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Ranking species in complex ecosystems
through nestedness maximization
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Identifying the rank of species in a complex ecosystem is a difficult task, since the rank of each species
invariably depends on the interactions stipulated with other species through the adjacency matrix of
the network. A common ranking method in economic and ecological networks is to sort the nodes
such that the layout of the reordered adjacencymatrix looksmaximally nested with all nonzero entries
packed in the upper left corner, called Nestedness Maximization Problem (NMP). Here we solve this
problem by defining a suitable cost-energy function for the NMP which reveals the equivalence
between the NMP and the Quadratic Assignment Problem, one of the most important combinatorial
optimization problems, and use statistical physics techniques to derive a set of self-consistent
equationswhose fixedpoint represents the optimal nodes’ rankings in anarbitrary bipartitemutualistic
network. Concurrently, we present an efficient algorithm to solve the NMP that outperforms state-of-
the-art network-based metrics and genetic algorithms. Eventually, our theoretical framework may be
easily generalized to study the relationship between ranking and network structure beyond pairwise
interactions, e.g. in higher-order networks.

Experience reveals that species forming complex ecological or economic
ecosystems are organized in hierarchies. The ranks of such species, namely
their position in the hierarchy, are functions of the interactions encoded in
the adjacency matrix of the ecological or economic network. While several
genetic algorithms1,2 and simpleheuristics3–5 exist to rank species in complex
ecosystems, capturing analytically the relationship between species’ ranking
and the underlying adjacency matrix has remained elusive so far.

In economic and ecological ecosystems, ranking rows and columns of
the adjacency matrix has revealed the existence of nested structures:
neighbors of low-rank nodes are subsets of the neighbors of high-rank
nodes1,6,7. For example, nested patterns are found in world trade, in which
products exported by low-fitness countries constitute a subset of those
exported by high-fitness countries3. In fragmented habitats, species found
in the least hospitable islands are a subset of species in themost hospitable
islands1. Nestedness in real-world interaction networks has captured
cross-disciplinary interest for three main reasons. First, nested patterns
are ubiquitous among complex systems, ranging from ecological
networks1,6 and the human gut microbiome8 to socioeconomic systems3,9

and online social media and collaboration networks10,11. Second, the
ubiquity of nested patterns has triggered intensive debates about the
reasons behind the emergence of nestedness in mutualistic systems12–15

and socioeconomic networks9,11. Third, nestedness may have profound

implications for the stability and dynamics of ecological and economic
communities: highly nested rankings of the nodes have revealed vulner-
able species in mutualistic networks16,17 and competitive actors in the
world trade5,18.

Theubiquityof nestedness and its implications in shaping the structure
of biotas have motivated the formulation of the nestedness maximization
problem (NMP). This problem can be stated in the following way: find the
permutation (i.e. ranking) of the rows and columns of the adjacencymatrix
of thenetwork resulting in amaximallynested layoutof thematrix elements.
Originally introduced by Atmar and Patterson1, the problem has been
widely studied in ecology, leading to several algorithms for measuring the
nestedness of a matrix, e.g. the popular nestedness temperature calculator
and its variants1,2,19,20. Yet thesemethods do not attempt to optimize directly
the actual cost of anested solutionbut exploit some simpleheuristics that are
deemed to be correlated with nestedness. Another method, called
BINMATNEST2, optimizes a nestedness cost following a genetic algorithm
but lacks the theoretical insight contained in an analytic solution to the
problem.Moregenerally,we lack a formal theory toderive the rankingof the
nodes and the degree of nestedness of a network from the structure of the
adjacency matrix.

Here we introduce an analytic framework to calculate the ranking
positions of nodes in bipartite interaction networks. In the proposed

1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054Chengdu, P.R. China. 2URPPSocial Networks,
University of Zurich, CH-8050 Zurich, Switzerland. 3Enrico Fermi Research Center, via Panisperna 89a, 00184 Rome, Italy. 4Department of Physics, New York
University, New York, NY, USA. 5Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA. e-mail: fm2452@nyu.edu

Communications Physics |           (2024) 7:102 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01588-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01588-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01588-8&domain=pdf
http://orcid.org/0000-0003-1032-5821
http://orcid.org/0000-0003-1032-5821
http://orcid.org/0000-0003-1032-5821
http://orcid.org/0000-0003-1032-5821
http://orcid.org/0000-0003-1032-5821
http://orcid.org/0000-0002-8830-1179
http://orcid.org/0000-0002-8830-1179
http://orcid.org/0000-0002-8830-1179
http://orcid.org/0000-0002-8830-1179
http://orcid.org/0000-0002-8830-1179
mailto:fm2452@nyu.edu


framework, the observed interactions are associatedwith an energy (or cost)
function that depends on both the nodes’ ranks and the adjacencymatrix of
the network. Under this general assumption, the task of ranking species can
be cast in the problem of finding a suitable permutation of the rows and
columns of the adjacency matrix, and this problem is, fundamentally, a
combinatorial one. We solve it through statistical physics techniques for an
energy function that captures the nestednessmaximization problem, which
has attracted long-standing interest in ecology1,2 and, more recently, has
played a central role in the economic complexity field and its policy
implications5,21–23. We map the NMP onto the quadratic assignment pro-
blem (QAP)24, thereby directly tackling the problem of finding the optimal
permutation of rows and columns that maximizes the nestedness of the
adjacency matrix. In our formulation, the degree of nestedness is measured
by a cost function over the space of all possible rows and column permu-
tations, whose global minimum corresponds to a matrix layout having
maximum nestedness. Roughly speaking, the cost function is designed to
reward permutations that move the maximum number of non-zero ele-
ments of the matrix in the upper left corner and to penalize those permu-
tations thatmovenon-zero elements in the bottomright corner.Next,we set
up the theoretical framework, which allows us to obtain the mean-field
solution to theNMPas a leading order approximation and, in principle, also
calculate next-to-leading order corrections. Lastly, we stress that our theo-
retical framework easily generalizes also to higher-order interaction
networks.

Results
Problem formulation
To formulate the problem, we shall focus in the following discussion on
bipartite networks, although we anticipate that the theoretical framework
and the algorithm we present here can be applied to any square or rectan-
gular matrix, bipartite or not, directed or undirected, with non-negative
entries. We consider bipartite networks where nodes of one kind, repre-
senting for example, plants indexed by a variable i = 1, . . . ,N, can only be
connected with nodes of another kind, e.g. pollinators indexed by another
variable a = 1, . . . ,M, as seen in Fig. 1a.We denote byAia the element of the
network’s N ×M adjacency matrix: Aia ≠ 0 if i and a are connected, and
Aia = 0 otherwise. Besides connectivity, the adjacency matrix encodes the
interaction strength between nodes such that whenever i and a are con-
nected, the strength of their interaction is Aia =wia > 0. A ranking of the
rows is represented by a permutation of the integers {1, 2, . . . ,N}, denoted
r≡ {r1, r2, . . . , rN}; a ranking of the columns is represented by a (different)
permutation of the integers {1, 2, . . . ,M}, denoted c≡ {c1, c2, . . . , cM}. More
precisely, the r sequence arranges rows in ascending order of their ordinal
rankings ri such that row i is rankedhigher than row j if ri < rj. Similarly, the c
sequence arranges columns such that column a ranks higher than column b
if ca < cb.

To model the problem, one more concept is needed: network nest-
edness. Nestedness is the propertywhereby if j ranks lower than i, then the
neighbors of j form a subset of the neighbors of i, as illustrated in Fig. 1b.
Different rankings, i.e. different sequences r and c, produce different
nested patterns, that is, nestedness is a function of the rankings. Therefore,
any cost (energy) function that seeks to quantify matrix nestedness must
be a function of the rankings r and c. The simplest energy function that
does the job, aside from trivial cases (see Supplementary Note 1), is

Eðr; cÞ ¼
XN
i¼1

XM
a¼1

Aiarica: ð1Þ

The product Aiarica penalizes strong interactions between low-rank nodes
since they contribute a large amount to the cost function; thus, low-rank
nodes typically interact weakly. Strong interactions are only allowed
between high-rank nodes because, whenAia is large, the productAiarica can
be made small by choosing ri and ca to be small. Furthermore, high-rank
nodes can have moderate interactions with low-rank nodes because the

product riAiaca can still be relatively small when ri is large and ca is small (or
vice versa) provided Aia is not too large (hence the name ‘moderate’
interaction).

The assumptions of our model are relevant to diverse scenarios where
nestedness has been observed. In bipartite networks of countries connected
to their exported products, we could interpret ri as the fitness of country i
and ca as the inverse of the complexity of product a. In this scenario, high-
energy links riAiaca represent the higher barriers faced by underdeveloped
countries to produce and export sophisticated products3, whereas low-
energy links represent competitive countries exporting ubiquitous products.
In mutualistic ecological networks, high-energy links represent the higher
extinction risk for specialist pollinators to be connected with specialist
plants, whereas low-energy links represent connections within the core of
generalist nodes6 as depicted in Fig. 1b.

With this premise it should be clear that to maximize nestedness, we
have to minimize the energy function in Eq. (1). More precisely, nestedness
maximization is the mathematical optimization problem in which we seek
to find the optimal sequences r* and c* that minimize the energy function,
i.e. min

r;c
Eðr; cÞ ¼ Eðr�; c�Þ. Since the sequence r is a permutation of the

ordered sequence {1, 2, . . . ,N}, we can always write ri ¼
PN

n¼1 Pinn, where
P is aN ×N permutationmatrix. Similarly, we canwrite ca ¼

PM
m¼1 Qamm

where Q is a M ×M permutation matrix. Therefore, the energy function,
considered as a function of the permutation matrices P and Q, can be
rewritten in the form

Eðr; cÞ ¼ EðP;QÞ ¼ Tr PtAQBt
� �

; ð2Þ

where B is anN ×Mmatrix with entries Bia = ia, as shown in Fig. 1c. In this
language, the NMP is simply the problem of finding the permutations P*

and Q* that minimizes the energy function given by Eq. (2), which math-
ematically reads

ðP�;Q�Þ ¼ argmin
P;Q

EðP;QÞ: ð3Þ

The geometric meaning of the optimal permutations P* andQ* is clear if we
apply them to the adjacency matrix as PtAQ=Anest, in that the nested
structure of A is visually manifest in Anest, as illustrated in Fig. 1c. The
optimization problem defined by Eqs. (2) and (3) can be recognized as an
instance of the Quadratic Assignment Problem in the Koopmans-
Beckmann form24, one of the most important problems in combinatorial
optimization, that is known to be NP-hard. The formal mathematical
mapping of theNMPonto an instance ofQAP represents ourfirst andmost
important result. Having formulated the NMP in the language of
permutation matrices, we move next to solve it using a statistical physics
approach.

Solving the NMP with statistical physics
Our basic tool to study the NMP is the partition function Z(β) defined by

ZðβÞ ¼
X
P;Q

e�βEðP;QÞ; ð4Þ

where β is an external control parameter akin to the inverse temperature in
the statistical physics language. The partition function Z(β) provides a tool
to determine the global minimum of the energy function via the limit

EðP�;Q�Þ ¼ � lim
β!1

1
β
lnZðβÞ ð5Þ

Calculating the partition function may seem hopeless since it requires to
evaluate and sum up N!M! terms. Nonetheless, the calculation is greatly
simplified in the limit of large β, since we can evaluate Z(β) via the steepest
descent method. The strategy consists of two main steps. The first step is to
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work out an integral representation of Z(β) of the form

ZðβÞ ¼
Z

DXDY e�βFðX;YÞ; ð6Þ

where the integral is over the spaceofN ×Ndoubly-stochastic (DS)matrices
X and M ×M DS matrices Y, that converge onto permutation matrices P
and Qwhen β→∞; and F(X,Y) is an effective cost function that coincides
with E(P,Q) for β→∞. The second step is to find the stationary points of
F(X,Y) by zeroing the derivatives ∂F/∂X = ∂F/∂Y = 0, resulting in a set of
self-consistent equations forX andY, called saddle point equations.All steps
of the calculation are explained in great detail in the “Methods” subsection
“Derivation of the saddle point equations”. The resulting saddle point
equations are given by

Xij ¼ ui exp �βðAYBtÞij
h i

vj;

Yab ¼ μa exp �βðAtXBÞab
� �

νb;
ð7Þ

where u, v are N-dimensional vectors and μ, υ are M-dimensional vectors
determined by imposing that all row and column sums ofX andY are equal
to 1.At this point, we can exploit the specific formofmatrixB, i.e.Bia = ia, to
further simplify Eq. (7). Specifically, we define the stochastic rankings ρi and
σa as

ρi ¼
XN
k¼1

Xik k; σa ¼
XM
b¼1

Yab b; ð8Þ

whereby we can cast Eq. (7) in the following vectorial form (details in the
“Methods” subsection “Derivation of the saddle point equations”)

ρi ¼
P

kk vk e
�βk
P

a
AiaσaP

kvk e
�βk
P

a
Aiaσa

;

σa ¼
P

cc νc e
�βc
P

i
AiaρiP

cνc e
�βc
P

i
Aiaρi

;

ð9Þ

Fig. 1 | Modeling the nestedness maximization
problem. a A bipartite network models the inter-
actions between, e.g., plants i, represented by purple
circles, and pollinators a, represented by cyan
squares, through the adjacency matrix A. The
interaction is mutualistic, i.e.Aia = 1 > 0 if i interacts
with a andAia = 0 otherwise. bAnested network has
a hierarchical structure wherein the neighbors of
low-rank nodes (the specialist species at the bottom)
are a subset of the neighbors of high-rank nodes (the
generalists at the top). The rank of a node is encoded
in the variables ri (for plants) and ca (for pollinators).
Top-rank nodes have r = c = 1, while low-rank ones
have r = c = 4. The adjacency matrix of a nested
network shows a peculiar pattern with all non-zero
entries clustered in the upper left corner.
cMaximizing network nestedness amounts to
minimize the cost function E(r, c) over the ranking
vectors r and c, which, in turn, is equivalent to
optimizing the cost E(P,Q) with respect to the per-
mutations matrices P and Q. The optimal permu-
tation matrices bring the adjacency matrix to its
maximally nested form PtAQ =Anested, which is
complementary to the layout of matrix B.
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where the normalizing vectors v and υ satisfy

1
vj
¼
X
i

X
k

vke
�βðk�jÞ

P
a

Aiaσa

" #�1

;

1
νb

¼
X
a

X
c

νce
�βðc�bÞ

P
i

Aiaρi

" #�1

:

ð10Þ

Equations (9) and (10) represent our second most important result and,
when interpreted as iterative equations, provide a simple algorithm to solve
the NMP, whose implementation is discussed in detail in the “Methods”
subsection “Algorithm”. Note that ρ and σ converge to the actual ranking r
and c for β→∞. However, in practice, we solve Eqs. (9) and (10) iteratively
atfiniteβ. Oncewe reach convergence, we estimate r and cby simply sorting
the entries of ρ and σ. We observe that larger values of β give better results,
i.e., lower values of the cost E(r, c), as seen in Fig. 2a. A full discussion of
convergence and bounds of our algorithm will be published elsewhere (see
also discussion in Supplementary Note 2). Here, we test its performance by
applying it to many real mutualistic and economic networks and show that

we obtain better results than state-of-the-art network metrics and genetic
algorithms, as discussed next.

Nestedness maximization in empirical matrices
We apply our algorithm to two classes of empirical bipartite networks:
plant-pollinator networks relevant to the study of mutualistic networks in
ecology and country-activity networks relevant to the economic complexity
field, where the activities represent the technological outputs on green
innovations (green technology networks) or the export flows of physical
goods (international trade networks). The 47 ecological mutualistic net-
works are freely downloadable at https://www.web-of-life.es/, whose file-
names can be found in the first column of Table 1. The green technology
networks that link countries and green technologies are sourced from
REGPAT, accessible upon request at [https://www.oecd.org/sti/inno/
intellectual-property-statistics-and-analysis.htm#ip-data]. These green
technologies fall under the classification of the Cooperative Patent Classi-
fication (CPC) within the Y02/Y04S classes encompassing technologies
linked to Climate Change Mitigation and Adaptation. Further, the inter-
national trade networks that link the countries with the goods they com-
petitively export are based on theCOMTRADEdata collected by theUnited

Fig. 2 | Numerical solution and comparison with other methods in ecological
networks. a Optimal cost E returned by our algorithm on the mutualistic network
namedML-PL-001 in the Web-of-Life database for several choices of the parameter
β. Larger values of β give lower costs. In particular, for sufficiently large β, our
algorithm returns a lower cost than the best off-the-shelf algorithm for nestedness
maximization (BINMATNEST, red line). bComparison of our algorithmwith state-
of-the-artmethods in the literature: Degree (bi), Fitness-Complexity (bii),Minimal-
Extremal-Metric (biii), and BINMATNEST (biv). In each panel, we plot the cost
returned by each algorithm divided by the cost returned by our algorithm (denoted
EDegree

ENMP
for the Degree method, EFC

ENMP
for the Fitness-Complexity method, EMEM

ENMP
for the

Minimal-Extremal-Metric, and EBIN
ENMP

for BINMATNEST) for each ecological

interaction network considered in this work. More precisely, we compute the
ordinate in each plot by taking the rankings (r, c) returned by each method, sub-
stituting them in the expression of E(r, c) given by Eq. (1), and dividing this number
by the minimum cost returned by our algorithm, denoted ENMP. A value E/ENMP > 1
means that our algorithm returns a better, i.e. lower, cost.We find that our algorithm
returns a lower cost in 100% of the networks when compared to degree, Fitness-
Complexity, and Minimal-Extremal-Metric; and in 80% of the networks when
compared to BINMATNEST (see also Table 1). c Similarity transformation applied
to the adjacency matrix A of networkML-PL-OO1 that brings A into its maximally
nested form PtAQ, where P andQ are the optimal permutationmatrices constructed
from the optimal ranking vectors r* and c*.
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Nations (the database is not freely available, but sample data can be found at
https://comtradeplus.un.org/). The exported products are classified fol-
lowing the SITC version-2 classification, which includes 184 classes of
goods. On the geographical dimension, we consider the top 65 countries in
terms of trade volume, which accounts for more than 90% of the total
volume.

To standardize the comparison with existing methods, we first con-
sider binary matrices. Subsequently, we shall study the impact of links’
weights on our algorithm’s performance. We binarize the adjacency
matrices of the mutualistic networks by setting Aij = 1 if nodes i and j are
connected and zero otherwise, thus ignoring the weights; for the economic
networks, we binarize the matrices with the same thresholding criterion
used in previous works3,5, based on the countries’ revealed comparative
advantage (RCA) on the technologies or products. Despite this simplifica-
tion, we emphasize that our algorithm can be applied, as is, to any bipartite
network with nonnegative weights of the most general form, as shown
below. We run four different methods comprising: naive degree25, fitness-
complexity (FC)3, minimal extremal metric (MEM)4, and BINMATNEST2.
While BINMATNEST is the state-of-the-art algorithm in ecology for
nestedness maximization26, the effectiveness of the FC27,28 and MEM4 has
been proved in recent works in economic complexity, which also connected
the FC to the Sinkhorn algorithm from optimal transport28–30.

We compute the valueof the cost functionE(r, c) for r and c returnedby
each of the analyzedmethods and compare it to the value ENMP returned by
our algorithm (see Supplementary Note 1 for implementation details of the
analyzed methods). We find that the proposed algorithm outperforms all
the state-of-the-artmethods in finding a better (i.e. lower) cost of the nodes’
ranking. In ecological mutualistic networks, our method finds a better (i.e.
lower) cost than degree, FC, andMEMon100%of the empiricalmutualistic
networks (Fig. 2b).When compared to BINMATNEST (the state-of-the-art
method in ecology for the NMP), we find a better (or equal) cost in 80% of
the instances, as seen in Fig. 2b and Table 1. In the green technology and
international trade networks, our algorithm finds a better (i.e. lower) cost
than FC—the state-of-the-art method in economic complexity—across all
the analyzed years (see Fig. 3). In Fig. 2c, we show an application of the
similarity transformation that brings the adjacency matrix to its maximally
nested form.We call P andQ the optimal permutations that solve the QAP
in Eq. (3) (details in the “Methods” subsection “Algorithm”), and we per-
form the similarity transformation

A ! PtAQ; ð11Þ

which reveals the nested structure of the adjacency matrix (see Fig. 2c).
Next, we find that including the links’ weights in the optimal ranking

calculationdoesnot substantially alter the rankings or the convergence time.
We perform a comparison between the optimal rankings when using
binarized versus weighted adjacency matrices; we do that on a subset of 12
networks,whichareweighted. For eachoneof these 12networks,we runour
algorithm first on the weighted adjacency matrix and then on its binarized
version. Then, wemeasure the correlation between the rankings obtained in
the two cases, separately for the rows’ and columns’ rankings. In Fig. 4a, we
report the square of the correlation coefficientR2 between the rankingsof the
weighted and binarizedmatrices and show that including theweights on the
interaction links do not change the rankings substantially: high correlations
are found in all data sets (Fig. 4b) but one (Fig. 4c).

Furthermore, we asked whether the weights have any impact on the
convergence time of the algorithm. Therefore, we measured the execution
time of the algorithm in both the binary and weighted cases. In Fig. 4d we
plot the ratio Tb/Tw, and we observe that, for the majority of networks, it is
<1, meaning that convergence is faster in the weighted case than in the
binary one. More generally, all data points are contained in the strip Tb/
Tw∈ [0.5, 1.5],whichmeans that both execution times are of the sameorder
of magnitude.

Finally, we suggest that deviations between the ranks by degree andour
method (Fig. 4a) may reveal structurally important or vulnerable species.
For example, in Network31, pollinator (row) 31 has a much better rank by
NMP than by degree (upward blue arrow in Fig. 5b); the reverse is true for
higher-degree pollinator 2 (downward red arrow in in Fig. 5b). Pollinator 2
has indeed higher degree than pollinator 31 (7 vs. 2 interaction partners).
However, both Pollinator 31’s interaction partners are specialists that only
interact with Pollinator 31. As a result, pollinator 31’s extinction would
trigger their extinction in a co-extinction cascade process16,31. The same is
not true for pollinator 2’s interaction partners, which all have at least one
extra interaction partner besides pollinator 2, which makes them less vul-
nerable to pollinator 2’s potential extinction. Therefore, pollinator 31’s
higher NMP rank reflects its higher importance for the robustness of the
system compared to the higher-degree pollinator 2. Similar examples can be
found among the columns ranks (Fig. 5c), and theypoint to the better ability
of the NMP to identify structurally important species compared to the
degree, a hypothesis that may be falsified by future empirical tests.

Discussion
In thisworkwe introduced a framework to calculate analytically the ranks of
the nodes of a bipartite network. The proposed approach requires the
specification, for each link, of a cost function that depends on the rankingsof
the interacting nodes. This formulation allowed us to recast the Nestedness
Maximization Problem as an instance of the Quadratic Assignment Pro-
blem, which we tackled with statistical physics techniques. In particular, we
obtained amean field solution by using the steepest-descent approximation
of the partition function. The corresponding saddle-point equations depend
on a single hyper-parameter (the inverse temperature β) and can be solved
by iteration to find the optimal rankings of the rows and columns of the
adjacencymatrix that result in amaximally nested layout.Webenchmarked
our algorithm against other methods on several real ecological and eco-
nomic networks and showed that our algorithm outperforms the best
existing algorithm in+80% of the instances.

We conclude by outlining the potential applications of our work in
economic complexity and ecology and discuss how the proposed method
could be generalized to higher-order interactions. In economic complexity,
algorithms such as the fitness-complexity and its variants provide heuristic
solutions to theNMP; these algorithmshavebeenrecently validatedvia their
ability to forecast the future development trajectories of nations5 and pro-
vided policy-relevant insights21–23. Our work provides an analytic ranking
algorithm based on first principles, which helps move toward a micro-
foundation of themethods routinely used in thefield28 and could potentially
inspire the next generation of economic-complexity algorithms.

In ecology,measures ofnestedness basedon theNMPhavebeenwidely
popular, especially in biogeography1. The use of the energy function derived
here as a measure of nestedness comes with two important caveats. First,
aligned with the nestedness temperature and BINMATNEST, using the
optimalnestedness energy as ameasure of nestednesswould assume that the
relevant degree of nestedness is the one provided by the optimal ranking.
Under this assumption, compared to genetic algorithms that provide no
insight into the ranking mechanism and act as black boxes31, our method is
more interpretable as it explicitly links the ranking variables with the cost of
each interaction. At the same time, ecologists have often been interested not
in the nestedness by optimal ranking but in the level of nestedness when
rows and columns are ranked by degree32,33 or by ecological properties of
interest such as islands’ areas and isolation in biogeography34, species’
abundance in interaction networks35, and more7,36. These different per-
spectives generally lead to different quantitative insights: for example, the
optimal energy derived here correlates positively with the standard NODF
metric based on the ranking by degree (Pearson’s r = 0.45 in the 47 analyzed
mutualistic networks), yet the correlation is far from one, which indicates
that the two metrics convey different information.

We note that these different perspectives on nestedness can be incor-
porated into our framework as a non-interacting problem where the energy
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Table 1 | Numerical results on real mutualistic networks from the Web of Life database

Net N M ∣∣A∣∣/NM FC DEG MEM BIT NMP

M-PL-001 84 101 0.042551 137,348 165,930 155,841 125048 125,042

M-PL-002 43 64 0.071221 37,556 42,328 38,823 33,850 33,858

M-PL-003 36 25 0.090000 3927 4369 4220 3866 3862

M-PL-004 12 102 0.136438 12,082 14,902 12,274 11,672 11,672

M-PL-005 96 275 0.034962 885,890 1,057,167 939,937 767,320 767,393

M-PL-006 17 61 0.140791 6579 7220 6653 6379 6379

M-PL-007 16 36 0.147569 3109 3626 3210 3038 3036

M-PL-008 11 38 0.253589 5654 5949 6153 5428 5422

M-PL-009 24 118 0.085452 48,398 57,222 50,418 44,559 44,556

M-PL-010 31 76 0.193548 103,649 105,542 120,773 97,454 97,472

M-PL-011 14 13 0.285714 970 979 968 943 943

M-PL-012 29 55 0.090909 9948 11,036 10,871 9460 9449

M-PL-013 9 56 0.204365 4863 5616 4910 4644 4644

M-PL-014 29 81 0.076203 20,106 23,931 20,387 18,830 18,827

M-PL-016 26 179 0.088526 122,835 134,733 127,784 111,800 111,725

M-PL-017 25 79 0.151392 35,393 35,423 37,814 32,533 32,534

M-PL-018 39 105 0.093529 121,642 120,700 124,677 107,023 107,022

M-PL-019 40 85 0.077647 56,643 60,354 56,890 48,888 48,879

M-PL-020 20 91 0.104396 17037 18,940 17,540 16,022 16,022

M-PL-022 21 45 0.087831 4339 5177 4655 4156 4158

M-PL-023 23 72 0.075483 9513 11,951 9890 9098 9011

M-PL-024 11 18 0.191919 803 878 862 755 755

M-PL-025 13 44 0.250000 8148 8072 8233 7243 7243

M-PL-026 105 54 0.035979 17,998 27,627 56,197 17,847 17,855

M-PL-027 18 60 0.111111 14,188 16,346 14,803 12644 12,633

M-PL-028 41 139 0.065626 126,748 140,986 129,783 113,503 113,490

M-PL-029 49 118 0.059841 105,634 113,828 114,448 88,825 88,805

M-PL-030 28 53 0.073450 15,658 18,153 16,284 13,918 13,915

M-PL-031 48 49 0.066327 24,134 31,777 28,025 22,418 22,409

M-PL-032 7 33 0.281385 1379 1443 1413 1363 1363

M-PL-033 13 34 0.319005 9718 9655 10128 8648 8648

M-PL-034 26 128 0.093750 48,523 54,331 49,907 44,993 44,938

M-PL-035 61 36 0.081056 19,907 23,930 28,663 18,565 18,567

M-PL-036 10 12 0.250000 465 497 483 452 452

M-PL-037 10 40 0.180000 3543 4122 3763 3346 3342

M-PL-038 8 42 0.235119 3616 3987 3631 3399 3399

M-PL-039 17 51 0.148789 8400 9853 8956 8065 8050

M-PL-040 29 43 0.091419 8126 9880 9676 7739 7739

M-PL-041 31 43 0.108777 12,445 14,234 13,463 11,771 11,761

M-PL-042 12 6 0.347222 221 226 298 212 212

M-PL-043 28 82 0.108885 46,324 48,178 47,058 42,156 42,156

M-PL-045 17 26 0.142534 1833 2028 1941 1795 1783

M-PL-046 16 44 0.394886 23,365 23218 25,494 22,591 22,592

M-PL-047 19 186 0.120260 82,943 88,515 84,968 77,126 77,126

M-PL-048 30 236 0.094774 273,971 283,753 284,223 243,852 243,771

M-PL-049 37 225 0.070871 255,534 296,257 267,224 226,068 226,039

M-PL-050 14 35 0.175510 3467 3581 3581 3317 3317

First tab is the filenameof the network as it appears in the database. Second and third tabs are the number of rows and columns, respectively. Fourth tab is the normof the (binarized) adjacencymatrix (sum
of non-zero entries) divided by NM. Last five tabs represent the minimum cost returned by, in order, Fitness-Complexity (FC), Degree (DEG), Minimal Extremal Metric (MEM), BINMATNEST (BIT) and
Nestedness-Maximization (NMP). We underline the best result among these five methods.
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function couples the ranking variables with a suitable external field (see
Supplementary Note 1). We emphasize that our work does not provide a
criterion on whether to use the optimal ranking by a non-interacting energy
function (which leads to the ranking by degree used by the popular NODF33

or other ecological properties of interest, e.g., those used in ecological gra-
dient analyses) or the optimal ranking by the quadratic energy function
(which leads to the ranking calculated analytically here). Our work intro-
duces the general framework that directly connects ranking variables, the

adjacency matrix’ entries, and the global energy of the network. Which
energy function (and nestedness metric) ought to be used is ultimately
dependent on the research question of interest. At any rate, evenwhen one is
not interested in themaximal nestedness per se, themaximal value provided
byour interactingmodel still has valueas abenchmark tounderstandhow far
theobservednestednessbyagivenecologicalpropertyof interest (e.g., species
abundance) is from the theoreticallymaximumattainable,which canbeused
to test which ecological property explains most of the system’s nestedness35.

Fig. 4 | Comparison of the rankings in binary versusweighted adjacencymatrices.
aEach point represents the square of the correlation coefficient between the rankings
of a weighted adjacencymatrix and its binarized version. For each of the 12 networks
there are two points, representing the R2 between the rankings of the matrix rows
(light blue points) and of matrix columns (dark blue points). To make a fair com-
parison, we normalize both the weighted and binary adjacency matrices by their
norm Aia→Aia/∣∣A∣∣1 before running our algorithm. Furthermore, we use the same
value of β in both cases, chosen to be the value βmax also used in the plots in Fig. 2.

High values of R2 are found consistently in all datasets, except for Net33. b Scatter
plot of the rankings of the weighted versus binary adjacency matrices of Net17 that
display the highest correlation. c Scatter plot of the rankings of the weighted versus
binary adjacencymatrices ofNet33 that have the lowest correlation. dRatioTb/Tw of
the execution times of our algorithm in the binary vs. weighted case for the same 12
networks analyzed in (a). The ratio roughly hovers around 1 for all networks,
indicating that the runtime is nearly the same in both cases.

Fig. 3 | Comparison with other methods in eco-
nomic networks. Optimal cost E(r, c) returned by
our algorithm (red line) as opposed to the optimal
cost returned by the fitness-complexity algorithm
(blue line) in (a) the green technology production
networks and (b) the country-product export net-
works in international trade. Over all years con-
sidered in this study, our algorithm returns a better
cost than Fitness-Complexity, which is the state-of-
the-art algorithm in the economic complexity field.
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Second, ecologists have long realized that measures of nestedness may
exhibit dependencies on matrix size and density20,33. For this reason, it is a
standard practice in ecology to compare the observed degree of nestedness
with that of suitably randomized matrices, which typically embed passive
sampling mechanisms one wishes to test36. We note here that the same null
model analyses performed for other nestedness metrics can also be applied
to the energy function derived here, and the choice of the null model should
be determined by ecological considerations as prescribed by the relevant
literature (see ref. 37 for the most recent review).

From a network science standpoint, we note that by changing the
definitionof thematrixB, i.e. usingmeasures other thana sequenceof ordinal

numbers, one can repurpose our algorithm to rank rows and columns of a
matrix according to geometric patterns other than nestedness38,39. Therefore,
the proposed framework holds promise for the effective detection of a wide
range of network structural patterns beyond the nestedness considered here.
Finally, the present framework canbe easily extended and applied to solve the
ranking problem in networks with higher-order interactions. For example,
given the adjacency tensorAiaγ for a systemwith 3-body interactions, we can
define the energy function E(P,Q,R) to be optimized over 3 permutation
matricesP,Q, andR followingexactly the samestepsoutlined in thispaper for
the case of pairwise interactions. This may be especially relevant in the world
trade for ranking countries according to both exported and imported goods.

Fig. 5 | Comparison of Nestedness maximization
vs ranking by degree. a A comparison between the
adjacency matrix (of Net31) reordered by solving
the NMP (blue squares) versus the one reordered
according to the node degree (red squares), showing
how the ranking by degree completely fails in
identifying the high level of nestedness of the net-
work. The additional plots illustrate the different
rankings of rows (b) and columns (c) by degree and
NMP, as well as a few highlighted nodes that gain
(blue arrows) or lose (red arrows) a substantial
number of rank positions with the NMP method.
These discrepancies can be due to the different
structural importance of the nodes16: for example,
while row 2has a higher degree than row 31, row31’s
interaction partners only interact with row 31,
whichmakes them vulnerable to row 31’s extinction.
The same is not true for row 2 (see main text).
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Methods
Derivation of the saddle point equations
In this section, we discuss in detail how to derive the saddle point Eq. (7)
given in the main text. We consider the minimization problem defined by

ðr�; c�Þ ¼ argmin
r2RN ;c2RM

Eðr; cÞ; ð12Þ

where the cost (energy) function is given by

Eðr; cÞ ¼
XN
i¼1

XM
a¼1

Aia ri ca; ð13Þ

andRN andRM are the sets of all vectors r and c obtained by permuting the
entries of the representative vectors r0 and c0 defined as

r0 � ð1; 2; 3; :::;NÞ;
c0 � ð1; 2; 3; :::;MÞ: ð14Þ

Therefore, we can write any two vectors r and c as

ri ¼
XN
j¼1

Pijr
0
j ;

ca ¼
XM
a¼1

Qabc
0
b;

ð15Þ

whereP andQ are arbitrary permutationmatrices of sizeN ×N andM ×M,
respectively. Furthermore, we introduce theN ×Mmatrix B, defined as the
tensor product of r0 and c0, whose components are explicitly given by

Bia ¼ ðr0 � c0Þia ¼ ia: ð16Þ

With these definitions, we can rewrite the energy function as the trace of a
product of matrices in the following way:

E � EðP;QÞ ¼ TrðPtAQBtÞ: ð17Þ

The minimization problem in Eq. (12) can be reformulated as a mini-
mization problem in the space of permutation matrices as follows:

ðP�;Q�Þ ¼ argmin
ðP2SN ;Q2SM Þ

EðP;QÞ; ð18Þ

where SN and SM denote the symmetric groups on N and M elements,
respectively.

Next we discuss a relaxation of the problem in Eq. (18) that amounts to
extending the spacesSN andSM of permutationmatrices onto the spaces of
doubly-stochastic (DS) matrices DN and DM . The space DN (DM) is a
superset of the original spaceSN (SM). Solving the problemon theD-space
means to find two doubly-stochastic matrices X* and Y* that minimize an
‘effective’ cost function F, i.e.

FðX�;Y�Þ ¼ min
ðX2DN ;Y2DM Þ

FðX;YÞ; ð19Þ

and are only ‘slightly different’ from the permutationmatricesP* andQ* (we
will specify later what ‘slightly different’means in mathematical terms and
what F actually is). The quantity which plays the fundamental role in the
relaxation procedure of the original problem is the partition function, Z(β),
defined by

ZðβÞ ¼
X
P2SN

X
Q2SM

e�βEðP;QÞ: ð20Þ

The connection between Z(β) and the original problem in Eq. (18) is
established by the following limit:

lim
β!1

� 1
β
logZðβÞ ¼ min

ðP2SN ;Q2SM Þ
EðP;QÞ: ð21Þ

The optimization problem in Eq. (18) is thus equivalent to the problem of
calculating the partition function in Eq. (20). Ideally, we would like to
compute exactly Z(β) for arbitrary β and then take the limit β→∞.
Although an exact calculation of thepartition function is, in general, out of
reach, in practice we may well expect that the better we estimate Z(β), the
closer the limit in Eq. (21) will be to the true optimal solution. In fact, the
procedure of relaxation is basically a procedure to assess the partition
function for large but finite β. Mathematically, this procedure is called the
method of steepest descent. By estimating the partition function via the
steepest descent method, we will obtain a system of non-linear equations,
called saddle-point equations, whose solution is a pair of doubly-
stochasticmatricesX*, Y* that solve the relaxed problem given by Eq. (19).
Eventually, the solution to the original problem inEq. (18) can beobtained
formally by projecting X*, Y* onto the subspaces SN ;SM � DN ;DM via
the limit

lim
β!1

X�ðβÞ ¼ P�;

lim
β!1

Y�ðβÞ ¼ Q�:
ð22Þ

Having explained the rationale for the introductionof thepartition function,
we move next to discuss the details of the calculation leading to the saddle
point equations.

Inorder to cast thepartition function in a formsuitable for the steepest-
descent evaluation, we need the following preliminary result.

Definition.Semi-permutationmatrix: AN ×N squarematrix is called a
semi-permutation matrix if and each row sums to one, i.e.

for i = 1, . . . ,N, but no further constraint on the column
sums is imposed.

We denote the space of semi-permutation matrices:

ð23Þ

Lemma. Consider an arbitary N ×N square matrix G and the function
W(G) defined by

ð24Þ

Then,W(G) is explicitly given by the following formula

ð25Þ

Proof. Let us write the right-hand side of Eq. (24) as

ð26Þ

where is the ith row of (and thus is a vector) having one component
equal to 1 and the remaining N−1 components equal to 0. The sum

denotes a summation over all possible choices of the vector
: there are N possible such choices, namely
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Hence,
each sum in the right-hand side of Eq. (26) evaluates

ð27Þ

Thus, the left-hand side of Eq. (26) is equal to

ð28Þ

Eventually, by taking the logarithm of both sides of Eq. (28), we prove
Eq. (25).

With these tools at hand, wemove to derive the integral representation
of Z(β). We use the definition of the Dirac δ-function to write the partition
function in Eq. (20) as follows

ZðβÞ ¼
X
P2SN

X
Q2SM

Z
DX
Z

DYe�βEðX;YÞ YN
i;j¼1

δðXij � PijÞ
YN
a;b¼1

δðYab � QabÞ;

ð29Þ

where the integration measures are defined by DX≡∏i,jdXij and
DY≡∏a,bdYab. The next step is to transform the sum over permutation
matrices P,Q into a sum over semi-permutation matrices and then
performing explicitly this sum using the Lemma in Eq. (25). In order to
achieve this goal, we insert into Eq. (29) N delta functionsQN

j¼1 δ
P

iXij � 1
� �

and M delta functions
QM

b¼1 δ
P

aYab � 1
� �

to

enforce the conditions that the columns of X and Y do sum up to one. By
inserting these delta functions, we can then replace the sum over P,Q by a
sum over , thus obtaining

ð30Þ

To proceed further in the calculation, we use the following integral repre-
sentations of the delta-functions:

ð31Þ

into Eq. (30) and we get

ð32Þ

where we defined the integration measures DX̂ � Qi;jdX̂ij=2πi,
DŶ �Qa;bdŶab=2πi, Dz≡∏jdzj/2πi, and Dw≡∏bdwb/2πi. Performing
the sums over and using Eq. (25) we obtain

ZðβÞ ¼
Z

DXDYDX̂DŶDzDw e�βEðX;YÞe�TrðX̂Xt ÞþWðX̂Þ�TrðŶYt ÞþWðŶÞ

× e
�
P
j

zj
P
i

Xij�1

� 	
e
�
P
b

wb

P
a

Yab�1

� 	
:

ð33Þ

Next we introduce the effective cost function FðX; X̂;Y; Ŷ; z;wÞ defined as

FðX; X̂;Y; Ŷ ; z;wÞ ¼EðX;YÞ þ 1
β
TrðX̂XtÞ þ 1

β
TrðŶYtÞ � 1

β
WðX̂Þ � 1

β
WðŶÞ

þ 1
β

X
j

zj
X
i

Xij � 1

 !
þ 1

β

X
b

wb

X
a

Yab � 1

 !

�EðX;YÞ � 1
β
SðX; X̂;Y; Ŷ; z;wÞ

ð34Þ
whereby we can write the partition function as

ZðβÞ ¼
Z

DXDYDX̂DŶDzDw e�βFðX;X̂;Y ;Ŷ ;z;wÞ; ð35Þ

which can be evaluated by the steepest descent method when β→∞, as we
explain next.

In the limit of large β the integral in Eq. (35) is dominated by the
saddle point where E(X, Y) is minimized and SðX; X̂;Y; Ŷ ; z;wÞ is sta-
tionary (in order for the oscillating contributions to not cancel out). In
order to find the saddle point, we have to set the derivatives of
FðX; X̂;Y; Ŷ ; z;wÞ to zero, thus obtaining the following saddle point
equations

∂F
∂Xij

¼ ∂E
∂Xij

þ 1
β

X̂ij þ zj
� �

¼ 0;

∂F

∂X̂ij

¼ 1
β
Xij �

1
β

∂W

∂X̂ij

¼ 0;

∂F
∂zj

¼
X
i

Xij � 1 ¼ 0;

ð36Þ

and similar equations for the triplet ðY ; Ŷ ;wÞ. The derivative of E with
respect to Xij gives

∂E
∂Xij

¼ ðAYBtÞij; ð37Þ

and the derivative ofW with respect to X̂ij gives

∂W

∂X̂ij

¼ eX̂ijP
ke

X̂ik

: ð38Þ

Solving Eq. (36) with respect to Xij we get

Xij ¼
e�βðAYBt Þij�zjP
ke

�βðAYBt Þik�zk
: ð39Þ

Analogously, solving with respect to Yab we get

Yab ¼
e�βðAtXBÞab�wbP
ce

�βðAtXBÞac�wc
: ð40Þ
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It is worth noticing that Eqs. (39) and (40) are invariant under the tran-
formations

zj ! zj þ ζ;

wb ! wb þ ξ;
ð41Þ

for arbitrary values of ζ and ξ. This translational symmetry is due to the fact
that the 2N constraints on the row and column sums of P are not linearly
independent since the sumof all entries ofPmust be equal toN, i.e.∑ijPij =N.
The same reasoning applies to the 2M constraints on the row and column
sums ofQ, of which only 2M−1 are linearly independent since∑abQab =M.
Furthermore, we notice that the solution matrices X and Y in Eqs. (39), (40)
automatically satisfy the condition of having row sums equal to one.Next, we
derive the equations to determine the Lagrangemultipliers zj andwb. To this
end, we first introduce the vectors v and ν with components

vj ¼ e�zj ;

νb ¼ e�wb :
ð42Þ

Then, we define the vectors u and μ as

ui ¼
X
k

e�βðAYBt Þik vk

 !�1

;

μa ¼
X
c

e�βðAtXBÞacνc

 !�1

;

ð43Þ

so that we can write the solution matrices X and Y in Eqs. (39), (40) as

Xij ¼ ui e
�βðAYBt Þij vj;

Yab ¼ μa e
�βðAtXBÞab νb:

ð44Þ

Finally, imposing the conditions on X and Y to have column sums equal to
one, we find the equations to be satisfied by v and ν

vj ¼
X
i

uie
�βðAYBt Þij

 !�1

;

νb ¼
X
a

μae
�βðAtXBÞab

 !�1

;

ð45Þ

Equations (43)–(45) are the constitutive equations for the relaxed
nestedness-maximization problem corresponding to Eq. (7) given in the
main text.

We conclude this section by deriving the self-consistent equations for
the stochastic rankings corresponding to Eqs. (9) and (10) given in themain
text. We define the stochastic rankings as the two vectors

ρi ¼
XN
k¼1

Xik k;

σa ¼
XM
a¼1

Yab b;

ð46Þ

where the term stochastic emphasizes their implied dependence on the
doubly stochastic matrices X and Y. Clearly, we have

lim
β!1

ρi ¼ ri;

lim
β!1

σa ¼ ca:
ð47Þ

Next, let’s consider the argument of the exponentials in Eq. (44), which we
can rewrite as

ðAYBtÞij ¼
X
a

Aia

X
b

Yab b

 !
j ¼ j

X
a

Aiaσa;

ðAtXBÞab ¼
X
i

Aia

X
j

Xij j

 !
b ¼ b

X
i

Aiaρi:

ð48Þ

At this point is sufficient to multiply both sides of Eq. (44) by j and b, and
sum over j and b, respectively, to obtain

X
j

Xij j ¼ ρi ¼ ui
X
j

e�βðAYBt Þij vj j ¼ ui
X
j

e
�βj
P
a

Aiaσa
vj j;

X
b

Yab b ¼ σa ¼ μa
X
b

e�βðAtXBÞab νb b ¼ μa
X
b

e
�βb
P
i

Aiaρi
νb b:

ð49Þ
Using the definition of ui and μa in Eq. (43) we obtain

ρi ¼
P

je
�βj
P

a
Aiaσa vj jP

je
�βj
P

a
Aiaσa vj

;

σa ¼
P

be
�βb
P

i
Aiaρi νb bP

be
�βb
P

i
Aiaρi νb

;

ð50Þ

which are the self-consistent Eq. (9) for ρ and σ given in themain text. There
are still two unknown vectors in the previous equations: vectors v and ν. In
order to determine them,we consider Eq. (45) and eliminateui and μa using
Eq. (43), thus obtaining

vj ¼
X
i

X
k

vke
�βðk�jÞ

P
a

Aiaσa

" #�1 !�1

;

νb ¼
X
a

X
c

νce
�βðc�bÞ

P
i

Aiaρi

" #�1 !�1

;

ð51Þ

which are the self-consistent Eq. (10) for v and ν given in the main text.

Algorithm
The algorithm to solve Eqs. (50) and (51) consist of four basic steps,
explained below.
1. Initialize ρi uniformly at random in [1,N]; similarly, initialize σa uni-

formly at random in [1,M]. Also, initialize vj and νb uniformly at
random in (0; 1].

2. Choose an initial value for β. To start, initialize β using the following
formula:

β ¼ βinit ¼
1

max Nmaxi ki

 �

;Mmaxa ka

 �� � ; ð52Þ

where ki =∑aAia, and ka =∑iAia.
3. Set τ = 1, and a tolerance 0 < TOL≪ 1. Then run the following

subroutine.
(a) Iterate Eq. (51) according to the following updating rules:

vjðt þ 1Þ ¼
X
i

X
k

vkðtÞe
�βðk�jÞ

P
a

Aiaσa

" #�1 !�1

;

νbðt þ 1Þ ¼
X
a

X
c

νcðtÞe
�βðc�bÞ

P
i

Aiaρi

" #�1 !�1

;

ð53Þ
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until ∣vj(t+ 1)−vj(t)∣ < TOL for all jAND ∣νb(t+ 1)−νb(t)∣ < TOL for all b.
(b) Iterate Eq. (50) according to the following updating rules:

ρiðt þ 1Þ ¼
P

je
�βj
P

a
AiaσaðtÞ vj jP

je
�βj
P

a
AiaσaðtÞ vj

;

σaðt þ 1Þ ¼
P

be
�βb
P

i
AiaρiðtÞ νb bP

be
�βb
P

i
AiaρiðtÞ νb

;

ð54Þ

until ∣ρi(t+ 1)−ρi(t)∣ < TOL for all iAND ∣σa(t+ 1)−σa(t)∣ < TOL for all a.
Call ρðτÞi and σðτÞa the converged vectors and compute

MAXDIFF � max max
i

ρðτÞi � ρðτ�1Þ
i

h i
;max

a
σðτÞa � σðτ�1Þ

a

� �� 

: ð55Þ

(c) If MAXDIFF < TOL, then RETURN ρðτÞi and σðτÞa ; otherwise
increase τ by 1 and repeat from (a).

4. Increase β→ β+ dβ and repeat from (3) or terminate if the returned
vectors did not change from the previous iteration.

Having found the solution vectors ρ and σ, we convert them into
integer rankings as follows. The smallest value of ρi is assigned rank 1. The
second smallest is assigned rank 2, and so on and so forth. This procedure
generates amapping from1, 2, . . . ,N to i1, i2, . . . , iN that can be represented
by a N ×N permutation matrix Pij. The same procedure, applied to σa,
generates anM ×MpermutationmatrixQij.MatricesP andQ represent the
optimal permutations that solve the nestedness maximization problem.
Eventually, the application of the similarity transformation

A ! PtAQ; ð56Þ

brings the adjacency matrix into its maximally nested form having all
nonzero entries clustered in the upper left corner, as seen in Fig. 2c of the
main text.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are publicly available in theWeb
of Life database at https://www.web-of-life.es/and the COMTRADE data-
base at https://comtradeplus.un.org/.

Code availability
The source code of the NMP solver can be downloaded from GitHub at
https://github.com/flavianoM/NMP.
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