
communications physics Article

https://doi.org/10.1038/s42005-024-01584-y

VariationalMonteCarlowith largepatched
transformers

Check for updates

Kyle Sprague & Stefanie Czischek

Large language models, like transformers, have recently demonstrated immense powers in text and
image generation. This success is driven by the ability to capture long-range correlations between
elements in a sequence. The same featuremakes the transformer a powerful wavefunction ansatz that
addresses the challenge of describing correlations in simulations of qubit systems. Here we consider
two-dimensional Rydberg atom arrays to demonstrate that transformers reach higher accuracies than
conventional recurrent neural networks for variational ground state searches. We further introduce
large, patched transformer models, which consider a sequence of large atom patches, and show that
this architecture significantly accelerates the simulations. The proposed architectures reconstruct
ground states with accuracies beyond state-of-the-art quantum Monte Carlo methods, allowing for
the study of large Rydberg systems in different phases of matter and at phase transitions. Our high-
accuracy ground state representations at reasonable computational costs promise new insights into
general large-scale quantum many-body systems.

The advent of artificial neural network quantum states marks a turn in the
field of numerical simulations for quantum many-body systems1–6. Since
then, artificial neural networks are commonly used as a general wave-
function ansatz to find ground states of a given Hamiltonian1,7–9, to recon-
struct quantum states from a set of projective measurements2,3,10–16, or to
model dynamics in openand closed quantumsystems1,17–21. The powers and
limitations of different network architectures, such as restricted Boltzmann
machines1–3,9,12,15,22,23, recurrent neural networks (RNNs)7,8,13,24,25, or the
PixelCNN26, have been widely explored on several physical models. In
addition, modified network architectures27, the explicit inclusion of
symmetries13,28–30, and thepre-trainingona limited amountofmeasurement
data8,31 have shown improved performances.

A particularly promising choice are autoregressive neural networks
such as the PixelCNN26 and RNNs7,8,13,28, which can find ground states and
reconstruct quantum states from data with high accuracies. These models
consider qubit systems in sequential order, providing an efficient wave-
function encoding.However, these setups experience limitations for systems
with strong correlations betweenqubits far apart in the sequence, which, for
example, happens for two-dimensional qubit systems7,8,26.

Similar to the RNN or PixelCNN approaches, transformer (TF)
models32 can be used as a wavefunction ansatz by considering a sequence of
qubits14,33–38 or for simulating quantum dynamics39,40. Due to their non-
recurrentnature and the ability tohighlight the influenceof specificprevious
sequence elements, TF models perform better at covering long-range

correlations32, promising to overcome the limitations of RNNs and
PixelCNNs34,35. In this work, we analyze the performance of the TF wave-
function ansatz for variational ground state searches and observe improved
accuracies in the representation of quantum states compared to the RNN
approach.

Inspired by the introduction of the vision transformer, which enables
the efficient application of TF models for image processing and generation
tasks41, and by previous works in the field25,34,35, we study RNN and TF
models that consider sequences of patches of qubits. This approach reduces
the sequence length and thus the computational cost significantly, while
accurately capturing correlations within the patch. For further improve-
ments we introduce large, patched transformers (LPTF) consisting of a
powerful patchedTFmodel followed by a computationally efficient patched
RNN that breaks large inputs into smaller sub-patches. This architecture
allows for an efficient consideration of large patches in the input sequence of
the TF network, further reducing the sequence length.

We benchmark the LPTF architecture on two-dimensional arrays of
Rydberg atoms, whose recently demonstrated experimental controllability
makes them promising candidates for high-performance quantum com-
putation and quantumsimulation42–52. Furthermore, quantumMonteCarlo
methods canmodel Rydberg atom systems52,53, andwe use such simulations
to determine the performance of different network models.

Analyzing different shapes and sizes of input patches, we demonstrate
that LPTFs can represent ground states of Rydberg atom arrays with

Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
e-mail: stefanie.czischek@uottawa.ca

Communications Physics | (2024) 7:90 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01584-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01584-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01584-y&domain=pdf
http://orcid.org/0000-0001-7326-2472
http://orcid.org/0000-0001-7326-2472
http://orcid.org/0000-0001-7326-2472
http://orcid.org/0000-0001-7326-2472
http://orcid.org/0000-0001-7326-2472
mailto:stefanie.czischek@uottawa.ca

accuracies beyond the RNN ansatz and traditional quantum Monte Carlo
simulations,while requiring reasonable computational costs.Our results are
consistent in different phases of matter and at quantum phase transitions.
While we show that LPTFs can significantly improve numerical investiga-
tions of the considered Rydbergmodels, the introduced networkmodel can
similarly be applied to general qubit systems. The results presented in this
work propose that the LPTF model can substantially advance numerical
studies of quantum many-body physics.

Results
Rydberg atom arrays
Rydberg atoms, whichwe use as a qubitmodel to benchmark our numerical
approaches, can be prepared in the ground state ∣g

�
and in a highly excited

(Rydberg) state ∣ri42–46,48,49. We specifically consider the atoms arranged on
square lattices of different system sizes, as illustrated in Fig. 1a.

The system of N = L × L atoms is described by the Rydberg
Hamiltonian42,43,

bH ¼ �Ω

2

XN
i¼1

σ̂xi � δ
XN
i¼1

n̂i þ
X
i;j

Vi;jn̂in̂j; ð1Þ

with the detuning δ and the Rabi oscillation with frequencyΩ generated by
an external laser driving. Here we use the off-diagonal operator σ̂xi ¼
∣g
�
i rh ∣i þ ∣rii g

�
∣i and the occupation number operator n̂i ¼ ∣rii rh ∣i. The

last term in theHamiltonian describes a van-der-Waals interaction between
atoms at positions ri and rj, with Vi;j ¼ ΩR6

b=∣ri � rj∣
6, and Rydberg

blockade radius Rb. We further choose the lattice spacing a = 1. By tuning
the free parameters in theRydbergHamiltonian, the systemcanbeprepared
in various phases of matter, separated by different kinds of phase
transitions46–48,51,52. The Rydberg Hamiltonian is stoquastic54, resulting in a
positive and real-valued ground-state wavefunction44,48,50. More details on
Rydberg atom arrays are provided in the Methods section.

Recurrent neural networks and transformers
Recurrent neural networks (RNNs) provide a powerful wavefunction ansatz
that can variationally find ground state representations of quantum many-
body systems4,6–8,13,25,28,29. For this, the possibility to naturally encode prob-
ability distributions in RNNs allows the representation of squared wave-
function amplitudes jΨ σð Þj2. Samples drawn from the encoded distribution
correspond to state configurations that can be interpreted as outputs of
projective measurements, as illustrated in Fig. 1d.

To represent the wavefunction amplitudes Ψ σð Þ ¼ hσjΨi of a qubit
system, such as an array of Rydberg atoms, a sequential order is definedover
the system.Eachatom is iteratively used as an input to theRNNcell, the core
element of the network structure which we choose to be a Gated Recurrent
Unit (GRU)55 inspired by6,7. In addition, the RNN cell receives the state of
internal hidden units as input. This state is adapted in each iteration and
propagated over the input sequence, generating a memory effect. The net-
work output pRNN σ ijσ<i;W

� �
at each iteration can be interpreted as the

probability of the next atom σi being in either the ground or the Rydberg
state, conditioned on the configuration of all previous atoms σ<i in the
sequence, with variational weightsW in the RNN cell. See Fig. 1d and the
Methods section for more details. From this output, the state σi of the next
atom is sampled and used autoregressively as input in the next RNN
iteration, as illustrated in Fig. 1b4,6,7. We then train the RNN such that it
approximates a target state Ψ σð Þ,

ΨRNN σ;Wð Þ ¼

ffiYN
i¼1

pRNN σ ijσ<i;W
� �vuut

¼
ffi
pRNN σ;Wð Þ

p
≈ Ψ σð Þ:

ð2Þ

While we focus on positive, real-valued wave functions in this work, RNNs
can represent general wave functions by including complex phases as a
second network output7. The global phase of the encoded state is then
expressed as the sum over single-qubit phases.

The RNN has shown high accuracies for representing ground states of
various quantum systems. However, its sequential nature and the encoding
of all information in the hidden unit state pose a challenge for capturing
long-range correlations4,6–8,13,28,29. Here we refer to correlations between
atoms that appear far from each other in the RNN sequence but not
necessarily in the qubit system. Alternative autoregressive network models,
such as the PixelCNN, experience similar limitations. These models cover
correlations via convolutionswith a kernel of a specific size.However, due to
increasing computational costs, kernel sizes are commonly chosen rather
small, so that the PixelCNN is as well limited to capturing only local cor-
relations in qubit systems26. Specific RNN structures that better match the
lattice structure in the consideredmodel, suchas two-dimensionalRNNs for
two-dimensional quantum systems, can overcome this limitation7,25,28,29. An
alternative approach to improve the representation of long-range correla-
tions is to use transformer (TF) architectures as awavefunction ansatz14,33–35.
These provide a similar autoregressive behavior but do not have a recurrent
setup and naturally capture all-to-all interactions32.

While autoregressively using the states of individual atoms as
sequential input similar to the RNN, a masked self-attention layer in the
TF setup provides trained connections to all previous elements in the
sequence32. See Fig. 1e and the Methods section for more details. These
trainable connections generate all-to-all interactions between the atoms
in the system and allow the highlighting of high-impact connections or
strong correlations. This setup thus proposes to represent strongly cor-
related quantum systems with higher accuracy than the RNN
model14,34,35. As illustrated in Fig. 1c, the TF model outputs probability
distributions which provide an autoregressive wavefunction ansatz
ΨTF σ;Wð Þ ¼ ffi

pTF σ;Wð Þp
14,34,35, as further explained in the Methods

section. Similarly to the RNN, the TF network can represent complex-
valued wave functions by adding a second output representing the single-
qubit phases7.

In Fig. 2a, b, we compare the performance of RNNs (blue) and TFs
(orange) when representing ground states of Rydberg arrays withN = 8 × 8
(a) and N = 16 × 16 (b) atoms. Here we fix Rb = 71/6 ≈ 1.383 and Ω = δ = 1,
which brings us into the vicinity of the transition between the disordered
and the striated phase48. We variationally train the network models by
minimizing the energy expectation value, corresponding to a variational
Monte Carlomethod4,6,23,56, seeMethods section. If not stated otherwise, the
energy expectation values in this work are evaluated on Ns = 512 samples
generated from the network, which we consider in mini batches of
K = 256 samples. We obtained satisfactory results with dH = 128 hidden
neurons in the RNN and the equivalent embedding dimension dH = 128 in
the TFmodel. To benchmark the performance of the twomodels, we show
the difference between the ground state energies HQMC obtained from
quantum Monte Carlo (QMC) simulations at zero temperature53, and the
energy expectation value,

hEi ¼ 1
Ns

XNs

s¼1

Hloc σs
� �

; ð3Þ

extracted from network samples σs. Here we use the local energy,

Hloc σs

� � ¼ hσsjĤjΨWi
hσsjΨWi ; ð4Þ

with ∣ΨW
�
denoting thewavefunction encoded in either the RNNor the TF

network, as discussed in the Methods section. In the QMC simulations, we
use the stochastic series expansion approach presented in53 and evaluate the
expectation value on Ns = 7 × 104 samples generated from seven indepen-
dent sample chains. Both system sizes show thatTFs converge to the ground

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 2

state energywithin fewer training iterations than theRNN.Additionally, for
the larger system in Fig. 2b, TFs outperform RNNs significantly and reach
higher accuracies in the ground state energy. This result demonstrates the
expected improved performance.

We, however, also find that this enhancement comes at the cost of
increased computational runtimes τ in hours (h) for 2 × 104 training itera-
tions.With τ ≈ 1.5h and τ ≈ 16h forN = 8 × 8 andN = 16 × 16 atoms, RNNs
process much faster than TFs with τ ≈ 9.5h and τ ≈ 144h, respectively.
Figure 2a, b suggest stopping theTF training after fewer iterations due to the
faster convergence, but the computational runtime is still too long to allow
scaling to large system sizes.

We obtained QMC runtimes as τ ≈ 18h for N = 8 × 8 and τ ≈ 24h for
N = 16 × 16 for a single run generating Ns = 104 samples, showing a more
efficient scaling with system size than the network simulations. This
behavior can be understood when considering the scaling of the compu-
tational cost for generating an individual sample, which is O Nð Þ for the
RNN and QMC, and O N2

� �
for the TF. In addition, the network models

need to evaluate energy expectation values in each training iteration, which
comes at complexityO N2

� �
for the RNN and at complexityO N3

� �
for the

TF, see Methods for more details. However, due to its non-recurrent setup,
the TF enables a parallelization of the energy expectation value evaluation,
which is not possible for the RNN ansatz, as further discussed in the
Methods. The computational complexity for QMC scales asO Nð Þ for both
sampling and energy evaluation53. Thus, while the QMC requires longer
runtimes than the RNN for small system sizes, it is expected to outperform
both the RNN and the TF for larger systems.

Patched inputs
To address the exceeding computational runtime of TF models, we take
inspiration from the vision transformer41 and consider patches of atoms as
inputs to both considered network architectures, as illustrated in Fig. 1d, e.
This reduces the sequence length toN/p elements for patch size p, leading to

a sampling complexity ofO N=p
� �

for the patchedRNNandO N2=p2
� �

for
the patched TF model, as well as an energy evaluation complexity of
O N2=p
� �

andO N3=p2
� �

, respectively.
We first use patches of p = 2 × 2 atoms. The network output is then a

probability distribution over the 2p = 16 states the atoms in the patch can
take, from which the next patch is sampled and used autoregressively as
input in the following iteration. As demonstrated in previous works25,34,35,
this significantly reduces the computational runtime due to the shorter
sequence length. In addition, we expect it to capture correlations between
neighboring atoms with higher accuracies by directly encoding them in the
output probabilities. The patched models can also be modified to include
complex phases as a second network output, which then correspond to the
sum of phases of individual qubits in the patch7.

Figure 2 c anddshowthe results for the sameN = 8 × 8andN = 16 × 16
atom Rydberg array ground states as in panels a and b, using the patched
RNN (green) and the patched TF setup (red) with p = 2 × 2. The network
hyperparameters are the same as in theRNNand theTFnetwork in a andb.
The computational runtime reduces significantly to τ ≈ 0.5h and τ ≈ 3h,
using the patched RNNand the patched TFmodel forN = 8 × 8 atoms, and
to τ ≈ 2h and τ ≈ 28h, respectively, for N = 16 × 16 atoms. Convergence
further happens within fewer training iterations than for the unpatched
networks, and all representations reach energy values within the QMC
errors. We even observe energies below the QMC results, which always
remainwithin theQMCuncertainties and thusdonot violate the variational
principlewhichwe expect to be satisfied for thenumber of samplesweuse to
evaluate energy expectation values and for the small variances we observe56.
These energies propose that the patchednetworksfind the ground statewith
better accuracy than the QMC simulations usingNs = 7 × 104 samples. The
QMC accuracy can be further increased by using more samples, where the
uncertainty decreases as / 1=

ffiffiffiffiffiffi
Ns

p
for uncorrelated samples53. However,

samples in a single QMC chain are correlated, resulting in an uncertainty
scaling /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τauto=Ns

p
with autocorrelation time τauto depending on the

Fig. 1 | Illustrating different networkmodels. a Square lattice ofN = 4 × 4 Rydberg
atoms randomly occupying the ground state (white) and the Rydberg state (blue).
Dash-colored squares indicate patches used as network inputs. b Recurrent neural
network (RNN) processing sequence. The RNN cell iteratively receives input
sequence elements σi together with a hidden state. At each iteration, the output is
used as the next input. The index p

� �
denotes the input size in the patched RNN.

cAutoregressive transformer (TF) processing sequence, similar to the RNN in b. The
multi-headed masked self-attention layer generates weighted connections to pre-
vious input sequence elements. For simplicity, we only include the feed-forward
layers (FFLs) in the scheme. d Single patched RNN iteration on inputs of patch size
p = 2 × 2 [indicated with 4ð Þ]. A softmax function creates a probability distribution
pRNN over all possible patch states conditioned on previous sequence elements. The

state of the next patch is sampled and used as next input state. e Single patched TF
iteration. The input patch is embedded into a state of dimension dH, and a positional
encoding keeps track of the sequence order. The signal is sent into the transformer
cell (gray) which we generate similar to32 and apply T times independently. The
output of the transformer cells is used like in the patched RNN to sample the next
input. f Single large, patched transformer (LPTF) iteration for patch size p = 4 × 4
[indicated with 16ð Þ] and sub-patch size ps = 2 × 2. A patched TF model receives a
large input patch, and the transformer cell output is propagated as a hidden state hTF
to a patched RNN. The patched RNN autoregressively constructs the input patch of
the next LPTF iteration, reducing the output dimension. See Methods for more
details on the network models.

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 3

evaluated observable53. Even though the computational cost of QMC scales
linearly with the sample chain size Ns and is thus more efficient than the
RNN or the TF approach, which require the generation of Ns samples in
each training iteration, we found that reaching higher QMC precisions
comes at runtimes that exceed the patched RNN and the patched TF due to
long autocorrelation times for large system sizes.

Large, patched transformers
Based on the results with p = 2 × 2, we expect even shorter computational
runtimes and higher representation accuracies from larger patch sizes.
However, as illustrated in Fig. 1d, e, the network output dimension scales
exponentially with the input patch size, encoding the probability distribu-
tion over all possible patch states. This output scaling leads to the sampling
cost scaling asO 2pN=p

� �
for thepatchedRNNandasO N2=p2 þ 2pN=p

� �
for the patched TF network, as well as energy evaluation costs scaling as
O 2pN2=p
� �

and O N3=p2 þ 2pN2=p
� �

, respectively, see Methods. A
hierarchical softmax approach is often used in image processing to effi-
ciently address this exponential scaling57. Here we introduce large, patched
transformers (LPTFs) as an alternative way to enable efficient patch size
scaling.

As shown inFig. 1f, theLPTFmodel uses apatchedTFsetupandpasses
the TF state into a patched RNN as the initial hidden state. The patched
RNN splits the input patch into smaller sub-patches of size ps = 2 × 2,

reducing the output of the LPTF model to the probability distribution over
the 2ps ¼ 16 sub-patch states, as further discussed in the Methods. The
sampling complexity for this model is reduced to O N2=p2 þ 2psN=ps

� �
and the energy evaluation complexity takes the form
O N3=p2 þ 2psN2=ps
� �

, as derived in the Methods section. Generally, we
can use both the patched RNN and the patched TF architecture as base
network and subnetwork. We choose this setup here to combine the high
accuracies reached with the patched TF network for large system sizes with
the computational efficiency of the patched RNN, which can still accurately
represent small systems (see Fig. 2a). Being a combination of a TF network
and anRNN, the LPTF can similarly bemodified to include complex phases
as a second network output.

In Fig. 2c, d, we compare the performance of the LPTF model to the
previously considered network architectures, where we choose p = 4 × 4
(purple) and p = 8 × 8 (brown), with ps = 2 × 2, using the same hyperpara-
meters for all networks. These models require more training iterations than
the patched TF architecture to converge but reach accuracies comparable to
the patched RNN and the patched TF network. Even thoughmore training
iterations are required, the computational runtimes are reduced to τ ≈ 1h for
N = 8 × 8, p = 4 × 4, as well as τ ≈ 9h and τ ≈ 4.5h for N = 16 × 16 with
p = 4 × 4 and p = 8 × 8, respectively. Thus, overall, we obtain convergence
within shorter computational runtime.

The observed runtimes are also shorter than QMC runs, even though
QMC is expected to outperform the network models for large system sizes
due to the linear scaling of computational costs with N. However, QMC is
based on the generation of a chain of correlated samples. For large system
sizes, autocorrelation times between samples in the chain increase and the
ergodicity of the sampling process is not necessarily guaranteed53. Since
these limitations do not arise for the exact sampling process in auto-
regressive ANNmethods7,26, computationally efficient architectures such as
the LPTF are still promising candidates for accurate studies of large quan-
tum many-body systems.

Figure 2 e and f show the variances σ2 Eð Þ of the energy expectation
values obtained with all considered network architectures. As expected7,
they decrease to zero when converging to the ground state energies. This
behavior confirms the accurate ground state reconstruction, while the
smoothness of all curves demonstrates stable training processes.

We can further increase the patch size p in the LPTF architecture,
from which we expect even shorter runtimes. However, this also
increases the patch size that needs to be reconstructed with the patched
RNN. We thus expect the accuracy to decrease for large p if we keep
ps = 2 × 2 fixed. Figure 3a shows the energy difference between QMC and
LPTF simulations for ground states of Rydberg arrays with N = 12 × 12
up to N = 40 × 40 atoms. We keep the parameters at Rb = 71/6, δ =Ω = 1,
and evaluate the QMC energies on Ns = 7 × 104 samples from seven
independent chains53, where the computational cost for QMC scales as
O Nð Þ with the system size. Each LPTF data point corresponds to an
average over training iterations 19,000 to 20,000 of ten independently
trained networks with the same setup as for Fig. 2. We vary the input
patch size between p = 4 × 4 and p = 16 × 16, where we also consider
rectangular-shaped patches while fixing ps = 2 × 2. We ensure that the
system size always divides by the input patch size.

As expected, the energy accuracies decrease with increasing patch size,
which might result from the limited representational power of the patched
RNN for large input p and small ps and from the increased amount of
information that is encoded in each network iteration. We find accuracies
below the QMC uncertainty for up to p = 8 × 8, which still proposes a
significant speed-up compared to single-atom inputs in the TF model, see
Fig. 2d. Figure 3b shows the computational runtimes of single training
iteration steps for the different patch and system sizes. Each data point
shows an average over 2 × 104 training iterations in a single network. We
find a rapid decrease in computation times for small patches while we
observe convergence to steady times for larger patches. This behavior results
fromthe increasedmemory required by largerpatch sizes,which forces us to
decrease the mini-batch size K of samples for the energy evaluation, see

Fig. 2 | Performance of different network architectures on Rydberg atom arrays.
a, bAbsolute energy difference between 〈E〉 [Eq. (3)] fromNs = 512 recurrent neural
network (RNN, blue) and transformer (TF, orange) samples and HQMC from
Ns = 7 × 104 quantumMonteCarlo (QMC) samples as a function of network training
iterations. The black dashed line denotes theQMCuncertainty and black-edged data
points show the absolute value of energies below QMC results. τ is the total runtime
in hours (h) for 2 × 104 training iterations using the network in the corresponding
color (blue for RNN, orange for TF) onNVIDIATesla P100GPUs. For theQMC, the
total runtimes were obtained as τ = 18h for N = 8 × 8 atoms and τ = 24h for
N = 16 × 16 atoms for Ns = 104 samples on a single CPU. c, d Same as a, b for the
patched RNN (PRNN, green) and the patched TF model (PTF, red) with patch size
p = 2 × 2, and for the large, patched transformer (LPTF) approach (purple) with
patch size p = 4 × 4 and sub-patch size ps = 2 × 2. For N = 16 × 16 atoms, we further
show LPTF results with patch size p = 8 × 8 (brown). e, f Variances σ2 Eð Þ of energy
expectation values for the network architectures considered in a-d.

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 4

Methods. Smaller mini-batch sizes lead to increased runtimes, which
compete with the acceleration from the reduced sequence lengths.

We cannot find a conclusive dependence on the patch shape, with
rectangular patches showing a similar behavior as squared patches. Thus,
the only important factor is the overall patch size, and we conclude that
input patches around p = 8 × 8 atoms provide a good compromise with
reduced computation times and high energy accuracies.

Phases of matter in Rydberg atom arrays
We now explore the performance of LPTFs at different points in the Ryd-
berg phase diagram by varying the detuning from δ = 0 to δ = 3 and fixing
Rb = 31/6 ≈ 1.2, Ω = 1. With this, we drive the system over the transition
between the disordered and the checkerboard phase46,48. The order para-
meter for the checkerboard phase is given by the staggeredmagnetization46,

σstag ¼
XN
i¼1

�1ð Þi ni � 1=2
N

�����
�����

* +
; ð5Þ

where i runs over all N = L × L atoms and ni ¼ ∣rii rh ∣i is the occupation
number operator acting on atom i. The expectation value denotes the
average over sample configurations generated via QMC or from the trained
network.

Figure 4 shows the staggered magnetization when tuning δ over the
phase transition, where we compare LPTF and QMC simulations. The
QMC data points show the average ofNs = 7 × 105 samples generated from
seven independent chains53. The LPTF data is averaged over training
iterations 11,000 to 12,000 of five independently trained networks.We look
at systems with N = 8 × 8 and N = 16 × 16 atoms, choosing patch sizes
p = 4 × 4 and p = 8 × 8, respectively, with ps = 2 × 2.

The LPTF model captures the phase transition accurately for both
system sizes, overlapping closelywith theQMC results for all δ and showing
small uncertainties. In the inset in Fig. 4, we plot the absolute difference
between the staggered magnetizations obtained with QMC and LPTFs for
both system sizes. The most challenging regime to simulate is at δ ≈ 1.2,
where we find the phase transition in the main panel. Here the observed
difference is ~10−2, demonstrating the high accuracies reachable with the
LPTF approach. In the vicinity of the phase transition, the QMC uncer-
tainties increase. This behavior is related to long autocorrelation times τauto
in the individual sample chains and the uncertainty scaling as
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τauto=Ns

p
53. The errors in the LPTF simulations remain small here,

demonstrating a consistent and accurate outcome in all independent
networks.

Discussion
We explored the power of transformer (TF) models32 in representing
ground states of two-dimensional Rydberg atom arrays of different sizes by
benchmarking them on quantum Monte Carlo simulations53. Our work
provides a careful performance comparison of TF models with a recurrent
neural network (RNN) wavefunction ansatz4,6,7, showing that TFs reach
higher accuracies, especially for larger system sizes, but require longer
computational runtimes. We accelerate the network evaluation using pat-
ches of atoms as network inputs inspired by the vision transformer41 and
demonstrate that these models significantly improve computational run-
time and reachable accuracies.

Based on the obtained results, we introduce large, patched transfor-
mers (LPTFs), which consist of a patched TF network whose output is used
as the initial hidden unit state of a patched RNN. This model enables larger
input patch sizeswhich are brokendown into smaller patches in the patched
RNN, keeping the network output dimension at reasonable size.

The LPTF models reach accuracies below the QMC uncertainties for
ground states obtained with a fixed number of samples, while requiring
significantly reduced computational runtimes compared to traditional
neural network models. We are further able to scale the considered system
sizes beyond most recent numerical studies, while keeping the accuracies
highandcomputational costs reasonable8,46,52,53. These observations promise
the ability to study the scaling behavior of Rydberg atom arrays to large
system sizes, allowing an in-depth exploration of the underlying phase

Fig. 4 | Staggeredmagnetization as order parameter. Staggeredmagnetization σstag

[Eq. (5)] obtained with large, patched transformers (LPTFs, squares) and with
quantum Monte Carlo (QMC, circles) for Rydberg arrays with N = 8 × 8 (blue,
orange) and N = 16 × 16 (green, red) atoms when driving the detuning δ across the
transition between the disordered (δ ⪅ 1.2) and the checkerboard (δ⪆ 1.2) phase.
For N = 8 × 8, we use patch size p = 4 × 4, while p = 8 × 8 for N = 16 × 16. LPTF data
is averaged over training iterations 11,000 to 12,000 of five independent networks
with Ns = 512 samples. QMC data is evaluated on Ns = 7 × 105 samples. Error bars
denote the standard error of the sampling mean, where autocorrelation times are
considered in the QMC samples53. Inset: Absolute difference between the LPTF and
QMC data in the main plot for N = 8 × 8 (orange) and N = 16 × 16 (red). Error bars
denote the standard error of the sampling mean.

Fig. 3 | Patch size scaling in large, patched transformers (LPTFs). a Absolute
energy difference between 〈E〉 [Eq. (3)] evaluated with Ns = 512 large, patched
transformer (LPTF) samples andHQMC evaluated withNs = 7 × 104 quantumMonte
Carlo (QMC) samples for different system sizesN (colors) as a function of the patch
size p. Error bars denote the standard error of the sampling mean. The black dashed
line indicates the QMC uncertainty, while black-edged data points show absolute
values of energies below the QMC results. b Computational runtime per training
iteration on NVIDIA Tesla P100 GPUs averaged over 2 × 104 iterations of LPTFs as
in a. Different shapes denote different mini-batch sizes K, with K = 256 for circles,
K = 128 for up-pointing triangles, K = 64 for squares, and K = 32 for down-pointing
triangles, see Methods. Error bars are smaller than the data points.

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 5

diagram.While such studies go beyond the scope of this proof-of-principle
work, we leave it open for future follow-up works.

Our results show that the LPTF model performs similarly well in
different phases of matter in the Rydberg system and accurately captures
phase transitions. While we focus on Rydberg atom arrays, the introduced
approach can be applied to general quantum many-body systems, where
complex-valued wave functions can be represented by adding a second
output to the autoregressivenetwork architecture as in7.Whilewe expect the
inclusion of complex phases to make the training process harder7, mod-
ifications of the LPTF setup can be explored in future works to study more
complex or larger qubit systems. Suchmodifications include larger network
models with more transformer cells, or higher embedding dimensions,
which increase the network expressivity58. Additionally, larger input patch
sizes can be achieved by including multiple patched RNN and patched TF
components in the LPTF architecture, which successively reduce the sub-
patch sizes. We further expect that the performance of LPTFs can be
enhanced with a data-based initialization, as discussed in8,31.

Our results and possible future improvements promise high-quality
representations of quantum states in variousmodels and phases ofmatter at
affordable computational costs. This prospect proposes significant advances
in the modeling of quantum many-body systems, promising insightful
follow-up works exploring new physical phenomena.

Methods
Rydberg atom arrays
Weapply ournumericalmethods onRydberg atomarrays as an example for
qubit systems. In state-of-the-art experiments, Rydberg atoms are indivi-
dually addressed via optical tweezers that allow for precise arrangements on
arbitrary lattices in up to three dimensions44,45,48,49. Fluorescent imaging
techniques are then used to perform projective measurements in the Ryd-
berg excitation basis. Such accurate and well-controlled experimental rea-
lizations are accompaniedby intensivenumerical investigations,whichhave
unveiled a great variety of phases of matter, separated by quantum phase
transitions, in which Rydberg atom systems can be prepared46–48,51,52. The
atoms on the lattice interact strongly via the Rydberg many-body Hamil-
tonian inEq. (1)42,43. TheRydberg blockade radiusRb defines a regionwithin
which simultaneous excitations of two atoms are penalized.

The ground states of this Rydberg Hamiltonian are fully described by
positive, real-valued wavefunctions so that the outcomes of measurements
in the Rydberg occupation basis provide complete information about
ground state wavefunctions44,48,50. We can thus model ground state wave-
functions with real-valued neural network model architectures6,7. In this
work, we choose Ω = 1 and describe the system in terms of the detuning δ
and the Rydberg blockade radius Rb. We further consider square lattices of
N = L × L atoms with lattice spacing a = 1 and open boundary conditions.

Recurrent neural network quantum states
Recurrent neural networks (RNNs) are generative network architectures
that are optimized to deal with sequential data55,59. They naturally encode a
probability distribution and enable efficient sample data generation. As
illustrated in Fig. 1b, d, the RNN input is given by individual elements σi of
dimension dI from a given data sequence σ, and a hidden state hi of
dimension dH.We use the initial input states σ0 = 0 and h0 = 0. Throughout
this work, we choose dH = 128. The input is processed in the RNN cell,
where non-linear transformations defined via variational parametersW are
applied. Here we use the Gated Recurrent Unit (GRU)55 as RNN cell, which
is applied at each iteration with shared weights59.

We then apply two fully connected projection layers on the hidden
state, the first followed by a rectified linear unit (ReLU) activation
function and the second followed by a softmax activation function (not
layers are not shown in Fig. 1d). This setup generates an output vector of
dimension dO which is interpreted as a probability distribution over all
possible output values7. The hidden state configuration is propagated
over the input sequence encoding information of previous inputs and
generating a memory effect. This setup conditions the output probability

on all previous sequence elements, pRNN σ iþ1∣σ i; . . . ; σ1;W
� �

, from
which an output state is sampled. Here, we use this output as the input
element σi+1 of the next iteration, running the network in an auto-
regressive manner. In this case, the joint probability of the generated
sequence is given by pRNN σ;Wð Þ ¼Qi pRNN σ i∣σ i�1; . . . ; σ1;W

� �
7.

To use the RNN as a wavefunction ansatz to represent quantum states,
we consider the quantum system as a sequence of qubits, sampling the state
of one qubit at a time and using it as the input in the next RNN iteration4,6,7.
The hidden state propagation captures correlations in the qubit system by
carrying information about previously sampled qubit configurations. We
then interpret the probability distribution encoded in the RNN as the
squared wavefunction amplitude of the represented quantum state,
pRNN σ;Wð Þ ¼ ∣hσ∣ΨWi∣2 ¼ ∣ΨRNN σ;Wð Þ∣2. This ansatz can model the
complete information of ground states in the considered Rydberg Hamil-
tonian, Eq. (1). Samples generated from the RNN then correspond to out-
comes of projective measurements in the computational basis and can be
used to estimate expectation values of general observables Ô1,2,4,6,7,23,

hΨW ∣Ô∣ΨWi ¼
X
σ;σ 0f g

Ψ�
RNN σ;Wð ÞΨRNN σ 0;Wð Þ× hσ∣Ô∣σ 0i

¼
X
σf g

∣ΨRNN σ;Wð Þ∣2Oloc σ;Wð Þ

≈
1
Ns

X
σs/

pRNN σ;Wð Þ

Oloc σs;W
� �

;

ð6Þ

where we introduce the local observable,

Oloc σs;W
� � ¼ σs∣Ô∣ΨW

D E
σs∣ΨW
� �

¼
X
σ 0f g

σs∣Ô∣σ 0
D E ΨRNN σ0;Wð Þ

ΨRNN σs;W
� � : ð7Þ

This local observable is evaluated and averaged overNs samplesσs generated
from the RNN. To find the ground state representation of a given Hamil-
tonian in the RNN, we use a gradient descent training algorithm to mini-
mize the energy expectation value hEi ¼ hĤi, which can be similarly
evaluatedusing samples fromtheRNNas stated inEq. (3) andEq. (4)4,6,7,23,56.
We train the RNN using the Adam optimizer with parameters β1 = 0.9,
β2 = 0.999, and learning rate Δ = 0.0005.

The GRU cell has three internal weight matrices of dimension dI × dH,
with input dimension dI and hidden unit dimension dH, and three internal
weight matrices of dimension dH × dH. It furthermore has six internal bias
vectors of size dH, and we add two fully connected layers with weight
matrices of dimension dH × dH and dH × dO and biases of size dH and dO,
respectively, to obtain the desired RNN output vector with output dimen-
sion dO

7,55. Single-qubit inputs give dI = 1 and dO = 2 as we use a one-hot
encodedoutput. Togetherwith dH = 128 as chosen in this work, this leads to
a total of

3 dI × dH
� �þ 4 dH × dH

� �þ 7dH þ dH × dO
� �þ dO ¼ 67; 074 ð8Þ

trainable network parameters.

Transformer quantum states
Transformer (TF) models can be applied to sequential data similarly to
RNNs. Such models do not include a recurrent behavior but are based on
self-attention, which provides access to all elements in the sequence and
enables the dynamical highlighting of salient information. We use the TF
model as introduced in32 and restrict it to the encoder part only14,33–35.

As illustrated in Fig. 1e, the TF model first embeds the given input
vector. This embedding corresponds to a linear projection of the input
vector of dimension dI to a vector of embedding dimension dH with
trainable parameters WI. As a next step, the positional encoding matrix is

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 6

evaluated and added to the embedded input vector to include information
about the positions of the input elements in the sequence32. To keep this
information when propagating the signal through the TF structure, the
overall embedding dimension dH of internal states is conserved. Through-
out this work, we choose dH = 128.

The embedded input with positional encoding is passed to the trans-
former cell, where the query, key, and value matrices are generated, and
multi-headed self-attention is applied32. We use a masked self-attention
mechanism to ensure the TF model is autoregressive, like the RNN. The
output vector of the masked self-attention is then added to the embedded
input state, and the sum is normed before being fed into two feed-forward
layers. The normalization is a trained process to improve the network
training stability and adds 2dH trainable parameters. Similar to32, we apply
one feed-forward layer with aReLUactivation function, followed by a linear
feed-forward layer, where theweights and biases of both layers are trainable.
The first feed-forward layer projects the input into a vector of size
dFF = 2048, while the second feed-forward layer projects it back to size dH.
The output of the feed-forward layers is again added to the output vector of
the self-attention cell, and the sum is normalized, see Fig. 1e.

The entire transformer cell, including the self-attention and feed-
forward layers, as well as the add-and-norm operations, can be applied
multiple times independently to improve the network expressivity. We
obtain satisfying results with T = 2.

To represent quantumstates similarly to theRNNansatz, we apply two
fully connected layers with trainable weights to the output of the transfor-
mer cell. The first layer conserves the dimension dH and is followed by a
ReLUactivation function.The second layer projects the output to a vector of
output dimension dO and is followed by a softmax activation function.
These two layers are not shown in the diagram in Fig. 1e. After the softmax
activation function, the output can be treated the same way as the RNN
output, and it canbe interpreted as a probability distribution fromwhich the
next qubit state in the sequence can be sampled32.We train theTFmodel the
same way as the RNN, using the Adam optimizer to minimize the energy
expectation value via gradient descent. The energy expectation value is
obtained in the same way as in the RNN, see Eq. (3) and Eq. (4), and we

choose the same values as in the RNN approach for all hyperparameters
involved in the training process.

Positional encoding. Since the TF model does not include a recurrent
behavior as the RNN, it does not provide any information about the order
of the sequence elements by default. A positional encoding algorithm is
used to include information about the position of each input. We use the
algorithm as proposed in32, which creates a matrix of dimension L × dH
with sequence length L and embedding dimension dH. The individual
elements are calculated via

P l; 2ið Þ ¼ sin
l

100002i=dH

� 	
; ð9Þ

P l; 2iþ 1ð Þ ¼ cos
l

100002i=dH

� 	
; ð10Þ

with 0 ≤ l < L indexing the sequence elements, and 0 ≤ i < dH/2 the column
indices of the outputmatrix. The resultingmatrix is added to the embedded
input element of the TF setup, which linearly projects the input vector to a
vector of dimension dH using trainable weights. This operation gives each
element a unique information about its position in the sequence.

The self-attention mechanism. The self-attention mechanism, as
introduced in32 and illustrated in Fig. 5, projects each embedded sequence
element σi of dimension dH to a query vector qi, a key vector ki, and a value
vector vi of dimensions dH,

qi ¼
XdH
l¼1

Wq
i;lσ i;l; ki ¼

XdH
l¼1

Wk
i;lσ i;l; vi ¼

XdH
l¼1

Wv
i;lσi;l; ð11Þ

with trainable weight matricesW q,W k,W v of dimension dH × dH. Query,
key, and value vectors of all input elements can be summarized in the
corresponding matrices,

Q ¼
q1

..

.

qL

2
664

3
775; K ¼

k1

..

.

kL

2
664

3
775; V ¼

v1

..

.

vL

2
664

3
775; ð12Þ

with sequence length L.
The attentionmechanism thenmaps the queries and key-value pairs to

an output for each sequence element, allowing for highlighting of connec-
tions to sequence elements with important information. For each sequence
element σi, the dot product of the query vectorqiwith the key vector kj for all
j 2 1; . . . ; Lf g is evaluated. We then add a masking term mi,j to the signal,
which is given by,

mi;j ¼
0 if i≤ j;

�1 otherwise:

ð13Þ

This ensures that the self-attention only considers previous elements in the
sequence and does not look at later elements that still need to be determined
in the autoregressive behavior. Applying a softmax activation function to all
signals after adding the mask ensures that the contributions of all later
sequence elements withmi,j =−∞ are driven to zero. We then take the dot
product of each signal with the corresponding value vector vj and sum all
signals to generate the output of the attention mechanism. The complete
attention formalism can thus be summarized as,

Attention Q;K;Vð Þ ¼ softmax
QKTffiffiffiffiffiffiffiffiffiffiffi
dH=h

p þM

 !
V ; ð14Þ

Fig. 5 | Illustration of the attention mechanism applied to sequence element σ3.
Each sequence element σj is projected onto a query (qj), key (kj), and value (vj) vector,
and the dot product of q3 is taken with each key vector kj, j 2 1; 2; 3; 4f g. Adding a
mask matrix eliminates the influence of all elements later in the sequence by adding
mi,j > i =−∞, while contributions of previously sampled sequence elements remain
unchanged with mi,j ≤ i = 0, ensuring the autoregressive behavior. A softmax acti-
vation function is applied to all signals before a dot product is taken with the
corresponding value vectors. The sum of all resulting signals provides the attention
outcome for the input σ3. This algorithm is the same as introduced in32.

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 7

where themaskmatrixM has entriesmi,j as in Eq. (13). Here we further use
multi-headed attention, as discussed in32. This approach linearly projects
each query, key, and value vector to h vectors with individually trainable
projectionmatrices.We thus end upwith h heads withmodified query, key,
and value vectors on which the attention mechanism is applied, where we
choose h = 8 throughout this work, as we find it to yield satisfying results.
The linear projection further reduces the dimension of the query, key, and
value vectors to dH/h, so that the outputs of the individual heads can be
concatenated to yield the total output dimension dH of the attention
mechanism.We then scale the outcome of each query-key dot productwith
the factor 1=

ffiffiffiffiffiffiffiffiffiffiffi
dH=h

p
in Eq. (14)32. The output of themulti-headed attention

formalism is given by,

Multihead Q;K;Vð Þ ¼ Concat ŷ1; . . . ; ŷh
� �

WO; ð15Þ

ŷl Q;K;Vð Þ ¼ Attention QWQ
l ;KW

K
l ;VW

V
l

� �
; ð16Þ

with output weight matrix WO and query, key, and value weight matrices
WQ

l ,W
K
l , andWV

l for head l.
A TF model given an input of dimension dI has an embedding matrix

WI of dimension dI × dH, with embedding dimension dH. The weight
matrices in the multi-headed self-attention mechanism then have dimen-
sions dH × dH/h for WQ

l , W
K
l , and WV

l , and dH × dH for WO. Each weight
matrix also comeswith a biaswhose size equals the column-dimension. The
two feed-forward layers in the transformer cell have weight matrices of
dH × dFF and dFF × dH with corresponding biases, and the two norm
operations add 4dH trainable parameters. The transformer cell, containing
the attentionmechanism, the feed-forward layers, and the normoperations,
is applied T times with independent variational parameters. After the
transformer cell we add two fully connected layers with weight matrices of
dimensions dH × dH and dH × dO for output dimension dO. Both layers
come with corresponding biases.

Single-qubit inputs give dI = 1 and dO = 2, using one-hot encoded
output. With dH = 128, dFF = 2048, and T = 2, as chosen throughout this
work, the TF architecture has a total of

dI × dH
� �þ dH þ T 4 dH × dH

� �þ 9dH þ 2 dFF × dH
� �þ dFF

� �
þ dH × dH
� �þ dH þ dH × dO

� �þ dO
¼ 1; 203; 074

ð17Þ

trainable variational parameters.

Patched network models
The bottleneck of the RNN and TF wavefunction ansatz is the iteration of
the network cell over the entire qubit sequence. This computationally
expensive step needs to be done for each sample that is generated, as well as
each time a wavefunction Ψ σ;Wð Þ is calculated, which is required to
evaluate non-diagonal observables, see Eq. (7). We reduce the number of
iterations per network call by shortening the input sequence and in return
increasing the dimension of the input vector.

As illustrated in Fig. 1, for two-dimensional Rydberg atom arrays, we
consider patches of p qubits arranged in squares or rectangles. We flatten
these patches into binary input vectors of dimension dI = p. This mod-
ification increases the network input dimension, which is, however, pro-
jected to the unaffected hidden state dimension in the RNN cell or the
embedding dimension in the TF model. Thus, the computational cost of
evaluating the network cell is barely affected by the increased input
dimension, but the shorter sequence length leads to significantly reduced
computational runtimes. In addition to this expected speed-up, we expect
the patched networkmodels to capture local correlations in the systemwith
higher accuracy. Neighboring qubit states are now considered at the same
iteration, and their information is not encoded in the network state.

The network output uses one-hot encoding of the patched quantum
states, so that the output vector is of dimension dO = 2p. Each entry

represents one possible state of the qubit patch, see Fig. 1d, e. This output
dimension, and with this the computational cost of evaluating the softmax
function, thus scales exponentially with the patch size. In this work, we only
consider patches up to p = 2 × 2 for the patched network models and
introduce large, patched TFs to deal with larger patch sizes.

The patched RNN with p = 2 × 2 has input dimension dI = 4 and
output dimension dO = 16, so Eq. (8) leads to 70, 032 trainable network
parameters. For the same input and output dimension, the patched TF
model has 1, 203, 406 trainable network parameters, according to Eq. (17).

Large, patched transformer models
In the large, patched transformer (LPTF)model,we apply theTFnetwork to
a patch of p qubits. However, we abort the TFmodel in Fig. 1e right after the
transformer cell and do not apply the fully connected layers and the softmax
activation function. Instead, we use the generated output state of the
transformer cell as an input hidden state to a patchedRNNwith the hidden-
unit dimension matching the embedding dimension dH of the TF model.
This patched RNNbreaks up the large input patch into smaller sub-patches
of size ps, where we always choose a sub-patch size of ps = 2 × 2 in this work.
We then use the patched RNN model to iteratively sample the quantum
states of these sub-patches in the same way as when applying the patched
RNNto the full systemsize.Theonlydifference is that the initial hidden state
is provided by the TF output, h0 = hTF, see Fig. 1f for an illustration.

The total number of trainable network parameters in the LPTF setup is
then given by a combination of Eq. (8) and Eq. (17), where the two fully
connected layers at the TF output are subtracted,

p× dH
� �þ T 4 dH × dH

� �þ 9dH þ 2 dFF × dH
� �þ dFF

� �|ffl{zffl}
patched TF

þ 3 ps × dH
� �þ 4 dH × dH

� �þ 7dH þ dH × dO
� �þ dO|ffl{zffl}

patched RNN

:
ð18Þ

We use the input dimension dI = p for the patched TF and dI = ps for the
patched RNN, as well as the output dimension dO ¼ 2ps . In this work, we
choose ps = 2 × 2, which yields 1, 256, 208+ 128p trainable parameterswith
dH = 128, dFF = 2048, and T = 2. For the choice p = 8 × 8, we thus get
1, 264, 400 variational network parameters.

Computational complexity
The process of finding ground state representations with ANNs can be
divided into two steps, the generation of samples from the network and the
evaluation of energy expectation values according to Eq. (6) and Eq. (7) in
each training iteration. We start with analyzing the sample complexity for
the different network architectures. As we choose the hidden and the
embeddingdimensiondHfixed and equal for all architectures,we consider it
as a constant in the complexity analysis.

Generating a single sample σ from pRNN σ;Wð Þ encoded in an RNN
requires N executions of the RNN cell, leading to a computational cost of
O Nð Þ. By considering the patched RNN, we reduce the sequence length
from N to N/p, so that only N/p RNN cells are evaluated. However, the
output dimension in this case is 2p, so each evaluation of the RNN cell
requires 2p products to evaluate the outcome probability distribution. This
leads to an overall sampling complexity ofO N=p2p

� �
for the patchedRNN.

In order to generate a single sample σ from pTF σ;Wð Þ encoded in the
TF network, we similarly need to evaluate the transformer cell N times.
However, the attention algorithm itself requires the computation of N
multiplications that need to be evaluated in each pass through the network.
Additionally, the transformer cell contains a projection of the embedded
state to a vector of size dFF≫ dH, which requires significantly more multi-
plication operations than an RNN cell evaluation. Thus, drawing a sample
from the TF model comes at computational complexity O N N þ deff

� �� �
.

When introducing the patched TFmodel, we similarly reduce the sequence
length to N/p, so that the full network needs to be evaluated N/p times and

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 8

the attentionmechanism requiresN/pmultiplications. Also here the output
scales as 2p, leading to a computational cost ofO N=p N=pþ dFF þ 2p

� �� �
.

In the LPTF, the transformer cell is followed by a patched RNN with
p/ps cells. Since each LPTF iteration requires the evaluation of one such
RNN, we evaluate the transformer cell and p/ps RNN cells N/p times to
generate a single sample σ. While the TF network output is kept at
embedding dimension dH, the RNN output is of dimension 2ps , leading to a
computational complexity of

O N
p

N
p
þ dFF

� 	
þ N

p
p
ps
2ps

� �
¼ O N2

p2
þ N

p
dFF þ

N
ps
2ps

� �
: ð19Þ

This shows a significant reduction of the sampling complexity compared to
the patched TF model and explains the observed efficiency of our intro-
duced LPTF architecture.

Next, we consider the complexity of evaluating energy expectation
values.While the evaluation of the diagonal part is given by a linear average
over allNs samples and thus scales linearlywith the systemsizeN, evaluating
the off-diagonal part for each sample σs according to Eq. (7) requires the
evaluation ofΨ σ 0;Wð Þ for all σ 0 corresponding to σswith one atom flipped.
This leads toN evaluations ofΨ σ 0;Wð Þ for each sample, which is obtained
by passing σ 0 through the network architecture and obtaining the output
probability pRNN σ 0;Wð Þ or pTF σ 0;Wð Þ.

Thus, the patchedRNNwithN/pnetwork cells needs to be evaluatedN
times for each sample, leading to a computational complexity of
O Ns2

pN2=p
� �

for obtaining the energy expectation value. Similarly, the
patched TF model with N/p iterations and N/p multiplications in the
attention mechanism is evaluated N times for each sample, leading to a
computational cost of O Ns N3=p2 þ dFFN

2=pþ 2pN2=p
� �� �

. For the
LPTF we accordingly obtainO Ns N3=p2 þ dFFN

2=pþ 2psN2=ps
� �� �

. The
required memory scaling behaves similarly for the discussed network
architectures. This scaling can be reduced using optimized implementation
algorithms as discussed in the next section.While the TF and LPTF show a
worse scaling than the RNN, the evaluation of the off-diagonal energy terms
can be parallelized for these twomodels. Since no autoregressive sampling is
required for this task, allN/pmasked self-attention layers canbe evaluated in
parallel, significantly reducing the computational runtime. This paralleli-
zation is not possible for the RNN due to its recurrent nature, where the
hidden state needs to be evaluated for each individual RNNcell before it can
be passed to the next iteration.

The generation of samples with QMC is of computational complexity
O VNð Þ, with average interaction strength V over the system. The energy
estimation also scales asO VNð Þ and only needs to be done at the end of the
run after all samples have been generated, which is in contrast to the neural
network approach that requires the evaluated energy in each training
iteration53. While QMC thus shows much more promising computational
complexity than all three neural network methods when considering the
scaling to large system sizes, we observe that it requires longer computa-
tional runtimes than the LPTF for the system sizes considered in this work.
Considering the uncertainties of expectation values, we find that QMC
simulations require far more samples (Ns = 7 × 104 in Figs. 2, 3, and
Ns = 7 × 105 in Fig. 4) than the ANN approaches (Ns = 512). However, the
ANN approaches require the generation of Ns samples in each training
iteration, so that overall more samples are generated.

The higher uncertainties in the QMC simulations are caused by cor-
relations in the generated sample chains, where autocorrelation times grow
with increasing system sizes. Furthermore, ergodicity in theQMC sampling
process is not guaranteed for large systems53. These problems do not arise in
the exact and independent autoregressive sampling of the neural network
algorithms, explaining the lower uncertainties observed for smaller sample
sizes. At the same time, these observations limit accurate QMC simulations
to small system sizes.

Implementation details
We train the network to find the ground state of the Rydberg Hamiltonian
byminimizing the energy expectation value,whichwe evaluate usingEq. (6)
and Eq. (7) with the Hamiltonian operator Ĥ,

hEi ¼ ΨW ∣Ĥ∣ΨW
� �

¼
X
σ;σ 0f g

Ψ� σ;Wð ÞΨ σ 0;Wð Þ σ∣Ĥ∣σ 0� �
; ð20Þ

where Ψ σ;Wð Þ denotes a wavefunction encoded in one of the discussed
network models. To optimize the variational network parameters, we use
the gradient descent algorithm the same way as discussed in6,7, with gra-
dients

∂W i
E ≈

2
Ns

XNs

s¼1

∂W i
Ψ� σs;W
� �

Eloc σs;W
� �� hEi� �

; ð21Þ

and local energy

Eloc σs;W
� � ¼X

σ 0f g
σs∣Ĥ∣σ 0� � Ψ σ 0;Wð Þ

Ψ σs;W
� � : ð22Þ

The training process requires the evaluation of the gradients ofΨ σ;Wð Þ. To
reduce the necessary amount of memory, we always generate a batch of Ns

samples from the network without evaluating the gradients. We then pass
each sample through the network again to obtain the wavefunction
amplitude with the corresponding gradients. This approach requires 2Ns

network passes instead of Ns, but evaluating gradients on a given input
sequence is less memory-consuming than evaluating gradients on an
autoregressive process in PyTorch60. We can further reduce the required
memory by dividing the total batch of Ns samples into mini batches of K
samples each, which are evaluated in separate processes. This reduces the
memory scaling by a factor K/Ns per pass, while requiring Ns/K network
passes instead of one. Thus, the smaller we choose themini batches, the less
memory is required, but the longer the computational runtime. If not stated
otherwise, we choose K = 256 in this work.

Considering the off-diagonal term in the Rydberg Hamiltonian, its
contribution to the energy expectation value is given by Eoff ¼

PN
i¼1 σ̂xi
� �

.
Thus, calculating the local energyEloc σs;W

� �
usingEq. (7) requires for each

sampled state σs to evaluate Ψ σ 0;Wð Þ for all σ 0 that correspond to the
sampled state with one atom flipped from the ground to the excited state or
vice versa6,7. Instead of passingN states through the network for each sample
we generate, we can reduce the required memory and accelerate our algo-
rithmby splitting the atom sequence intoD equally sizedparts. In each part,
thewavefunction amplitude is evaluated for the stateswhere eachof theN/D
atoms is flipped. When calculating the wavefunction amplitudes using
sequential networks, the flipping of one atomonly affects the calculation for
atoms that appear later in the sequence. We store the network outcome for
the original state σs after each N/D atoms and evaluate each group starting
from this stored value.We then only need to pass the sequence from thefirst
atom of the group to the last atom in the system to the network. This ansatz
canbe used sinceno gradient needs tobe evaluated on this off-diagonal term
and corresponds to using mini batches of atoms. This way we reduce the
amount of required memory by a factorD/N per pass, while requiringN/D
networkpasses insteadof only one.Whilewenowevaluate the networkN/D
times, the sequence length at iteration d is reduced from N/p to
N � d � 1½ �Dð Þ=p, leading to an accelerated evaluation of the local energies
since the input sequence length is reduced in most cases. In this work, we
always split the sequenceof atoms intoD =N/pparts,withp thepatch size in
the patched network models.

We base our simulations on PyTorch60 and NumPy61, and use
Matplotlib62 to visualize our results.

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 9

Data availability
All presented data can be reproduced with the publicly available source
code. It is further available upon request to the corresponding author.

Code availability
The source code used to generate the data in thiswork is available onhttps://
github.com/APRIQuOt/VMC_with_LPTFs.git. It is based on PyTorch60

and NumPy61 and we used Matplotlib62 for visualizing our results.

Received: 26 January 2024; Accepted: 28 February 2024;

References
1. Carleo, G. & Troyer,M. Solving the quantummany-bodyproblemwith

artificial neural networks. Science 355, 602–606 (2017).
2. Torlai, G. et al. Neural-network quantumstate tomography.Nat. Phys.

14, 447–450 (2018).
3. Torlai, G. & Melko, R. G. Latent space purification via neural density

operators. Phys. Rev. Lett. 120, 240503 (2018).
4. Dawid, A. et al. Modern applications of machine learning in quantum

sciences, arXiv:2204.04198 [cond-mat] (2022).
5. Carrasquilla, J. Machine learning for quantummatter. Adv. Phys.-X 5,

1797528 (2020).
6. Carrasquilla, J. & Torlai, G. How To Use Neural Networks To

Investigate Quantum Many-Body Physics. PRX Quantum 2,
040201 (2021).

7. Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G. &
Carrasquilla, J. Recurrent neural network wave functions. Phys. Rev.
Res. 2, 023358 (2020).

8. Czischek, S., Moss, M. S., Radzihovsky, M., Merali, E. & Melko, R. G.
Data-enhanced variationalMonteCarlo simulations for Rydberg atom
arrays. Phys. Rev. B 105, 205108 (2022).

9. Viteritti, L. L., Ferrari, F. & Becca, F. Accuracy of restricted Boltzmann
machines for the one-dimensional J1− J2 Heisenberg model.
SciPost. Phys. 12, 166 (2022).

10. Neugebauer, M. et al. Neural-network quantumstate tomography in a
two-qubit experiment. Phys. Rev. A 102, 042604 (2020).

11. Schmale, T., Reh, M. & Gärttner, M. Efficient quantum state
tomography with convolutional neural networks. npj Quant. Inf. 8,
115 (2022).

12. Torlai, G. et al. Integrating neural networks with a quantum simulator
for state reconstruction. Phys. Rev. Lett. 123, 230504 (2019).

13. Morawetz, S., De Vlugt, I. J. S., Carrasquilla, J. & Melko, R. G. U(1)-
symmetric recurrent neural networks for quantum state
reconstruction. Phys. Rev. A 104, 012401 (2021).

14. Cha, P. et al. Attention-basedquantum tomography.MachLearn: Sci.
Technol. 3, 01LT01 (2022).

15. Carrasquilla, J., Torlai, G., Melko, R. G. & Aollita, L. Reconstructing
quantum states with generative models. Nat. Mach. Intell 1,
155–161 (2019).

16. Torlai, G., Mazzola, G., Carleo, G. & Mezzacapo, A. Precise
measurement of quantum observables with neural-network
estimators. Phys. Rev. Res. 2, 022060 (2020).

17. Schmitt, M. & Heyl, M. Quantum many-body dynamics in two
dimensions with artificial neural networks. Phys. Rev. Lett. 125,
100503 (2020).

18. Nagy, A. & Savona, V. Variational quantummonte carlomethodwith a
neural-network ansatz for open quantum systems. Phys. Rev. Lett.
122, 250501 (2019).

19. Vicentini, F., Biella, A., Regnault, N. & Ciuti, C. Variational neural-
network ansatz for steady states in open quantum systems. Phys.
Rev. Lett. 122, 250503 (2019).

20. Hartmann, M. J. & Carleo, G. Neural-network approach to dissipative
quantummany-body dynamics. Phys. Rev. Lett. 122, 250502 (2019).

21. Reh, M., Schmitt, M. & Gärttner, M. Time-dependent variational
principle for open quantum systems with artificial neural networks.
Phys. Rev. Lett. 127, 230501 (2021).

22. Czischek, S., Gärttner, M. & Gasenzer, T. Quenches near ising
quantum criticality as a challenge for artificial neural networks. Phys.
Rev. B 98, 024311 (2018).

23. Melko, R. G., Carleo, G., Carrasquilla, J. & Cirac, J. I. Restricted
Boltzmann machines in quantum physics. Nat. Phys. 15,
887–892 (2019).

24. Hibat-Allah, M., Inack, E. M., Wiersema, R., Melko, R. G. &
Carrasquilla, J. Variational neural annealing. Nat. Mach. Intell. 3,
952–961 (2021).

25. Hibat-Allah, M., Melko, R. G. & Carrasquilla, J. Investigating
topological order using recurrent neural networks. Phys. Rev. B 108,
075152 (2023).

26. Sharir, O., Levine, Y., Wies, N., Carleo, G. & Shashua, A. Deep
autoregressivemodels for the efficient variational simulation ofmany-
body quantum systems. Phys. Rev. Lett. 124, 020503 (2020).

27. Valenti, A., Greplova, E., Lindner, N. H. & Huber, S. D. Correlation-
enhanced neural networks as interpretable variational quantum
states. Phys. Rev. Res. 4, L012010 (2022).

28. Hibat-Allah, M., Melko, R. G. & Carrasquilla, J. Supplementing
Recurrent Neural Network Wave Functions with Symmetry and
Annealing to Improve Accuracy, arXiv:2207.14314 [cond-mat] (2022).

29. Ahsan Khandoker, S., Munshad Abedin, J. & Hibat-Allah, M.
Supplementing recurrent neural networks with annealing to solve
combinatorial optimization problems. Mach. Learn: Sci. Technol. 4,
015026 (2023).

30. Luo, Di et al. Gauge-invariant and anyonic-symmetric autoregressive
neural network for quantum lattice models. Phys. Rev. Res. 5,
013216 (2023).

31. Bennewitz, E. R., Hopfmueller, F., Kulchytskyy, B., Carrasquilla, J. &
Ronagh, P. Neural error mitigation of near-term quantum simulations.
Nat. Mach. Intell. 4, 618–624 (2022).

32. Vaswani, A. et al. Attention Is All You Need, arXiv:1706.03762
[cs] (2017).

33. Zhang, Y.-H. & Di Ventra, M. Transformer Quantum State: A Multi-
PurposeModel forQuantumMany-BodyProblems.Phys. Rev. B 107,
075147 (2023).

34. Viteritti, L. L., Rende, R. & Becca, F. Transformer variational wave
functions for frustrated quantum spin systems. Phys. Rev. Lett. 130,
236401 (2023).

35. Sharir, O., Chan, G. K.-L. & Anandkumar, A. Towards Neural
Variational Monte Carlo That Scales Linearly with System Size,
arXiv:2212.11296 [quant-ph] (2022).

36. Ma, H., Sun, Z., Dong, D., Chen, C. & Rabitz, H. Tomography of
Quantum States from Structured Measurements via quantum-aware
transformer https://doi.org/10.48550/arXiv.2305.05433,
arXiv:2305.05433 [quant-ph] (2023).

37. An, Z., Wu, J., Yang, M., Zhou, D. L. & Zeng, B. Unified quantum state
tomography and Hamiltonian learning: A language-translation-like
approach for quantum systems. Phys. Rev. Appl. 21, 014037 (2024).

38. von Glehn, I., Spencer, J. S. & Pfau, D. A self-attention ansatz for
ab-initio quantum chemistry. https://doi.org/10.48550/arXiv.2211.
13672, arXiv:2211.13672 [physics.chem-ph] (2022).

39. Carrasquilla, J. et al. Probabilistic simulationof quantumcircuits using
a deep-learning architecture. Phys. Rev. A 104, 032610 (2021).

40. Luo, D., Chen, Z., Carrasquilla, J. & Clark, B. K. Autoregressive neural
network for simulating open quantum systems via a probabilistic
formulation. Phys. Rev. Lett. 128, 090501 (2022).

41. Dosovitskiy, A. et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale, arXiv:2010.11929 [cs] (2021).

42. Jaksch, D. et al. Fast Quantum Gates for Neutral Atoms. Phys. Rev.
Lett. 85, 2208–2211 (2000).

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 10

https://github.com/APRIQuOt/VMC_with_LPTFs.git
https://github.com/APRIQuOt/VMC_with_LPTFs.git
https://doi.org/10.48550/arXiv.2305.05433
https://doi.org/10.48550/arXiv.2305.05433
https://doi.org/10.48550/arXiv.2211.13672
https://doi.org/10.48550/arXiv.2211.13672
https://doi.org/10.48550/arXiv.2211.13672

43. Lukin, M. D. et al. Dipole Blockade and Quantum Information
Processing in Mesoscopic Atomic Ensembles. Phys. Rev. Lett. 87,
037901 (2001).

44. Endres, M. et al. Atom-by-atom assembly of defect-free one-
dimensional cold atom arrays. Science 354, 1024–1027 (2016).

45. Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A.
Synthetic three-dimensional atomic structures assembled atom by
atom. Nature 561, 79–82 (2018).

46. Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S.
Complex Density Wave Orders and Quantum Phase Transitions in a
Model of Square-Lattice Rydberg Atom Arrays. Phys. Rev. Lett. 124,
103601 (2020).

47. Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S.
Quantum phases of Rydberg atoms on a kagome lattice. PNAS 118,
e2015785118 (2021).

48. Ebadi, S. et al. Quantum phases of matter on a 256-atom
programmable quantum simulator. Nature 595, 227–232 (2021).

49. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with
hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

50. Xu,W. et al. Fast Preparation and Detection of a RydbergQubit Using
Atomic Ensembles. Phys. Rev. Lett. 127, 050501 (2021).

51. Miles, C. et al. Machine learning discovery of new phases in
programmable quantum simulator snapshots. Phys. Rev. Res. 5,
013026 (2023).

52. Kalinowski,M. et al. Bulk andBoundaryQuantumPhaseTransitions in
a Square Rydberg Atom Array. Phys. Rev. B 105, 174417 (2022).

53. Merali, E., De Vlugt, I. J. S. &Melko, R.G. Stochastic Series Expansion
Quantum Monte Carlo for Rydberg Arrays, arXiv:2107.00766 [cond-
mat] (2023).

54. Bravyi, S., DiVincenzo, D. P., Oliveira, R. I. & Terhal, B. M. The
Complexity of Stoquastic Local Hamiltonian Problems. Quant. Info.
Comput. 8, 361–385 (2008).

55. Cho, K. et al. Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation, in https://doi.
org/10.3115/v1/D14-1179 Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP)
1724–1734 (Association for Computational Linguistics, Doha,
Qatar, 2014).

56. Becca, F. & Sorella, S. https://doi.org/10.1017/9781316417041
Quantum Monte Carlo Approaches for Correlated Systems, 1st ed.
(Cambridge University Press, 2017).

57. Morin, F. & Bengio, Y. Hierarchical probabilistic neural network
language model, in https://proceedings.mlr.press/r5/morin05a.html
Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics, Proceedings of Machine Learning
Research, (eds Cowell, R. G. & Ghahramani, Z.) Vol. R5, 246–252
(PMLR, 2005).

58. Zhai, X., Kolesnikov, A., Houlsby, N. & Beyer, L. https://doi.org/10.
48550/arXiv.2106.04560 Scaling vision transformers,
arXiv:2106.04560 [cs.CV] (2021).

59. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural.
Comput. 9, 1735–1780 (1997).

60. Paszke, A. et al. Pytorch: An imperative style, high-performance deep
learning library, in http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf
Advances in Neural Information Processing Systems 32 8024–8035
(Curran Associates, Inc., 2019).

61. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

62. Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

Acknowledgements
We thank J. Carrasquilla, R.G. Melko, M. Reh, M.S. Moss, and E. Inack for
fruitful discussions and feedback. We are grateful for support on the
quantumMonteCarlo simulationsbyE.Merali. This researchwas enabled in
part by support provided by the Digital Research Alliance of Canada
(alliancecan.ca).

Author contributions
The fundamental ideas of the introduced approach were developed by K.
Sprague who further implemented and organized the used Python code. S.
Czischek used the provided code to obtain the presented results with
support by K. Sprague. The manuscript was written by S. Czischek with
valuable feedback by K. Sprague.

Competing interests
The authors declare no competing interests. S.Czischek is a guest editor for
Communications Physics, but was not involved in the editorial review of, or
the decision to publish this article.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01584-y.

Correspondence and requests for materials should be addressed to
Stefanie Czischek.

Peer review information This manuscript has been previously reviewed at
anotherNaturePortfolio journal. Themanuscriptwasconsideredsuitable for
publication without further review at Communications Physics.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01584-y Article

Communications Physics | (2024) 7:90 11

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1017/9781316417041
https://doi.org/10.1017/9781316417041
https://proceedings.mlr.press/r5/morin05a.html
https://proceedings.mlr.press/r5/morin05a.html
https://doi.org/10.48550/arXiv.2106.04560
https://doi.org/10.48550/arXiv.2106.04560
https://doi.org/10.48550/arXiv.2106.04560
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s42005-024-01584-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Variational Monte Carlo with large patched transformers
	Results
	Rydberg atom�arrays
	Recurrent neural networks and transformers
	Patched�inputs
	Large, patched transformers
	Phases of matter in Rydberg atom�arrays

	Discussion
	Methods
	Rydberg atom�arrays
	Recurrent neural network quantum�states
	Transformer quantum�states
	Positional encoding
	The self-attention mechanism
	Patched network�models
	Large, patched transformer�models
	Computational complexity
	Implementation details

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

