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Activating non-Hermitian skin modes by
parity-time symmetry breaking
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Parity-time (PT ) symmetry is a cornerstone of non-Hermitian physics as it ensures real energies for
stable experimental realization of non-Hermitian phenomena. In this work, we propose PT symmetry
as a paradigm for designing rich families of higher-dimensional non-Hermitian stateswith unique bulk,
surface, hinge or corner dynamics. Through systematically breaking or restoring PT symmetry in
different sectors of a system, we can selectively activate or manipulate the non-Hermitian skin effect
(NHSE) in both the bulk and topological boundary states. Some fascinating phenomena include the
directional toggling of theNHSE, and the flowof boundary stateswithout chiral or dynamical pumping,
developed from selective boundary NHSE. Our results extend richly into 3D or higher, with more
sophisticated interplay with selective bulk and boundary NHSE and charge-parity (CP) symmetry.
Based on non-interacting lattices,PT -activated NHSEs can be observed in various optical, photonic,
electric and quantum platforms that admit gain/loss and non-reciprocity.

Parity-time (PT ) symmetry is akey ingredient innon-Hermitianphysics1–3.
As a special type of pseudo-Hermiticity4, PT symmetry guarantees real
eigenenergies for PT -unbroken eigenstates, enforcing a balance between
gain/loss and thus probability conservation1,5,6. As such, it provides an
ubiquitous route towards realizing exotic non-Hermitian phenomena in a
stable manner, as demonstrated in optical6–9, acoustic10–13, circuit14–16, and
atomic platforms17–22.

Recently, it was found that non-Hermitian lattices can possess
robust localized modes not just due to topological protection, but also
from the non-Hermitian skin effect (NHSE), where all eigenstates
accumulate exponentially to the boundary under open boundary con-
ditions (OBCs)23–25. In particular, NHSE always requires a complex
spectrum under periodic boundary conditions (PBCs) that forms loops
in the complex energy plane26–30, and hence broken PT symmetry.
However, the potential application of PT symmetry in manipulating
NHSE still remains largely unexplored and a comprehensive frame-
work is lacking.

In this work, we found that beyond ensuring stability, PT symmetry
can also serve as a paradigm for designing rich families of higher-
dimensional non-Hermitian lattices with unconventional bulk, surface,
hinge, or cornerdynamics.Note that in ourdiscussionweuse “bulk/surface/
edge/hinge” to describe the co-dimensionality of states in their adiabatically
connected Hermitian limit, even if the NHSE has effectively dimensionally
reduced them. Taking the spectral feature ofNHSE as a cornerstone, we can

generate various classes of higher-dimensional NHSEs not by breakingPT
symmetry globally, but by selectively activating or breaking it in different
sectors e.g. edges and surfaces. By systematically switching on/off various
types of NHSE in two-dimensional (2D) lattices as examples, we not only
obtain rich families of non-Hermitian skin states beyond known NHSEs
(e.g. corner NHSE and hybrid skin-topological effect), but also provide a
scheme to manipulate them as desired. In three dimension (3D) or higher,
PT symmetry can even conspire with charge-parity (CP) symmetry and
selective NHSE to activate much richer arrays of non-Hermitian skin
phenomena, which may prove useful for designing an abundant variety of
non-Hermitian optical devices that exploit NHSE31–34. We emphasize that
these intriguingmodels can be realized in classical system, such as electrical
circuits16,35–44. Moreover, it may also be extended to the quantum systems
such as cold atoms and superconducting circuit setups, which are described
by Lindblad master equation, where short-time dynamics can be effectively
described by non-Hermitian Hamiltonians with the effects of quantum
jump ignored45,46.

Results
Corner NHSE from generalizedPT symmetry breaking
As a warm-up, we begin with a minimal 2D model Hγ,2D whose robust
corner/edge modes are localized not from higher-order topology, but from
the NHSE activated by PT symmetry breaking. We construct Hγ,2D by
extending the 1D non-Hermitian Su-Schrieffer-Heeger (nH-SSH)
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model47,48 to 2D with a ky-dependent coupling (also see Methods section):

Hγ;2Dðkx; kyÞ ¼ hð0Þγ σ0 þ hðxÞγ σx þ hðyÞγ σy ð1Þ

where hð0Þγ ¼ t1 cos ky , h
ðxÞ
γ ¼ uþ v cos kx and hðyÞγ ¼ v sin kx þ iγ=2þ

it2 sin ky , andσα=x,y,z are thePaulimatrices acting on apseudospin-1/2 space
(e.g. two sublattices). Here u, v and t1, t2 are hopping parameters along the x
and y directions respectively.

First consider fixed ky, when this Hamiltonian can be viewed as a 1D
nH-SSH model with x-NHSE25 (with an extra energy shift of t1 cos ky).
The real-space Hamiltonian of this 1D model satisfies a generalized PT
symmetry KHγ;2DðkyÞK ¼ Hγ;2DðkyÞ, as x-OBC Hamiltonian Hγ,2D

contains only real matrix elements49,50. Under x-OBCs, the spectrum
remains complex for ky∈ (0, π) [Fig. 1a], but becomes real in
ky∈ [− π, 0] [Fig. 1b], reflecting the broken and unbroken phases of the
generalized PT symmetry, respectively. More generally, the real OBC
spectrum can be associated to the so-called non-Bloch PT symmetry51–53

(also see Methods section), with non-Bloch exceptional points emerging
during transition of these two scenarios at k = 0 and π51.

In the 2D context, Fig. 1a, b correspond to 1D slices [pink and blue
planes in Fig. 1c] of Hγ,2D at different quasi-momenta ky, respectively
with unbroken/broken generalizedPT symmetry and different types of
NHSE. When OBCs are also implemented in the y-direction, ky is no
longer diagonal and the spectrumwith both x, y-OBCs [Fig. 1c Bottom]
may differ from the x-OBC, y-PBC spectrum (Top). In particular, y-
NHSE can occur only for the states with the generalized PT symmetry
already broken, since the NHSE requires nontrivial spectral winding,
which in turn requires complex eigenenergies. Since x-NHSE acts on all
eigenstates of Hγ,2D, there are no completely extended states, but only
edge or corner-localized states under full x, y-OBCs, corresponding to
single/double direction NHSE from unbroken/broken generalized PT
symmetry, as shown in Fig. 1d and e respectively. To quantify the
effective dimensionality of these eigenstates, we introduce the fractal
dimension54

FD ¼ � ln
X
r

jψn;rj4
" #

= ln
ffiffiffiffi
N

p
; ð2Þ

N being the total number of sites and ψn,r being the amplitude of n-th
eigenstates at r-site. We have FD ≈ 0, 1, or 2 for corner, edge, and 2D bulk
states. In Fig. 1c Bottom, FD ≈ 1 for stateswith real eigenenergies, indicating
their 1D edge-localized nature [Fig. 1e]. In contrast, states with complex
eigenenergies have FD closer to 0, corresponding to the corner localization
in Fig. 1d.

Directional togglingofNHSEandsymmetry-drivencornermodes
Noting that PT symmetry plays a crucial role in determining the allowed
NHSE directions, we now show that it can be used to activate the NHSE
exclusively in the x or y directions. We call this directional NHSE toggling.
Furthermore, at an intermediate stage of the toggling, localization occurs
briefly in both directions, leading to symmmetry-driven corner modes.

To demonstrate this intriguing directional toggling of the NHSE, we
tune the PT symmetry by varying the boundary hoppings. We interpolate
between x-PBCs and x-OBCs with a parameter β, such thatHγ,2D becomes

Hβ
γ;2D ¼ HOBC

γ;2D þ e�βH1$Nx
ð3Þ

where HOBC
γ;2D is the Hamiltonian under full x, y-OBCs, and H1$Nx

denotes
the hoppings between the first and last unit cells along the x-direction (see
Methods section).

We have x-OBCs and hence x-NHSE at β→∞, and if parameters are
chosen such that the generalizedPT symmetry is unbroken for all states, no
y-NHSE can occur, even though we also have y-OBCs. (Corner NHSE shall
occur otherwise, see Supplementary Note 1A.) This gives the x-edge-loca-
lized modes of Fig. 2a, with FD ≈ 1. By contrast, the other limit of β = 0
recovers x-PBCs that eliminate x-NHSE, but leads to y-NHSE with y-
localized states [Fig. 2c]. In both scenarios, the y-OBCs remain unchanged,
yet by adjusting the x-boundary hoppings,we can activate the localization in
y-direction through PT symmetry breaking.

Interestingly, with partial x-OBCs i.e. β = 10, cornermodes can appear
as an intermediate between x and y-boundary localization [Fig. 2b]. These
corner modes are evidently distinct from known higher-order skin, topo-
logical or hybrid modes, which require proper full OBCs, and may in fact
harbor enigmatic scale-free properties inherited from 1D partial boundary
states55,56.Wenote that some eigenstates always exist at real energies, and are
thus always free from the y-NHSE.

To quantify the transition between skin localizations along the two
directions, we present in Fig. 2d the average fractal dimension FD and its 1D
projections (x-FD and y-FD) over all states as functions of β, where

FD ¼ �
X
n

ln
hX

r

jψn;rj4
i
=ðN ln

ffiffiffiffi
N

p
Þ;

α - FDn ¼ � ln
hX

α

j
X
α0

jψn;rj2j2
i
= ln

ffiffiffiffi
N

p
;

α - FD ¼
X
n

α - FDn=N;

ð4Þ

with α; α0 2 ðx; yÞ and α≠ α0. Similar to the FD, α-FD quantifies the locality
along a single direction, which is 1 (0) for fully extended (localized) states
along the α direction. While β = 0 and β≫ 1 gives FD≈1, a trough of FD

Fig. 1 | Corner and edgemodes activated by parity-
time (PT ) symmetry breaking. a, b The spectrum
under open boundary conditions (OBCs) (gray) of
Hγ,2D with fixed ky can be a complex or b real
depending on whether PT symmetry is restored by
the non-Hermitian skin effect. For reference, the
spectrum under periodic boundary conditions
(PBCs) (brown) is always complex. c Full spectrum
of Hγ,2D as a 2D model, with PBCs along the y
direction. Pink and blue cross sections correspond to
the spectra in a andb (also indicated by gray arrows).
The full x, y-OBC spectrum (colored according to
the fractal dimension FD) is contained within the set
of y-PBC eigenenergies, as shown by the lower part
of the panel (gray). Corner modes with their fractal
dimension FD ≈ 0 (I,II, triangles) are plotted in
d, and exist at Im(E) ≠ 0 where PT symmetry is
broken. An edge mode with FD ≈ 1 (III, square)
exists at Im(E) = 0, as plotted in e. Parameters are
γ = 1.4, t1 = 0.1, t2 = 0.1, v = 1, and u = 0.7.
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exists between them, indicative of corner localization during the transition
between single-directional y-NHSE under x-PBC (β = 0) and x-NHSE
under x-OBC (β→∞). Meanwhile, x-FD decreases and y-FD increases
(almost) monotonously with β, reflecting the mutual exclusion of NHSE
along x and y directions.

Edge-PT -breaking and selective boundary NHSE
So far, we have only seen how generalized PT symmetry breaking can
activate various NHSE channels for bulk states. We next discuss how that
can interplay with nontrivial topology, which separately gives
PT -asymmetric topological edge modes. Specifically, we show that PT
can be selectively broken for edge states only, leading to a type of
boundary NHSE distinguished from the usual bulk NHSE. We introduce
another 2D model

Hg;2D ¼
X

α¼0;x;y;z

hðαÞg ðkx; kyÞσα; ð5Þ

where hð0Þg ¼ t1 cos ky , h
ðxÞ
g ¼ uþ v cos kx , h

ðyÞ
g ¼ v sin kx , and imaginary

hðzÞg ¼ iðg þ t02 sin kyÞ. This Hamiltonian satisfies the PT symmetry
½PT ;Hg;2D� ¼ 0 with PT ¼ σxK, where K is the complex conjugate
operator. When u2 þ v2 � 2uv > g þ t02 (all parameters chosen to be
positive), all bulk states arePT unbroken and are free of any type of NHSE.
On the other hand, edge states along x-boundaries will appear for all values
of kywhen their associatingWilson loop spectra take nontrivial values57, and
the effective edge Hamiltonian read58–61:

H ±
2D;edge ¼ P̂ ±Hg;2DP̂ ± ¼ t1 cos ky ± iðg þ t02 sin kyÞ

with P̂ ± ¼ ð1 ± σzÞ=2 the projectors of edge states. It is clear that H ±
2D;edge

holds no PT symmetry, and gives a complex edge spectrum [gray dotted
loop in the inset of Fig. 3a] with nontrivial spectral winding for
ky∈ (− π, π]. Consequently, y-NHSE occurs for these x-boundary states
under y-OBCs, accumulating on opposite corners (red) depending on the
sign of Im(E) [Fig. 3a]. This mechanism represents a type of hybrid skin-
topological effect, namely that topological states are pushed to lower-
dimensional boundaries by NHSE, yet bulk states remain extended62. In
addition, thePT -protected bulk spectrum remains purely real [Fig. 3a] and
impervious to any NHSE throughout. Indeed, this absence of bulk NHSE is

geometry-independent63,64, representing an intrinsic hybrid skin-
topological effect (Supplementary Note 2).

Going further, we may also selectively recover/break PT symmetry
and hence turn off/on the NHSE for different branches of edge states.
Explicitly, by introducing an extra anti-Hermitian term�iðt02 sin ky þ gÞσ0:

H0
g;2D ¼ Hg;2D � iðt02 sin ky þ gÞσ0; ð6Þ

one branch of edge eigenenergies becomes real, Hþ
2D;edge !

H0þ
2D;edge ¼ t1 cos ky . As seen in Fig. 3b, these edge states remain left edge-

localized (green) under full OBCs because they cannot undergo additional
NHSE, but those of the other branch are PT -broken and collapse into
corner modes (red) due to y-NHSE.

AnomalousPT -activated state dynamics
The selective activation of these various forms of corner and edge
NHSE entails a competition between different NHSE channels, and gives
rise to qualitative transitions in different stages of the state dynamics,
distinguished to that of different bulk NHSE channels in Hγ,2D (Supple-
mentary Note 1B). Consider an initial state ∣ψð0Þi ¼ ð∣ ";Nx=2;Ny=2i þ
∣ #;Nx=2;Ny=2iÞ=

ffiffiffi
2

p
localized at the center of an Nx ×Ny lattice. We

dynamically evolve it via ∣ψðtÞ� ¼ e�iHt ∣ψð0Þ� and investigate the evolution
of its center-of-mass 〈x〉 and 〈y〉 in Fig. 3c, d, forH =Hg,2D andH0

g;2D from
Eqs. (5) and (6) respectively.

ForH =Hg,2D [Fig. 3c], both 〈x〉 and 〈y〉 remain roughly constant for a
short time, since ∣ψðtÞ� is governed by NHSE-free bulk dynamics [see
Fig. 3a] before it encounters a boundary. After t ≈ 30, the state arrives at the
boundary and the intrinsic hybrid skin-topological effect is activated. The
dynamics are then dominated by the corner states with Im(E) > 0,
where 〈x〉, 〈y〉 ≈ 1.

A unusual observation is that 〈x〉, 〈y〉 can evolve non-monotonically in
the dynamics governed byH0

g;2D. Due to bulk y-NHSE, the state is initially
symmetrically pushed to the top boundary, and 〈y〉 increases while 〈x〉
remains constant [Fig. 3d]. After spreading to the left and right boundaries
at t ≈ 50, the dynamics become dominated by the left edge states with
Im(E) > 0, and the y-NHSE is effectively deactivated. As such, the edge state
evolves from the top to the left boundary, and 〈x〉→ 1 and 〈y〉→Ny/2. This
enigmatic behavior is possible because the left edge states arePT -protected
and do not undergo any NHSE to become corner states.

Fig. 2 | Toggling between non-Hermitian skin
effect along x and y directions through x-bound-
ary tuning. From a–c: As we morph the boundary
conditions along x direction from open boundary
conditions (OBCs) a to periodic boundary condi-
tions (PBCs) c, the y-PBC (gray) and y-OBC
(colored by fractal dimension FD) spectra for Hβ

γ;2D

transition from purely real to complex. Meanwhile,
as activated by PT symmetry breaking, the skin
modes transition from x to y-edge localized (FD ≈ 1
with FD the average FD over all states), as plotted in
the insets. Corner skin modes with FD ≈ 0.5 appear
in the intermediate β ≈ 10 regime purely as a by-
product of this PT activation mechanism.
dAverage FD and its 1D projections as a function of
β under the y-OBC, with the trough at β ≈ 10 indi-
cative of corner localization. Parameters are γ = 1.4,
t1 = 0.1, t2 = 0.1, v = 1, and u = 0.9 in all panels.
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3D generalizations ofPT -activated NHSE
The various avenues for PT -activated NHSE effects discussed above takes
on even richer possibilities in higher dimensions. Below, we briefly
demonstrate how they acquire extra interpretations as surface and hinge-
selective NHSE in 3D. Specifically, we consider a 3D Hamiltonian of the
form

Hγ=g;3DðkÞ ¼ Hγ=g;0ðkx; kyÞ
0:5emþ ðu0 þ v0 cos kzÞσ0τx þ v0 sin kzσ0τy

ð7Þ

with τx,y,z another set of Pauli matrices. Hγ/g,0(kx, ky) is inherited from the
previous PT -breaking and directional toggling NHSE models Hγ/g,2D:

Hγ;0 ¼ iHγ;2D � �iHy
γ;2D

� �
; Hg;0 ¼ iHg;2Dτz; ð8Þ

which contain only diagonal terms of τ0,z. Since kz enters only off-
diagonal terms of τx,y, the surfaces states under z-OBCs obey the
effective Hamiltonian H ± ;surface ¼ P̂ ± ;3DHγ=g;3DP̂ ± ;3D with P̂ ± ;3D ¼
ð1 ± σ0τzÞ=2 z-surface state projectors58–61. Note that the choices Hγ/g,0 are
not unique, and the explicit forms in Eq. (8) are chosen to restore PT
symmetry

½σxτxK;Hγ=g;3DðkÞ� ¼ 0: ð9Þ

Also, an additional CP symmetry emerges for the surface states65 (also see
Methods section), whichoffers another avenue for eliminating theNHSEby
ensuring purely imaginary eigenenergies.

In Fig. 4, eigenmodes are marked with different colors according to
their corresponding sectors and boundary conditions. In Fig. 4a–c forHγ,3D,
the (001) and (00�1) surface states essentially recapitulate the symmetry-
selected and directional toggling NHSE effects of Figs. 1 and 2. Going from
Fig. 4a to b, these surface states (blue) become corner-localized due to
generalized CP-breaking, analogous to the corner localization Fig. 1d due to
PT -breaking, while bulk (black) and hinge (green) states remain unchan-
ged. Likewise, directional toggling from x-NHSE to y-NHSE localization
occurs when the x-OBC of Fig. 4a is replaced by the x-PBC of Fig. 4c.

Similarly, the surface (blue) and hinge (red) states on (001) and (00�1)
surfaces of Hg,3D in Fig. 4d are in direct correspondence with the bulk

(black) and boundary (red) states of Hg,2D in Fig. 3a. Meanwhile, bulk
eigenenergies remain real as our choice of parameters maintains unbroken
PT symmetry in Eq. (7). In analogy withH0

g;2D in Fig. 3b, a CP symmetry
can be recovered in one branch of hinge states on each of (001) and (00�1)
surfaces by introducing an extra Hermitian term to the Hamiltonian, i.e.
H0

g;3DðkÞ ¼ Hg;3DðkÞ þ ðt02 sin ky þ gÞσ0τ0, which removes the NHSE on
these hinge states (Fig. 4e).

Alternatively, a 3DHamiltonianwith only bulk-NHSEcanbedesigned
such that its bulk (PBC) states are not PT -symmetric, but that generalized
PT -symmetry can be recovered in certain parameter regimes, for instance
H0

3DðkÞ ¼ Hγ;2Dðkz; kyÞ � τ0 þ σz � HSSHðkxÞ, with

HSSHðkxÞ ¼ ðu0 þ v0 cos kxÞτx þ v0 sin kxτy ð10Þ

the Hermitian SSH model and Hγ,2D(kz, ky) from Eq. (1). Consequently,
bulk states accumulate to a 2D surface (or 1D hinges) when the generalized
PT symmetry is unbroken (or broken), as shown in Fig. 4f, g. In contrast to
Hγ/g,3D, conventional surface (blue) or hinge (green) states are immune from
the NHSE and remain extended. Thereby, our work provides a systemic
framework for constructing and exploring various types of PT activated
bulk and boundary skin effect, which also can be applicable in the study of
non-Hermitian gapless phases66,67.

Discussions
PT symmetry ensures real spectra, thus eliminating the prospect for
spectral winding. This fundamental observation leads to the para-
digm of PT -activated NHSE, where rich families of NHSE-related
phenomena can be designed by selectively symmetry breaking in bulk
or boundary subspaces. In 2D, we discussed the directional NHSE
toggling and PT -mediated corner modes, as well as selective edge-
PT breaking and restoring that causes non-monotonic transfer of
edge states. In 3D or higher, PT activation leads to far more varied
phenomenology by interplaying with the already rich classes of
boundary and bulk NHSE. This paradigm of symmetry-controlled
NHSE can be extended to include other symmetries that forbid
spectral winding, such as non-Bloch and generalized PT symmetries,
CP symmetry, or pseudo-Hermiticity. It also provides a versatile
scheme for constructing models with different types of NHSE on
different sectors of the systems. We also note that the conditions for

Fig. 3 | Selective boundary non-Hermitian skin
effect (NHSE) and non-monotonic state dynam-
ics. a Hg,2D hosts bulk states with unbroken parity-
time (PT ) symmetry (black) and PT -broken
topological edge states under open/periodic
boundary conditions (OBCs/PBCs) along x/y
direction (gray). Under full OBCs, the latter
experiences y-NHSE and become corner-localized
(red). b H0

g;2D is deformed fromHg,2D such that PT
symmetry is restored for the branch of edge states
(green) with Im(E) > 0, which remains edge-loca-
lized; and broken for the bulk states (black), which
are thus edge-localized due to y-NHSE. c, d depict
the dynamical evolution of a center-localized initial
state (black dot) due toHg,2D andH0

g;2D respectively,
with the size of blue dots indicating evolved state
density. Qualitatively distinct stages occur before
and after encountering the upper boundary; in d, the
upper edge state evolves into the left edge state,
leading to non-monotonic 〈y〉. Parameters are
u = 0.2, g = 0.3, t1 = 0.3 and t02 ¼ 0:1, with system
size Nx =Ny = 20. 0
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yielding a real OBC spectrum with complex PBC spectrum can be
geometrically understood with an electrostatics analogy of the NHSE
problem68, which may provide further possibilities for activating/
deactivating NHSE based on our method.

SincePT -activatedNHSE is fundamentally a phenomenonon a linear
lattice, it can be experimentally demonstrated on any metamaterial or
artificial lattice, whether classical or quantum, as long asPT symmetry can
be broken through a combination of gain/loss and non-reciprocity. Possible
platforms include non-reciprocal lossy acoustic or photonic crystals or
waveguides69–72, ultracold atomic lattices73, superconducting quantum cir-
cuit lattices74–84, and in particular op-amp controlled electrical circuitswhich
can be constructed with great versatility16,35–44.

Methods
Non-Hermitian SSHmodel
Themodels supporting various types ofNHSEdiscussed in themain text are
mostly designed based on a non-Hermitian Su-Schrieffer-Heeger (SSH)
model47,48, described by the Hamiltonian:

HðkxÞ ¼
X

α¼x;y;z

hαðkxÞσα; ð11Þ

where hxðkxÞ ¼ uþ v cos kx , hyðkxÞ ¼ v sin kx þ iγ=2, hz = ig, and σα=x,y,z
is the Paulimatrix acting on a pseudospin-1/2 space [e.g. two sublattices ∣Ai
and ∣Bi as shown in Fig. 5a]. u and v denote the Hermitian staggered

Fig. 5 | The non-Hermitian Su-Schrieffer-
Heeger model. a A sketch of the model of Eq. (11),
with γ (g) the asymmetric hopping (gain/loss)
parameter. b Typical spectra of Hg under periodic
(gray) and open (other colors) boundary conditions
(PBCs and OBCs). Under the OBCs, bulk states can
be parity-time-symmetric (PT symmetric) and
have real eigenenergies (black), but edge states are
PT -broken and have imaginary eigenenergies ± ig
(red and blue). Insets demonstrate the spatial dis-
tribution of corresponding eigenstates. c Typical
PBC and OBC spectra of Hγ, with the same color
marks as in b. The PBC spectrum in c isPT -broken
and possesses a nontrivial spectral winding, leading
to a boundary accumulation of all eigenstates (see
insets). The OBC spectrum restores a non Bloch (or
a generalized) PT symmetry and becomes purely
real. Parameters are chosen to be u = 0.5, v = 1, and
b g = 0.2, c γ = 0.2 for demonstration.
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Fig. 4 | Non-Hermitian skin effect (NHSE) selectively activated by parity-time
(PT ) or charge-conjugation-parity (CP) symmetry breaking for three-
dimensional (3D) models. In most panels [except for c with periodic boundary
conditions (PBCs) along x], colored dots represent the bulk, surface or hinge spectra
under full OBCs, and gray dots represent the spectra with xz-OBCs and PBCs along y
direction. Insets of 3D cubes display the average spatial distribution of eigenstates of
the respective color. a–e and f, g pertain toHγ,3D,Hg,3D,H0

g;3D, andH
0
3D respectively.

In a–c (001) and ð00�1Þ-surface states (blue) experience corner pumping from
CP-breaking b or x to y-NHSE directional toggling a, c. In d, e, hinge states (red) can

have CP symmetry selectively broken (unbroken), respectively resulting in corner
(red) or hinge (green) localization. In f, g, on-demand switching of 1st and 2nd-order
3D bulk NHSE (black surface and edges) through PT breaking leaves other states
(green,blue) invariant. In a to c, parameters are v = 1, u0 ¼ 0:6, v0 ¼ 3 and
t1 = t2 = 0.1, with u = 0.6 and γ = 0.4 for a and c; u = 0.5 and γ = 1.4 for b. In d and
e, parameters are u = 0.2, v = 1, u0 ¼ 0:4, v0 ¼ 2, g = 0.3, t1 = 0.3 and t2 = 0.1. In f and
g, parameters are u0 ¼ 0:2, v0 ¼ 1, v = 3, γ = 1.4 and t1 = t2 = 0.1, with u = 0.9 for
f and u = 0.5 for g.
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hopping amplitudes. The two non-Hermitian parameters γ and g describes
asymmetric hoppings and imaginary on-site potential, which correspond to
to non-local and local dissipation85, respectively, as illustrated in Fig. 5a. By
separately tuning the two non-Hermitian parameters g and γ, we can break
or restorePT -symmetry selectively for bulkor topological edge states in this
model, as discussed below.

When γ = 0, non-Hermiticity enters theHamiltonian only through the
on-site gain and loss of g, and the resultant Hamiltonian

Hg � Hðγ ¼ 0Þ

holds a PT symmetry: ½PT ;Hg � ¼ 0 with PT ¼ σxK and PT 2 ¼ þ1.
A nonzero g does not break the PT symmetry as the gain and loss are
balanced between sublattices. As shown in Fig. 5b, in the PT -unbroken
phase, all bulk states have real eigenenergies since they are also eigen-
states of PT symmetry operator1,2. On the other hand, topological edge
states for the SSH model are sublattice polarized and hence PT -broken.
Instead of being eigenstates of PT symmetry operator, these states are
related to each other through the symmetry, i.e. PT ∣ψþi / ∣ψ�i, with
∣ψþ;�i the topological edge states localized at left and right ends
respectively. The sublattice-polarization of these edge states allow us to
write down their effective Hamiltonians through projectors
P̂ ± ¼ ð1 ± σzÞ=2, i.e.

H ±
edge ¼ P̂ ±HgP̂ ± ¼ ± ig;

which directly give their eigenenergies58–61.
For the other non-Hermitian scenario of Eq. (11) with g = 0 but γ ≠ 0,

Hγ � Hðg ¼ 0Þ ð12Þ

the PT symmetry is broken, and the resultant complex bulk spectrum is
known to have nontrivial spectral winding topology under the PBC, a
signature of the emergence of NHSE under the OBC26–28. Yet its OBC
bulk spectrum become real in Fig. 5c due to the recovery of a generalized
symmetry PT symmetry KHγK ¼ Hγ

49,50 or a non-Bloch PT
symmetry51–53, or more generally, a pseudo-Hermiticity4. Explicitly, the
OBC bulk spectrum can be described by a non-Bloch Hamiltonian
�HγðkxÞ ¼ Hγðkx þ iκÞ with κ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðuþ γ=2Þ=ðu� γ=2Þj

p
25,29,86. That

is, this non-Hermitian Hamiltonian can be transformed into a
Hamiltonian without NHSE through a similarity transformation25:
ψ̂y
j;A=B ! e�jκψ̂y

j;A=B, where ψ̂
y
j;A=B is the annihilate operator for j-th cell

with sublattices A/B. In particular, a Hermitian SSH model will be
obtained directly through this transformation in the non-Bloch PT
unbroken phase. A different route of transforming non-Hermitian
Hamiltonians into Hermitian ones can be found in ref. 87. This
Hamiltonian �HγðkxÞ satisfies a non-Bloch PT symmetry,

½ηK; �Hγ� ¼ 0

with η a unitary operator, which is unbroken for all non-Bloch eigenstates
when ∣u∣ > ∣γ/2∣ (as discussed later). In contrast, here the topological edge
states always remain PT -symmetric and possess real (zero) eigenenergies,
as a nonzero γ does not enter their effective Hamiltonian:

H ±
edge ¼ P̂ ±HγP̂ ± ¼ 0:

Note that the the localizing direction of these edge states may be altered by
the NHSE, yet their distributing dimensionality remains unchanged,
namely they are always 0D edge states except for some critical points in the
parameter space88. Similarly, edge states of 2D generalization Hamiltonian
Hγ,2Dwith selectivebulkNHSE,namely thosenear zero energy inFig. 1c and
Fig. 2a of the main text, are seen to also possess real eigenergies with their
distributing dimensionality unchanged by NHSE.

Non-BlochPT symmetry
While themodels ofHγ in the last section andHγ,2D satisfy a generalizedPT
symmetry, it is the non-Bloch PT symmetry that guarantees real OBC
spectrum for more generic non-Hermitian Hamiltonians. Here, we discuss
the non-Bloch PT symmetry of the non-Hermitian SSH model with
asymmetric hoppings

HγðkxÞ ¼ ðuþ v cos kxÞσx þ ðsin kx þ iγ=2Þσy:

When γ = 0, this Hamiltonian satisfies the conventional PT symmetry
½σxK;HγðkxÞ� ¼ 0 with K the complex conjugate operator. Its corre-
sponding non-Bloch Hamiltonian reads25,29,86

�HγðkxÞ ¼ Hγðkx þ iκÞ ¼ ðAþ iBÞσx þ ðC þ iDÞσy; ð13Þ

with

A ¼ uþ v
cos kx
2

ðWþ þW�Þ;

B ¼ �v
sin kx
2

ðWþ �W�Þ;

C ¼ v
sin kx
2

ðWþ þW�Þ;

D ¼ v
cos kx
2

ðWþ �W�Þ þ
γ

2
;

ð14Þ

with W ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu± γ=2Þ=ðu∓ γ=2Þ

p
. The quantity κ describes the inverse

localization length of skin modes under OBCs, which can be obtained by
requiring non-Bloch eigenenergies to form degenerate pairs for different
quasi-momenta (so that their linear combination can satisfy OBCs).W± as
well as all factors defined in Eq. (14) are real when ∣u∣ > ∣γ/2∣. In this regime,
we can define non-Bloch PT symmetry. To identify the non-Bloch PT
symmetry, we rewrite the non-Bloch Hamiltonian as

Hγðkx þ iκÞ ¼ h0xσ
0
x þ h0yσ

0
y ð15Þ

with

h0x ¼
ðAþ iBÞðWþ þW�Þ þ iðC þ iDÞðWþ �W�Þ

2
;

h0y ¼
ðC þ iDÞðWþ þW�Þ � iðAþ iBÞðWþ �W�Þ

2
;

σ 0x ¼
ðWþ þW�Þσx þ iðWþ �W�Þσy

2
;

σ 0y ¼
ðWþ þW�Þσy � iðWþ �W�Þσx

2
:

ð16Þ

It is straightforward to check that h0x; h
0
y 2 R, ðσ 0xÞ2 ¼ ðσ 0yÞ2 ¼ σ0, and

σ 0xσ
0
yσ

0
x ¼ �σ 0y . Therefore we obtain

½ηK;Hγðkx þ iκÞ� ¼ 0 ð17Þ

with η ¼ σ 0x a parameter-dependent unitary operator and ðηKÞ2 ¼ 1,
indicating the non-BlochPT symmetry analogous to the conventional one.

We emphasize here that the system is non-Bloch PT symmetric only
when ∣u∣ > ∣γ/2∣, as Eq. (17) is not satisfiedwhen ∣u∣ < ∣γ/2∣. In thenon-Bloch
PT symmetric regime with ∣u∣ > ∣γ/2∣, eigenenergies of Hγ(kx+ iκ), i.e.

Eγ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ 2iðABþ CDÞ

p
ð18Þ

with G =A2+C2− B2−D2, always take real values, since we have

ABþ CD ¼ v
sin kx
2

Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju2 � γ2=4j

p
¼ 0 ð19Þ
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with Δ ¼ sgn½uþ γ=2� � sgn½u� γ=2�, and

G ¼ u2 þ v2 � γ2=4þ v cos kxΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju2 � γ2=4j

p

≥ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � γ2=4

p
� vÞ2 ≥ 0:

ð20Þ

In other words, the system always falls in the non-Bloch PT unbroken
phase in the symmetric regime of ∣u∣ > ∣γ/2∣. On the other hand, when
∣u∣ < ∣γ/2∣, the system no longer holds the symmetry of Eq. (17), and the
eigenenergies Eγ generally become complex. An exception is when
kx∈ {0, π}, where the eigenenergies reduce to

Eγðk ¼ 0; πÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 � γ2=4

p
ð21Þ

when ∣u∣ < ∣γ/2∣, which are also real provided u2+ v2 > γ2/4.

The explicit form of Hamiltonian Hβ
γ;2D

For analytic tractability, we give the explicit form of Hβ
γ;2D in Eq. (3).

According to this definition, the HamiltonianHβ
γ;2D contains two parts: the

Hamiltonian Hγ,2D in Eq. (3) under full OBCs, and its hopping between
boundaries along x-direction. The first part reads

HOBC
γ;2D ¼ v

2

XNx�1

j

XNy

k

½ψ̂y
j;kðσx � iσyÞψ̂jþ1;k þH:c:�

þ 1
2

XNx

j

XNy�1

k

½t1ðψ̂y
j;kψ̂j;kþ1 þH:c:Þ � it2ðiψ̂y

j;kσyψ̂j;kþ1 þH:c:Þ�

þ
XNx

j

XNy

k

ψ̂y
j;kðuσx þ

iγ
2
σyÞψ̂j;k;

ð22Þ

where ψ̂j;k ¼ ½âj;k; b̂j;k�
T
, with âj;k (b̂j;k) being the annihilate operator for the

pseudospin-↑ (↓) [sublattices A (B)] on the (j, k)-th unit cell.
Similarly, the hoppings between boundaries along x-direction H1$Nx

and y-direction H1$Ny
are

H1$Nx
¼ v
2

XNy

k

½ψ̂y
Nx ;k

ðσx � iσyÞψ̂1;k þH:c:�;

H1$Ny
¼ t1

2

XNx

j

ðψ̂y
j;Ny

ψ̂j;1 þH:c:Þ

� it2
2

XNx

j

ðψ̂y
j;Ny

σyψ̂j;1 þH:c:Þ:

ð23Þ

Thereby, the Hamiltonian under full PBCs can be expressed by

HPBC
γ;2D ¼ HOBC

γ;2D þH1$Nx
þ H1$Ny

: ð24Þ

Through the Fourier transformation, the momentum space Hamiltonian
Hγ,2D(kx, ky) in Eq. (3) can be obtained. In Eq. (3), an extra factor e−β is
introduced to describe the partial OBCs aong x direction.

Effective surface Hamiltonian for 3D generalizations
The HamiltoniansHγ/g,3D andH0

γ;3D are chosen to support surface states on
(001) and ð00�1Þ surfaces. Corresponding projectors of these surface states are

P̂ ± ;3D ¼ ð1 ± σ0τzÞ=2:

Thereby, the effective surface Hamiltonian of Hγ,3D can be given by:

H ±
γ;surf ¼ P̂ ± ;3DHγ;3DP̂ ± ;3D

¼± i t1 cos kyσ0 þ ðuþ v cos kxÞσx
n

þ ½v sin kx ± iðγ=2þ t2 sin kyÞ�σy
o
:

ð25Þ

Comparing to Eq. (3), we find the effective Hamiltonian H ±
γ;surf can be

considered as ± iHγ,2D (the signs of γ and t2 are flipped for H�
γ;surf ). As

discussed in before, Hγ,2D holds a non-Bloch PT symmetry. Correspond-
ingly, H ±

γ;surf holds a non-Bloch CP symmetry, due to the additional
imaginary factor ± i. Therefore, the surface states of Hγ,3D can support
variousNHSE channels activated byCP symmetry breaking, as discussed in
Fig. 4a to c.

Similarly, the effective surface Hamiltonian of Hg,3D reads

H ±
g;surf ¼ P̂ ± ;3DHg;3DP̂ ± ;3D ¼ ± iHg;2D: ð26Þ

Therefore, H ±
g;surf satisfies a CP symmetry ½CP;H ±

g;surf �þ ¼ 0 with
CP ¼ σxK. And the surface (hinge) states of Hg,3D displays similar NHSE
phenomenon as the bulk (and edge) states of Hg,2D, as shown in Fig. 4d.

The effective surface Hamiltonian of H0
g;3D is given by

H ± 0
g;surf ¼ P̂ ± ;3DH

0
g;3DP̂ ± ;3D

¼ ± i½Hg;2D∓iðt02 sin ky þ gÞσ0�;
ð27Þ

where theCP symmetry is brokenand thensurface states suffer fromNHSE.
However, one branch of boundary states of H ± 0

g;surf recovers CP symmetry
and is free fromNHSE, analogous with the discussion ofH0

g;2D in Eq. (5). In
this 3D model, CP symmetry is recover for distinct branches of boundary
states in the (001) and ð00�1Þ surfaces because of the∓ sign in the square
bracket of the Eq. (27). As a result, these NHSE-free hinge states living in
these two surfaces are localized in opposite sides along x-direction, as shown
in Fig. 4e (green).

Finally, the projectors of (001) and ð00�1Þ surface states for the
Hamiltonian H0

3D are

P̂
0
± ;3D ¼ ð1 ± σzτ0Þ=2:

Their effective surface Hamiltonian can be obtained as

H ± 0
3D;surf ¼ P̂

0
± ;3DH

0
3DP̂ ± ;3D

¼ t1 cos kyτ0 ± ½ðu0 þ v0 cos kxÞτx þ v0 sin kxτy�;
ð28Þ

which satisfies a PT symmetry ½PT ;H ± 0
3D;surf � ¼ 0 with PT ¼ τxK.

Actually, H ± 0
3D;surf is Hermitian and without NHSE. Correspondingly,

the dimensionality of surface and hinge states of H0
3D is unchanged

by NHSE, despite that the localizing direction of hinge states (green)
are altered by the z-NHSE, as shown in Fig. 4f, g. Meanwhile, the
bulk states can show distinct localization with various types of NHSE,
as shown in Fig. 4f, g.
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