbolizing a trivial phase and the
Möbius strip symbolizing a non-trivial phase. For
a No encircling of EPs results in no state switching,
indicating a zero phase change and a trivial topology.
For b Encircling one EP leads to state switching,
denoted by a π phase change, signifying a non-trivial
topology. For c Encircling two EPs, despite no state
switching, results in a π phase change due to the
cumulative topological impact.
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reciprocal SSH model, it is known that the Zak phase is quantized in the
units of π because of chiral symmetry42,44.

We observe three distinct topological phases, where each phase cor-
responds to adiabatic deformations with different exceptional classifica-
tions. Circular strips in Fig. 2b represent the corresponding band structure
in the complex energy plane. While each complex energy band forms a
closed loop in the complex energy space,we observe that the total numberof
non-separable energy bands varies froma single band (phase II)with a point
gap to twobands separatedby a line gap (phase I, III)45,46. The spectralflowas
a function ofmomentum shows that the bands in phases I and III form a 2π
periodicity (1-cycle band, [e]). In contrast, the bands in phase II form a 4π
periodic spectral flow (2-cycle band, [σ]) due to the eigenstate switching
effect. These are represented schematically in Fig. 2b, where the red andblue
strips in phases I and III appear as two separated bands, whereas the strip
with both red and blue parts in phase II appears as a connected band.

In addition, the two 1-cycle bands in phases I and III are further
distinguished by the presence of a nontrivial Zak phase42–44. The bands in
phase I (III) have a Zak phase of θ = 0(π), which indicates that the bands

belong to the classification 1 (�1). The nontrivial π Zak phase doubles the
periodicity of the spectral flow, resulting in a 4π periodic spectral flow, as
schematically represented by the twisted strips in phase III of Fig. 2b.

The topological phase transitionsbetween each exceptional class canbe
understood by viewing the Bloch Hamiltonian as an adiabatic encircling of
theEPs in two-dimensional parameter space (t, k), as shown inFig. 2c. In the
Hermitian limit (θ = 0), a single Dirac point occurs at (t, k) = (d, π). The
presence of non-reciprocity splits the Dirac point into a pair of EPs at
(t, k) = (de±θ, π). Within this parameter space, the three topological phases
correspond to three distinct loops of the spectral flow that contain zero, one,
and two EPs, respectively [Fig. 2c]. As a result, the adiabatic encircling at the
phase transitionsmust touch theEPs.Thephase transitionsbetweendistinct
exceptional classes accompany the EPs in the energy spectra [see Fig. 2b].

For phase I where t < t−, the black loop in Fig.2c contains no EP.
Correspondingly, each state returns to its initial state after a single loop in the
parameter space, consistent with the trivial Zak phase. Thus, systems in
phase I is identified as class 12. For phase II where t− < t < t+, the presence of
an EPwithin the blue loop, a switching of states under spectral flowwith an
additional π Zak phase. Accordingly, phase II is identified as �21. Finally, for
phase III where t > t+, the red loop encloses a pair of EPs that results in the
states returning to their initial state after a single encircling, and each state
has a Zak phase of π. Thus phase III is identified as class �12. Based on the
classification scheme introduced in the previous section, this model
exhausts all possible classes of two-state systems. Furthermore, when t > t+,
there is no switching of states as the loop encircles the twoEPs, but theπZak
phase is retained, which distinguishes phase III (�12 class) from phase I (12

class). As a result, our model exhausts all possible exceptional classes of 1D
two-band systems. Properties of phases for the two-band system are sum-
marized in Table 1.

Application to generic systems
To illustrate the general applicability of our classification, we now consider
three-band systems. According to our classification (Supplementary
Table S1 in Supplementary Note 2), there exist five exceptional classes as
follows,

½e� ¼ 13; 11�12; ½σ� ¼ �1121; 11�21; ½τ� ¼ 31: ð5Þ

Our proposed 1D three-bandmodel, which realizes all possible exceptional
classes, has the following Bloch Hamiltonian [see Fig. 3a for the real-space
structure]:

hðkÞ ¼
0 d1 d2 þ teθe�ik

d1 0 d1
d2 þ te�θeik d1 0

0
B@

1
CA: ð6Þ

The corresponding phase diagram is depicted as a function of t and θ in
Fig. 3b. In the Hermitian limit (θ = 0), two Dirac points occur, where one
Dirac point corresponds to the band touching between the second and third
bands and the other to the first and second bands, respectively. As non-

Fig. 2 | Two-band Su-Schrieffer-Heeger (SSH) model. a Non-Hermitian SSH
model with non-reciprocal inter-unit-cell hopping. Intra-unit-cell hoppings are d
and inter-unit-cell hoppings are teθ and te−θ. The dashed box denotes the unit cell.
b Phase diagrams of the non-Hermitian SSH model. The black dot denotes a Dirac
point, and the curved lines denote EPs. The 12 regime (I) is a trivial line-gapped
regime of two trivial 1-cycle bands, the �21 regime (II) is a point-gapped regime of a
2-cycle non-separable band with a π Zak phase, and the �12 regime (III) is a line-
gapped regime of two 1-cycle bandswithπZak phases. cThe connection between the
Zak phase of the one-dimensional SSH model and the EPs in parameter space, (t,k)
space. Black, blue, and red paths respectively contain zero, one, and two EPs in (t,k)
space, which correspond to 12, �21, and �12 phases.

Table 1 | Properties of phases for the two-band system

Phases (class) Phase I (12) Phase II (2
1
) Phase III (1

2
)

(i) Number of sepa-
rated bands

2 1 2

(ii) Order of cycles (1,1) 2 (1,1)

(iii) Berry phases (0,0) π (π, π)

(iv) Connection to
Hermitian

O X O

(i) number of separated bands, (ii) order of cycles for each band, (iii) Berry phases of each separated
band, and (iv) whether the phases are connected to Hermitian systems without phase transition
represented by O or X.
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reciprocity is turned on (θ ≠ 0), each Dirac point is split into a pair of EPs
(total four EPs), each of which corresponds to a phase transition point in
(t, k) space.

First, we consider the case of θ = 0.1. The energy band structures are
shown as schematic figures in the inset of Fig. 3b. When t < tr−, there are
three 1-cycle bandswith zeroZakphases.When tr− < t < tr+, the second and
third bands are not separable, while the first band is separable. The non-
separable 2-cycle bands have a π Zak phase, and the separable 1-cycle band
has a zero Zak phase.When tr+ < t < tb−, the three bands are fully separated.
The second and third bands have πZak phases, but the first band has a zero
Zak phase. When tb− < t < tb+, the sum of the Zak phases of the first and
second bands changes from π to 0 at t = tb−. The first and second bands are
not separable.When t > tb+, the threebands are fully separated.Thefirst and
third bands have π Zak phases, but the second band has a zero Zak phase.

Next, we consider the case of θ = 0.4.When t0b�<t<t
0
rþ, the three bands

are not separated and the Zak phase of the non-separable 3-cycle band is
zero. InFig. 3c, the real band structures are shown for twodifferent phases, tr
+ < t < tb− for θ = 0.1 (left) and t0b�<t<t

0
rþ for θ = 0.4 (right). The topological

phases of the band structures are the same as the case of θ = 0.1 in the other
regimes. The phase transitions at the EPs are equivalent to adding or
removing anEP from the closed loop around theEPs following the adiabatic
encircling. The different topological phases result from the positions as well
as the number of the EPs in the space (t, k). In summary, the phases are
identified as the classes 13, 11�21, 11�12,�1121, 11�12, and 31, as shown in Fig. 3b.
Thus the model exhausts all possible classes of three-state systems.

Edge states at EPs under open boundary conditions
The nontrivial Zak phase manifests as a well-defined topological boundary
mode even in non-Hermitian systems. Such boundary modes are dis-
tinguished from Hermitian topological boundary modes as the phase
transitionof the topological phase ismanifestedby a singleEP rather thanby
a Dirac point.

In the open boundary condition, the non-Hermitian SSH model
exhibits two energy continuums separated by a gap where the gap closes at
t = tc = 1, signifying a phase transition. See Fig. 4a, b. For t > tc (nontrivial
phase), mid-gap states emerge [red dots in Fig. 4b] as a consequence of the
nontrivial Zak phase. It is noteworthy that in the Hermitian limit, θ = 0,
these states correspond to edge states. Figure 4c, d display thephase rigidities
of the states, ri ¼ hϕijψii=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihϕijϕiihψijψii
p

, where ϕi and ψi are left and
right eigenstates, respectively, and i is the indexof the states47,48. Themid-gap
states are edge states, and their phase rigidities are significantly smaller. This
implies that the edge states are much closer to the EP, which is consistent
with the phase transition line at t = 1.

Discussion
Our system formally belongs to A class which has Z-class point gap
topology. The winding number of the point-gapped phases in non-

Fig. 4 | Edge states and EP. a, b Complex energy spectra and c, d phase rigidities of
the eigenstates for the non-Hermitian SSHmodel under open boundary conditions.
a, c are in the trivial phase, t = 0.8 < tc = 1, while b, d are in the nontrivial phase,
t = 1.6 > tc with θ = 0.4. The total number of lattice sites is 2N = 80, and the eigen-
states are labeled in increasing order of energy. The red dots are Nth and (N+ 1)th
states, which are the states nearest to the gap in the trivial phase and the edge states in
the nontrivial phase.

Fig. 3 | Three-band SSH model. a Non-Hermitian three-band model illustrating
non-reciprocal inter-unit-cell hopping with intra-unit-cell hoppings d1 and d2, and
inter-unit-cell hoppings teθ and te−θ. The dashed box highlights the unit cell. b Phase
diagrams of the Hamiltonian (Eq. (6)) on the (t, θ) plane for d1 = 1.0 and d2 = 0.2.
Black dots signify Dirac points. Red and blue lines indicate two pairs of EPs asso-
ciated with the second and third bands, and with the first and second bands,
respectively. In the Hermitian limit (θ = 0), two phases, 13 and 11�12, are present; for
the non-Hermitian case (θ ≠ 0), five phases, 13, 11�12, 11�21, �1121, and 31, are dis-
tinguished by the boundaries formed by pairs of EPs. The strips' colors (Yellow, Blue,
and Red) correspond to the energy band index (1st, 2nd, and 3rd). c Real energy
surfaces at θ = 0.1 (left) and θ = 0.4 (right) in the parameter space (t, k), with paths
along the Brillouin zone (k ∈ [0, 2π]) and t = 0, 1. EPs are marked by red and blue
dots, related to the EPs shown in b. The 11�12 phase includes three separate paths;
blue and yellow paths encompass two EPs each, resulting in a π phase change. In the
31 phase, a single 3-cycle band path encircles two EPs, and three loops result in zero
phase change.
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Hermitian systems can explain the symmetry-protected skin effect since the
invariants physically correspond to the winding numbers of complex
eigenvalues of Hamiltonians. However, the winding number does not
explain the Zak phase associated with the EP. Homotopical framework
towards the topological classification of non-Hermitian systems with
separable and non-separable band structures enables us to see more topo-
logical invariants beyond K-theoretical approaches49–59.

In conclusion, we have introduced a classification scheme for 1D non-
Hermitian topological phases based on exceptional classes. The approach
combines the information of both eigenstate switching and the additional
Zak phase. We demonstrated the applicability of this classification to both
two-band and three-band systems, revealing the rich structure of non-
Hermitian topological phases and the interplay between exceptional points
and topological properties. The more examples are presented in Supple-
mentary Note 3.We expect that our classification scheme can be applied to
other non-Hermitian systems and utilized to reveal the structure of inter-
twined topological and non-Hermitian properties. The encircling an EP
have been implemented as thewave propagations in the optical waveguides,
where many abnormal and interesting phenomena related to the state
switching have been reported4,60–62. We also expect that additional inter-
ference phenomena can be demonstrated due to the additional Berry phase
during encircling EPs realized as wave propagations in optical waveguides.

Methods
Berry phase in non-Hermitian systems
The two features of Non-Hermitian systems are (i) non-orthonormality of
eigenstates of Hamiltonian and (ii) Riemann surface structure of complex
energy in parameter space, or exchanging of states. To incorporate these
properties, the Berry phase is generalized as follows: (i) use both left- and
right-eigenstates (ii) multiple encircling in the parameter space [Eq. (2)]. As
an illustration, consider a two-state Hamiltonian

H ¼ 0 1

z 0

� �
; z ¼ x þ iy; x; y 2 R: ð7Þ

If z = 0, the Hamiltonian is in a Jordan canonical form that represents the
EP, and z is considered as a perturbation near the EP. The right eigenvalues
and right eigenstates (up to normalization) of H are

H∣v ±

� ¼ E ± ∣v ±

�
; E ± ¼ ±

ffiffi
r

p
ei

θ
2; ∣v ±

� ¼ ± 1ffiffi
r

p e�iθ2

1

 !
: ð8Þ

Corresponding left eigenvectors are

u ±

�
∣H ¼ E ± u±

�
∣; u ±

�
∣ ¼ ±

ffiffi
r

p
ei

θ
2 1

� �
; ð9Þ

The right- and left-eigenstates form a biorthogonal basis.
Now consider a circular path C of radius R around an EP that is

centered at the origin of the z-plane. Reflecting the Riemann surface of
eigenstates, the path winds around the EP twice:

C : λ 7! z ¼ Reiλ; λ 2 ½0; 4π�: ð10Þ

During the encircling, the following instantaneous eigenstates are used:

∣v ± ðλÞ
� ¼ ± 1ffiffi

R
p e�iλ2

1

 !
; u ± ðλÞ
�

∣ ¼ ±
ffiffiffi
R

p
ei

λ
2 1

� �
: ð11Þ

Then the Berry phase along this path C is given by

γ± ðCÞ ¼
Z 4π

0
dλ

i u ± ðλÞ
�

∣∂λ∣v ± ðλÞ
�

u± ðλÞ
�

∣∣v ± ðλÞ
� ¼

Z 4π

0
dλ

1
4
¼ π: ð12Þ

Note that thephase is topological since it depends on thewindingnumber of
EP (up to 2π) but not on the geometry of the path.

Signed holonomymatrices
The exchange of states after the encircling EPs in the parameter space of the
Hamiltonian can be conveniently represented by using holonomymatrices.
Consider the above two-state Hamiltonian H. Starting at z = 1 and after
encircling the EP (z=0) once, the states exchange:

vþ
v�

� �
7! v�

vþ

� �
¼ M

vþ
v�

� �
; M ¼ 0 1

1 0

� �
; ð13Þ

where v± = (±1, 1)T are eigenstates at z = 1. The matrixM is the holonomy
matrix.

To incorporate the π Berry phase after encircling the EP twice, we
introduce signed holonomy matrices. In the two-band example,

M ¼ 0 1

1 0

� �
! Ms ¼

0 1

�1 0

� �
: ð14Þ

Then one can construct conjugate classes of the group generated by the
signed holonomymatrices. However, there are physically equivalent classes
in this classification because some holonomymatrices can be connected by
the gauge transformation. For example, consider the two holonomy
matrices

Ms1 ¼
0 1

�1 0

� �
; Ms2 ¼

0 �1

1 0

� �
: ð15Þ

These holonomy matrices describe processes

Ms1 :
vþ ! �v� ! �vþ
v� ! vþ ! �v�

	
; Ms2 :

vþ ! v� ! �vþ
v� ! �vþ ! �v�

	
;

ð16Þ
which can be transformed into each other by a gauge transformation.
Identifying these classes leads to the classification described in themain text.

Data availability
All the calculation details are provided in Supplementary Information.
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