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Quasiprobability fluctuation theorem
behind the spread of quantum information

Check for updates

Kun Zhang1,2,3 & Jin Wang 4,5

Information spreads in time. For example, correlations dissipate when the correlated system locally
couples to a third party, such as the environment. This simple but important fact forms the known
quantum data-processing inequality. Here we theoretically uncover the quantum fluctuation theorem
behind the quantum informational inequality. The fluctuation theorem quantitatively predicts the
statistics of the underlying stochastic quantum process. To fully capture the quantum nature, the
fluctuation theorem established here is extended to the quasiprobability regime. We also
experimentally apply an interference-based method to measure the amplitudes composing the
quasiprobability and verify our established fluctuation theorem by the IBM quantum computer.

Information plays increasingly important roles in almost all branches of
physics. The understanding of the dynamics of quantum information is a
crucial task,whichhas applications inmanydifferent research subjects, such
as quantum computation1, quantum communication2, quantum
thermodynamics3 as well as the information paradox in black holes4. In
general cases, the dynamics of quantum information can only be qualita-
tivelydescribedby the informational inequalities. For example, the quantum
data-processing inequality states that the nonlocal information can not
increase under the local physical operations5. To be specific, the amount of
correlations between the system (denoted as S) and a reference (denoted as
R) can only decrease if the system interacts with the environment (denoted
as E) locally, with the condition that there are no initial correlations between
SR and E. See Fig. 1 for the diagrammatic illustration.

In a different context, since the work by Jarzynski6 and Crooks7, the
qualitative description of the second law of thermodynamics (non-nega-
tivity of the entropy production) generalizes to a quantitative statement
valid for arbitrary nonequilibrium processes, known as the fluctuation
theorem8. The inequality of the second law of thermodynamics is rephrased
to equality, which describes the distribution of entropy production. At the
same time, quantummechanics and thermodynamics are merging, and the
quantum versions of the fluctuation theorem are also established9. Mean-
while, quantum information plays more and more important roles in the
study of quantum thermodynamics, far beyond Maxwell’s demon
model10–12. Not only the information is identified as a resource, but also the
arrow of time is interpreted as the information spreading, or more specifi-
cally, the spreading of information because of coupling to the environment3.
Therefore the quantum fluctuation theorem can also be understood as a

stochastic description of the correlation between the system and the
environment.

However, there is always a tension between the quantum mechanics
and the classical stochastic or probabilistic description. The most famous
one is Bell’s theorem13. To partially resolve the issue, quantum fluctuation
theorems are commonly founded in a initial-classical and final-classical
manners, in which measurements are performed at both initial and final
points (the two-point measurement scheme)9,14. However, such a scheme
can only describe the case where the initial state has no correlations
(between the system and the environment or within the subsystems).
Therefore it is not suitable to characterize the dynamics of quantum
information. Different resolutions have been proposed. However, the ten-
sion between the classical and the quantumdescriptions exists if the classical
trajectory (described by the classical probability) is applied, such as the ones
proposed in refs. 15–18. On the other hand, the quasiprobability has a long
history in the study of quantum dynamics19. Only recently, the quasiprob-
ability plays a role in the study of quantum thermodynamics20–22.

In this study, we establish a quasiprobability fluctuation theorem which
describes the dynamics of quantum information. The quasiprobability tra-
jectory can overcome the inconsistency between the classical probabilistic
description and the quantummechanics. For the first time, we formulate the
quantum data-processing inequality into the quasiprobability fluctuation
theorem, which describes the statistics of the quantum information dis-
sipation. Conceptually, our results demonstrate that the fluctuation theorem
is a universal description for quantum information beyond the context of
thermodynamics, if the proper quasiprobability trajectory is applied.
Although quasiprobability may be hard to measure directly, there are several
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indirect methods, such as by weak measurement19. We apply a interference-
based method to measure the amplitudes on quantum computer23, which
indirectly give the quasiprobabilistic trajectory of the dynamics. Technically,
we design error mitigation schemes specified for quantum circuits mea-
suring the amplitude and the corresponding quasiprobability. We unam-
biguously demonstrate the quasiprobability fluctuation theorem behind the
dynamics of three qubits.

Results
Theory
Consider a general tripartite setup, which includes the system (S), the
reference (R) and the environment (E). Initially, the system and the refer-
ence are correlated, where the initial state is denoted as ρSR. The amount of
correlations is quantified by the mutual information I ðS;RÞρ � SðρSÞ þ
SðρRÞ � SðρSRÞ with the von-Neumann entropy SðρÞ � �Trρ lnðρÞ. Both
classical and quantum correlations are counted in I ðS;RÞρ.

Assume that the system locally interacts with the environment via a
unitary evolution, namely ρ0SE ¼ USEðρS � ρEÞUy

SE . We use the superscript
prime to label variables related to the final state. The initial state of system
and environment is assumed to be factorized. Therefore the correlation
between the system and the environment can only increase after the evo-
lution. On the other side, the correlation between the system and the
reference is preserved in the way I ðR; SÞρ ¼ I ðR; SEÞρ0 . In other words, the
information stored between the system and the reference spreads to the
environment. The consequence is that the information between the system
and the reference decreases, which gives

ΔI ðS;RÞ≥ 0; ð1Þ

with ΔI ðS;RÞ � I ðS;RÞρ � I ðS;RÞρ0 . Without any possible confusions,
we simplify the notation as ΔI � ΔI ðS;RÞ in the following. The above
inequality is called quantum data-processing inequality5. It follows the
intuition since local operations can not increase the nonlocal information.
Since we assume the factorized initial state between the system and the
environment,which guarantees the satisfactionofquantumdata-processing
inequality24. The proof of classical data-processing inequality is quiet simple.
Without a close analog between the classical and quantum information, the
data-processing inequality also magically holds in the quantum case. The
proof of quantum data-processing inequality is highly nontrivial, which
usually invokes the strong subadditivity of von-Neumann entropy25. The
decreasedmutual informationΔI is also equal to the final state conditional
mutual information between the environment and the reference (condi-
tioned on the system), which bounds the fidelity to recover the initial state
from the final state26,27. Therefore, ΔI characterizes the degree of
irretrodictability, which is rooted in thermodynamics28–30.

The quantum correlation between the system and the reference always
flows to the environment because there is no initial correlation between the
system and the environment. It resembles the heat flowing from the high
temperature reservoir to the low temperature reservoir. If the thermo-
dynamic quantity, such as heat, has afluctuation theorem31, dowe also have

a fluctuation theorem behind the spread of information? We answer this
question affirmatively.

First, we set some notations. Denote the probability distribution of the
correlated state ρSR as pl, given by the decomposition ρSR =∑lplΠl with the
nonlocal eigenoperatorΠl ¼ ∣liSR lh ∣ (projector of the eigenstate).Whenwe
look at the system and reference separately, we have the reduced density
matrix ρS and ρR, with the decompositions ρR =∑rprΠr and ρS =∑spsΠs

respectively. Quantum correlation would forbid the joint distribution of pl
and ps (or pr), because of the noncommutativity betweenΠl andΠs (orΠr).
In analog to the classical stochastic mutual information (the unaveraged
mutual information)32, define the stochastic quantum mutual information
as ιðS;RÞρ � ln pl � ln ps � ln pr

15,17. Similarly, the stochastic quantum
mutual information of the final state ρ0SR is ιðS;RÞρ0 ¼ ln p0k � ln p0a � ln p0b,
given by the decompositions ρ0S ¼

P
ap

0
aΠ

0
a, ρ0R ¼ P

bp
0
bΠ

0
b, and

ρ0SR ¼ P
kp

0
kΠ

0
k. Since the reference is untouched by the evolution USE, we

do not expect a different distribution p0b from pr. But the global distributions
pl and p0k are different, since the amount of correlation between S and R
decreases. The stochastic quantity behind the quantummutual information
change ΔI is ΔιðS;RÞ � ιðS;RÞρ � ιðS;RÞρ0 , with the expression

ΔιðS;RÞ ¼ ln
pl
pspr

� �
� ln

p0k
p0ap

0
b

� �
: ð2Þ

Without any possible confusion, we simplify the notation as Δι≡
Δι(S; R) in the following. Our starting point is to view the stochastic mutual
information change Δι as a stochastic entropy production. In stochastic
thermodynamics, taking the average over all possible trajectorieswould give
the average entropy production, which is always positive3. Then the next
step inour study is to identify the trajectories related to the stochasticmutual
information change Δι.

Both classical and quantum fluctuation theorems are founded by
probabilistic trajectories. However, quantum dynamics rejects the classical
stochastic description, known as the temporal Bell inequalities or the
Leggett-Garg inequalities33. Recently, more researches have studied the
quantum thermodynamics processes described by the quasiprobability,
which includes quantum coherence and quantum correlation20–22. Inspired
fromthequasiprobability in the studyof quantumchaos23,34,we consider the
following quasiprobabilistic trajectory

Q½ζ� � ReTr Uy
SEΠ

0
kmΠ

0
abUSEΠrsΠlnρRSE

� �
; ð3Þ

with the stochastic variables ζ = {s, r, l, n, a, b, k,m}. The projectors Πn and
Π0

m are given by the eigenstates of the environment, namely ρE =∑npnΠn

and ρ0E ¼ P
mp

0
mΠ

0
m. We adopt the simplified notations Πr,s≡Πr⊗Πs.

Note that the initial state is factorized ρRSE = ρSR⊗ ρE.We only consider the
real part of quasiprobability,where its imaginary part has its own interests in
quantum dynamics35.

It is easy to see that quasiprobabilityQ½ζ� is properly normalized, i.e.,P
ζQ½ζ� ¼ 1. However, it is not a valid probability because its range is not

bounded between 0 and 1. The out-of-range quasiprobability is the sig-
nature of quantum interference19. The global operator, such as Πl, is inter-
twined with the local operator, such asΠr andΠs.Whenwemarginalize the
variables in terms of local or global operators, the quasiprobability returns
back to a valid probability, which is exactly the probabilistic trajectories
studied in quantum fluctuation theorem. For example, we have

P½γ� �
X

l;k;r;b

Q½ζ �

¼ ∣hamjUSEjsni∣2pspn;
ð4Þ

with γ = {s, n, a,m}. Here P½γ� describes a probabilistic distribution of the
initial and final states (in terms of the system and the environment). Here
P½γ� is commonly applied to the study of quantum fluctuation theorem of
the entropy production3. Therefore the quasiprobabilistic trajectory can also

Fig. 1 | Correlations between system and reference. Initially the system S is cor-
related with the reference R. After the system locally interacts with a third party,
denoted as the environment E, the correlation between S and R can only decrease if
there are no initial correlations between SR and E.
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properly describe the original quantum fluctuation theorems. For more
discussions, see the Methods.

The quasiprobability is not directly measurable. However, it is not
merely a mathematical artifice. Quasiprobability describes the weak mea-
surement, where the system is probed indirectly. More specifically, the
system isweakly coupled to themeasurement apparatus, then the apparatus
ismeasured. Theweakmeasurement scheme can also be applied tomeasure
Q½ζ �, where the two-point weak measurement is applied.

Firstly, we can verify that averaging the stochastic mutual information
change Δι over the quasiprobabilistic trajectoryQ½ζ� gives

hΔιiQ½ζ� ¼ ΔI : ð5Þ

Here the bracket means the average h�iQ½ζ� ¼
P

ζQ½ζ �ð�Þ. Then our
main result is the following quasiprobability fluctuation theorem

he�ΔιiQ½ζ � ¼ 1: ð6Þ

It takes the exact same form of the fluctuation theorem, while the
difference is the quasiprobability applied to the trajectory. We present the
derivations of Eqs. (5) and (6) in theMethods. In theMethods,we also argue
that the quasiprobability trajectory is inevitable to describe the quantum
information dissipation. Even if we extend the traditional two-point mea-
surement scheme, such as proposed recently in17, the classical trajectory
always contradicts to the principle of quantum contextuality36. The posi-
tivity of the averaged stochastic entities, such as the stochastic entropy
production averaged over the probabilistic trajectories, simply reflect the
positivity of the relative entropy3. However, the positivity of the averaged
stochastic mutual information change over the quasiprobabilistic trajectory
is beyond any classical statistical inequality.

From the quantum data-processing inequality, we know hΔιiQ½ζ� ≥ 0.
Therefore, combining the quasiprobability fluctuation theorem (6), we can
establish the inequality

he�ΔιiQ½ζ � ≥ e
�hΔιiQ½ζ � : ð7Þ

It resembles the Jensen’s inequality37. However, Jensen’s inequality
would not hold if theprobability hasnegative values. But the inequality (7) is
guaranteed because of the quantum data-processing inequality and our
established quasiprobability fluctuation theorem (6). Even under the pre-
sence of negative values of quasiprobability, the Jensen’s inequality still
holds. In other words, the quasiprobability fluctuation theorem (6) contains
constrains on the distributions of the negative quasiprobabilities, which do
not break the Jensen’s inequality and lead to the quantum data-processing
inequality.

In the small dissipation regime, expanding to the secondorder ofΔι, we
get an informational fluctuation-dissipation relation

h Δι� ΔIð Þ2iQ½ζ � ¼ 2ΔI þOðΔι3Þ; ð8Þ

where the left-hand side is the variance of the mutual information change
and the right-hand side represents the degree of the information decay. One
can learnmore about the system-environment evolution based on the high-
order distribution of Δι. For example, the black hole scrambling4 may be
probed by the statistics of the outgoing radiation based on the fluctuation
theorem (6). When the dissipation is large, the high-order statistics is
required.

In the thermodynamic context, the fluctuation theorem regarding to
the classical informationdissipationfirstly appeared in38. It characterizes the
extra thermodynamic cost inMaxwell’s demonmodel. Later, the dissipative
mutual information is studied in quantum cases, within the framework of
two-pointmeasurement scheme39. The issue of the two-pointmeasurement
scheme is that themeasurement performed initially would kill the quantum
correlation, therefore only classical correlation is left.

When we looks closer on the fluctuation theorem in Eq. (6), there are
hidden fluctuation theorems, which have the form he�ΔιiQ½ζ �=P½γ� ¼ 1. The
average is done on the conditional quasiprobability Q½ζ�=P½γ� (assuming
P½γ� is nonzero), where P½γ� is a valid probability given in Eq. (4). The
conditional quasiprobability Q½ζ�=P½γ� also gives the detailed fluctuation
theorem. More details can be found in the Methods.

There is an ambiguity of the operator order inQ½ζ �, since operatorΠl

does not commute with Πr or Πs in general cases. However, there is no
restrictions on choosing a specific order to give the quasiprobability fluc-
tuation theorem, even for their combinations. For simplicity, here we only
focus on this specific order. When choosing different operator orders, we
need slightly change the definition of Δι. But the forms of fluctuation the-
orem are identical. More details can be found in the Methods and Supple-
mentary Methods 2.

Experiment
Quantum fluctuation theorems have been verified on many different
platforms as well as different methods40–45. Cloud quantum compu-
ters provide an unique platform to study the quantum phenomena.
Quantum fluctuation theorems have also been studied on quantum
computers recently46. Quasiprobability fluctuation theorem presented
above does not limit the size of the environment or types of the
system-environment interaction. In the following, we consider the
dynamics of three qubits and verify the corresponding fluctuation
theorem through the IBM quantum computer47.

Suppose that the system, the reference and the environment are
all one qubit respectively. We consider the initial correlation between
the system and the reference as a full rank Bell-diagonal state, which
has four Bell states as the eigenstates, i.e., ρSR ¼ P

lpl∣ψðlÞ
�
ψðlÞ�

∣ with
the four Bell states ∣ψðlÞ�. Bell-diagonal states can be easily prepared
on quantum computers with the help of two ancillary qubits48. We
randomly generate the distribution pl then perform the Bell mea-
surements on the initial state. The environment qubit is chosen as
thermal: ρE ¼ pn¼0∣0iE 0h ∣þ pn¼1∣1iE 1h ∣ with pn=0 = 1/(1+ e−β) and
pn=1 = 1/(1+ eβ). Here β is the effective temperature. The statistics of
local states ρS, ρR and ρE are separately measured.

We consider the interaction between the system qubit and the envir-
onment qubit asUSE ¼ ∣0iS 0h ∣� 1E þ ∣1iS 1h ∣� YE with the single-qubit
gate Y ¼ ∣0i 1h ∣� ∣1i 0h ∣. The two-qubit operation USE has the maximal
entangling power, which would disentangle the initial quantum correlation
between the system and the reference. Therefore, the eigenvectors of ρ0SR are
the sameas the local eigenvectors of ρ0R andρ

0
S. Similarlywith the initial state,

we measure the statistics of the final state. The measured initial and final
statistics can be found in the Methods.

In our example, the quasiprobability Q½ζ� has the equivalent expres-
sion

Q½ζ� ¼ hψðlÞnjUy
SEjbamihamjUSEjsnihrsjψðlÞiplpn; ð9Þ

with the short notation ∣ψðlÞn� ¼ ∣ψðlÞ�� ∣ni. Although sequential weak
measurements can be applied to infer the value ofQ½ζ�, it is still challenging
for quantum computers to perform precise controls. We follow a
interference-based method23 to measure the amplitudes 〈ψ(l)n∣USE∣bam〉,
〈am∣USE∣sn〉 and 〈rs∣ψ(l)〉 separately. See the Methods for the experimental
results. More details on the experimental setup and the corresponding
quantum circuits can also be found in the Methods.

Now we can assemble together the stochastic mutual information
changeΔιwith thequasiprobabilistic trajectoryQ½ζ� to verify thefluctuation
theorem. The fluctuation theorem he�ΔιiQ½ζ �=P½γ� ¼ 1 is based on the con-
ditional quasiprobability Q½ζ �=P½γ�. For each variable γ which gives a
nonzero P½γ�, we have a fluctuation relation. The experimental results are
presented in Fig. 2. Results from the quantum computer are little deviated
from the noisy or noiseless simulation results, which imply that the devia-
tions are from the imperfect operations of near-term quantum computers.
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Discussions
The fluctuation theorem is one of the most important tools to study
nonequilibrium dynamics. Most quantum fluctuation theorems are
founded on converting the quantum dynamics into a classical
probabilistic description, in which many quantum features are lost,
such as the coherence and the entanglement. Quasiprobability has a
long history on studying the quantum dynamics. However,
quasiprobability is rarely considered in the study of quantum
fluctuation theorem. For the first time, we construct the quasiprob-
ability fluctuation theorem behind the quantum data-processing
inequality. We establish such fluctuation theorem beyond the ther-
modynamic regime, namely neither having any constraints on the
interactions between the system and the environment, nor limited to
specific initial and final states. We argue that the quasiprobability
trajectory is necessary in order to correctly describe the dynamics of
quantum information. The fluctuation theorem predicts the statistics
of quantum information processing, such as the informational
fluctuation-dissipation relation. We also test our quasiprobability
fluctuation theorem on the state-of-art quantum computers. Tech-
nically, we design quantum circuits on measuring the quasiprob-
ability trajectory of three qubits. Our study generalizes the subject of
stochastic thermodynamics into the stochastic quantum information,
which provides novel insights on the dynamics of quantum
information.

Independently, the fluctuation theorem of the monotonicity of quan-
tum relative entropy was proposed in21. Quasiprobabilistic trajectories were
also applied. It would be interesting to clarify the relations between their
fluctuation theorems and our work.

Our informational fluctuation theorem suggests hidden constraints on
the negative quasiprobability distributions, which are required by the
quantumdata-processing inequality. In other words, a “quantumversion of
Jensen’s inequality” is required to derive the quantum data-processing
inequality from our informational fluctuation theorem. Statistical analysis
can be carried out on the traditional fluctuation theorem49. It would be
interesting to explore along the same line for thequasiprobabilityfluctuation
theorem in future. When the quantum data-processing inequality breaks,
whether the quasiprobability fluctuation theorem can capture the anom-
alous flow of quantum information is an open question. It is related to the
non-Markovian dynamics. Attempts have been made recently50.

Methods
Averaged mutual information change
The quasiprobabilistic trajectory Q½ζ� reduces to the probabilistic tra-
jectory P½γ� after marginalizing the stochastic variables {l, k, r, b}, shown
in Eq. (4). The trajectory P½γ� appears in the ordinary quantum fluc-
tuation theorem within the two-point measurement scheme3. Consider
the stochastic entropy production of the system, given by

σS � ln ps þ ln pn � ln p0a � ln p0m. One can easily find that the averaged
entropy production over the trajectory P½γ� is

hσSiP½γ� ¼ I ðS; EÞρ0 : ð10Þ

Different stochastic quantity can give the different averaged quantity.
Here we set the stochastic entropy production σS which gives the mutual
information between the system and the environment established on the
final state.

The quasiprobabilistic trajectoryQ½ζ � has anotherway to reduce to the
probabilistic trajectory. Marginalizing the stochastic variables {s, r, a, b}
gives

�P½τ� �
X

s;r;a;b

Q½ζ�

¼ ∣hkmjUSEjlni∣2plpn;
ð11Þ

with τ = {l, n, k,m}. We can consider the stochastic entropy production
of the combined system and reference, given by
σSR ¼ ln pl þ ln pn � ln p0k � ln p0m. Then the corresponding averaged
entropy production over the trajectory �P½τ� is

hσSRi�P½τ� ¼ I ðSR; EÞρ0 : ð12Þ

Physically, the stochastic entropy production σS (σSR) characterizes the
correlation between the system (system plus the reference) and the envir-
onment as irreversibility.

The stochasticmutual information changeΔι given inEq. (2) is also the
difference between σSR and σS, namelyΔι = σSR− σS (with r = b). Taking the
average over the quasiprobabilistic trajectoryQ½ζ �, we have

hΔιiQ½ζ � ¼
X

τ

X

s;r;a;b

Q½ζ�σSR �
X

γ

X

l;r;k;b

Q½ζ�σS

¼
X

τ

�P½τ�σSR �
X

γ

P½γ�σS;
ð13Þ

where the marginalizing relation (11) have been applied to the second line.
Based on the averaged quantities in Eqs. (10) and (12), we find
hΔιiQ½ζ � ¼ I ðSR; EÞρ0 � I ðS; EÞρ0 , which is also equal to
hΔιiQ½ζ � ¼ I ðS; EÞρ � I ðS; EÞρ0 , since the initial correlation is preserved
given by I ðS; EÞρ ¼ I ðSR; EÞρ0 . Then we prove that the averaged stochastic
mutual information change Δι equals to ΔI .

Proof of the quasiprobability fluctuation theorem
The integral fluctuation theorem relies on the normalization of a corre-
sponding retrodictive trajectory (also commonly known as the backward
process)29,30. Therefore the choice of retrodictive process is subjective.

Fig. 2 | Verification of quasiprobability fluctuation theorem on IBM quantum
processor. The processors (a) ibm_qasm_simulator and (b) ibm_la-
gos_simulator are provided by Qiskit, which classically simulates the quantum
computers without and with the noises. Results obtained from IBM quantum

processor ibm_lagos are presented in (c). The conditional stochastic variables
γ = {s, n, a,m} have the values γ(1) = {0, 0, 0, 0}, γ(2) = {1, 0, 0, 1}, γ(3) = {0, 1, 1, 0} and
γ(4) = {1, 1, 1, 1}. The error bars are given by 10 × 8192 shots of the circuits.

https://doi.org/10.1038/s42005-024-01583-z Article

Communications Physics |            (2024) 7:91 4



Similar in our quasiprobability fluctuation theorem, the integral version is
established on the normalization of the quantum retrodictive trajectory,
which is given by the conditional quasiprobability (quasiprobability con-
ditioned on a probability).

Corresponding to the forward quasiprobabilistic trajectory Q½ζ�
defined in Eq. (3), we consider the retrodictive quasiprobabilistic trajectory

~Q½ζ� � ReTr USEΠlnΠrsU
y
SEΠ

0
abΠ

0
kmρ

0
SR � ρ0E

� �
; ð14Þ

where the initial state is set as the factorized final state of the systemplus the
reference and the environment. Marginalizing the variables {l, r, k, b} gives
the probability

~P½γ� �
X

l;r;k;b

~Q½ζ�

¼ ∣hsnjUy
SEjami∣2p0ap0m;

ð15Þ

where p0a and p
0
m are the eigenvalue distributions of ρ0S and ρ

0
E respectively.

After some algebra, we can establish the relation

Q½ζ�
P½γ� e

�Δι ¼
~Q½ζ�
~P½γ� : ð16Þ

The ratio between the conditional forward quasiprobabilistic trajectory
Q½ζ �=P½γ� and the conditional retrodictive quasiprobabilistic trajectory
~Q½ζ �=~P½γ� is given by e−Δι. Their ratio is exponential scaled with the sto-
chastic mutual information change Δι, which is in the form of the detailed
fluctuation theorem. Here the probabilistic distribution has been general-
ized to the conditional quasiprobability distribution. Detailed proof of
Eq. (16) can be found in the Supplementary Methods 1.

The conditional quasiprobabilistic trajectories are properly normalized

X

ζ=γ

Q½ζ�
P½γ� ¼

X

ζ=γ

~Q½ζ �
~P½γ� ¼ 1: ð17Þ

Then we have the quasiprobability fluctuation theorem given by the
conditional quasiprobabilistic trajectory

he�ΔιiQ½ζ �=P½γ� ¼
X

ζ=γ

~Q½ζ �
~P½γ� ¼ 1: ð18Þ

Moreover, theunconditional quasiprobabilistic trajectory also gives the
integral fluctuation theorem

he�ΔιiQ½ζ � ¼
X

γ

P½γ�
X

ζ=γ

~Q½ζ �
~P½γ� ¼ 1; ð19Þ

which is guaranteed by the normalization of P½γ�. With the help of Eq. (16),
the quasiprobability fluctuation theorem simply comes from the normal-
ization of retrodictive quasiprobability trajectory. However, we can also
directly prove the quasiprobability fluctuation theoremwithout the definition
of retrodictive quasiprobability trajectory. See the Supplementary Methods 1.

Different ordering of projectors in Q½ζ � does not jeopardize the vali-
dation of the quasiprobabilityfluctuation theorem, as long as the ordering of
projectors in ~Q½ζ � is correspondingly changed and the relation (16) holds.
Besides the averaged mutual information change does not require specific
orderings of projectors in Q½ζ�, since the marginalized relation, such as
Eq. (11), eliminate the uncommuted operators.

In addition to the quasiprobabilityfluctuation theorem revealed above,
the quasiprobabilistic trajectoryQ½ζ� also smoothly generalize the quantum

fluctuation theorem of the entropy productions σS and σSR. Specifically, we
have

he�σS iQ½ζ� ¼ he�σSR iQ½ζ� ¼ 1: ð20Þ

We can simply have the proof by applying the marginalizing rules
shown in Eq. (11). Then the above quasiprobability fluctuation theorems
reduce to the well-known quantum fluctuation theorems given by the two-
point measurement trajectories3.

Probability vs quasiprobability trajectories
Quantum fluctuation theorems are commonly established based on
the two-point measurement scheme9,14. Then quantum dynamics is
mapped to an ensemble of trajectories. The mapping involves the
measurements of the initial and final states. Therefore any possible
coherence or entanglement is wiped out in the two-point measure-
ment scheme. However, trajectories obtained from the global mea-
surements may include the statistics about quantum correlation, such
as the trajectory �P½τ� defined in Eq. (11).

As we know that the stochastic mutual information change Δι is the
mismatch between the joint stochastic entropy production σSR of the system
and the reference, and the stochastic entropy production of the system σS,
namely

Δι ¼ σSR � σS: ð21Þ

Meanwhile, the mutual information change ΔI (the average of the
stochastic mutual information change) is also the mismatch between the
average of the joint entropy production σSR of the system and the reference,
and the average of the entropy production of the system σS, namely

ΔI ¼ hσSRi�P½τ� � hσSiP½γ�: ð22Þ

If we can construct a joint distribution, whichmarginalizes to �P½τ� and
P½γ� separately, then taking the average of the stochastic mutual informa-
tion changeΔι over suchdistributionwould automatically reach the average
mutual information change ΔI . If the distribution is properly normalized,
thenwe would also automatically get the integral fluctuation theorem ofΔι.

The two-point measurement trajectory �P½τ� is obtained from the
projection on the system-reference eigenbasis, while the trajectory P½γ� is
obtained from the projection on the local basis of the system. If the system-
reference is an entangled state, then the joint system-reference eigen-
operator doesnot commutewith the eigenoperator of the local system.Then
it would be impossible to assign a joint distribution over the global trajectory
�P½τ� and the local trajectory P½γ�. For one evolution, such as USE in our
study, we can obtain different trajectories based on the different two-point
measurements. And there are no unified classical descriptions for these
different trajectories (measurement statistics), also known as the quantum
contextuality36.

To reconcile the noncommutative issue in the two-pointmeasurement
scheme, Micadei et al. proposed the conditional trajectory where the sta-
tistics of the local operator are conditioned on the global operator17. Based
on their idea, we can define a joint probability distribution including both
the statistics of the local and the global operators, given by

P joint½ζ� ¼ pða; bjkÞpðs; rjlÞjhkmjUSEjlnij2plpn; ð23Þ

with the stochastic variables ζ = {s, r, l, n, a, b, k,m}. Recall that each variable
is given by

ρS ¼
X

s

ps∣siS sh ∣; ρR ¼
X

r

pr ∣riR rh ∣;

ρE ¼
X

n

pn∣niE nh ∣; ρSR ¼
X

l

pl∣liSR lh ∣:
ð24Þ
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Here ρS, ρR, and ρE are the initial state of the system, the reference, and
the environment respectively. The joint initial state of the system and the
reference is denoted as ρSR. The final states give the variables

ρ0S ¼
X

a

p0a∣aiS ah ∣; ρ0R ¼
X

b

p0b∣biR bh ∣;

ρ0E ¼
X

m

p0m∣miE mh ∣; ρ0SR ¼
X

k

p0k∣kiSR kh ∣:
ð25Þ

Recall that the global trajectory

�P½τ� ¼ ∣hkmjUSEjlni∣2plpn; ð26Þ

with the stochastic variables τ = {l, n, k,m}, is consideredwhenwe study the
entropy production of the combined system and reference. It can be
obtained from the two-point measurement scheme on the joint eigenstates
of ρSR and ρ0SR. When one studies the entropy production of the system
alone, the local trajectory

P½γ� ¼ ∣hamjUSEjsni∣2pspn; ð27Þ

with the stochastic variables γ = {s, n, a,m}, is considered. One can easily see
that the global trajectory �P½τ� can be obtained by marginalizing the local
variables s, r, a, and b on P joint½ζ �, namely

�P½τ� ¼
X

s;r;a;b

P joint½ζ�: ð28Þ

However, the local trajectoryP½γ� cannot be properly defined from the
joint distribution P joint½ζ �. Specifically, we have

P½γ�≠
X

l;r;k;b

P joint½ζ �: ð29Þ

The joint distribution P joint½ζ� is designed from the global two-
point measurement scheme. The local operator statistics are obtained
after the global measurement is performed. Therefore the local
operator statistics obtained from the joint distribution P joint½ζ� is not
the same as the local operator statistics obtained from P½γ�. As a
consequence, we can only obtain the fluctuation theorem of the
entropy production of the combined system and reference from the
trajectory Pjoint½ζ �. Mathematically, we have

he�σSRiP joint ½ζ � ¼ 1; ð30Þ

with the entropy production σSR ¼ ln pl þ ln pn � ln p0k � ln p0m. How-
ever, the fluctuation theorem of the entropy production of the local system
can not be established from the trajectoryP joint½ζ�. In other words, one can
verify that

he�σS iPjoint ½ζ � ≠ 1; ð31Þ

with the entropy production σS ¼ ln ps þ ln pn � ln p0a � ln p0m. Since the
fluctuation theoremof σS is not properly established, one can also verify that

he�ΔιiP joint ½ζ� ≠ 1; ð32Þ

with the stochastic mutual information changeΔι = σSR− σS. Therefore the
informational fluctuation theorem can not be established according to the
joint conditional trajectory Pjoint½ζ�. If the joint conditional trajectory
P joint½ζ� is imposed in our tripartite setup, only the fluctuation theorem of
the classical information dissipation can be obtained39.

On the contrary, the quasiprobability trajectoryQ½ζ � defined in Eq. (3)
correctly intertwines with the local state entropy production σS and the
global state entropy production σSR, as shown in Eq. (20). It is impossible to

construct a classical trajectory (described by the classical probability) that
gives both the correct marginalized local and global trajectories. Therefore
the quasiprobability trajectory is inevitable for quantum processes. After all
the joint conditional trajectory Pjoint½ζ� is still classical. As shown in51,
quantum processes described by the classical trajectory can be efficiently
simulated on the classical computers, which obviously does not include all
the quantum processes.

Quasiprobability trajectories have negative values. Therefore Jensen’s
inequality can not be applied (in order to derive the quantum data-
processing inequality from the informational quantum fluctuation theo-
rem). However, the significance of the fluctuation theorem is not to prove
the positivity of its first-order average. The fluctuation theorem works as a
generating function on all orders of the distributions. As stated in49: “When
applying Jensen’s inequality, it is felt that a great deal of valuable information
concerning the statistics of the entropy production is lost.” The physical
interpretation of the informational fluctuation theorem is given by its high-
order statistics describing the information dissipation process, such as the
fluctuation-dissipation relation, Eq. (8). And the negative quasiprobability
distribution does not forbid us to obtain information of the high-order
statistics.

Moreover, we also want to emphasize the significance of the negative
quasiprobability. Instead of a “defect” as a distribution, many studies have
shown the advantage of negative quasiprobability in different contexts. For
example, the negative quasiprobability samplings distinguish the classical
and quantum computations51. In quantum metrology, the quantum
advantage stems from the negative quasiprobability distributions, which
output larger Fisher information52,53. Based on our results, we conjecture
that the error correction for the information dissipation with a negative
quasiprobability distribution needs to have additional requirements.
However, it is beyond the scope of our current work.

Initial and final state distributions
The Bell-diagonal state (between the system qubit and the reference qubit)
can be easily prepared on quantum computers, where two ancillary qubits
are required48. The corresponding quantum circuit is

ð33Þ

wherequbits 1 and2are ancillaryqubits.HereRy(θ) is the rotationgateony-
axis and H is the Hadamard gate1. The CNOT operation applying on the
ancillary qubit 1 (2) and the R (S) qubit gives the mixed state of R (S) qubit.
The latter Hadamard gate and CNOT gate transform the product states to
the Bell states. Measuring the RS qubits on Bell basis (which is also the
eigenbasis of the RS qubits), we have the probabilities

pl¼0 ¼ cos2
θ1
2

� �
cos2

θ2
2

� �
;

pl¼1 ¼ sin2
θ1
2

� �
cos2

θ2
2

� �
;

pl¼2 ¼ cos2
θ1
2

� �
sin2

θ2
2

� �
;

pl¼3 ¼ sin2
θ1
2

� �
sin2

θ2
2

� �
:

ð34Þ

Then local computational basismeasurement or the Bellmeasurement
on SR can reveal the initial distribution of ρSR. In our experiments, we
randomly choose the initial distribution, where the angles are set as
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θ1 = 0.7098π and θ2 = 1.7059π. It is easy to verify that the Bell-diagonal state
generated by the above two angles are entangled.

The thermal qubit (in the computational basis) can be prepared with
one ancillary qubit by the circuit

ð35Þ

where qubit 3 is ancillary. The angle θ3 is determined by the effective
temperature β, namely θ3 ¼ 2 arctanðeβÞ.

We set the unitary interaction between the system and environment
qubits as the controlled gate USE ¼ ∣0iS 0h ∣� 1E þ ∣1iS 1h ∣� YE , which
can be decomposed as one CNOT gate and one CZ gate. Although we can
choose the interaction between the system and the environment qubits
arbitrarily, choosing the specificUSE interaction is to take the advantage that
the controlled USE gate, given by ∣0i 0h ∣� 1SE þ ∣1i 1h ∣� USE , is the sim-
plest three-qubit controlled gate to be realized on the IBM quantum
computers54. The controlled USE gate is required to measure the quasi-
probabilistic trajectory.

Combined with the initial state setup, the final state is given by the
circuit

ð36Þ

Measuring the qubits R, S, and E in the computational basis can reveal the
statistics of the final state. Note that the final state ρ0SR is no longer entangled
(but classically correlated). The measured results, given by the simulators
and the real quantum processor ibm_lagos are shown in Fig. 3.

Measuring the quasiprobabilistic trajectory
The quasiprobabilistic trajectory Q½ζ � given in Eq. (9) is the multi-
plication of three amplitudes and the distribution of the initial state. The
amplitude can be measured in a interference-based manner, reported
in23. Suppose that we want to measure the amplitude 〈 f ∣U∣ f 〉 in terms of
the unitary evolution U. Firstly, we prepare the state
∣ψt0

i ¼ ð∣0i þ ∣1iÞ∣ f i= ffiffiffi
2

p
, where the first qubit provides the supperpo-

sition for interference. Then perform the controlled U-gate where the
first qubit is the control, which gives ∣ψt1

i ¼ ð∣0i∣ f i þ ∣1iU ∣ f iÞ= ffiffiffi
2

p
.

After that, the single-qubit gate Ry(θ) is applied to the first qubit, which
gives ∣ψt2

i ¼ ðRyðθÞ∣0i∣ f i þ RyðθÞ∣1iU ∣ f iÞ= ffiffiffi
2

p
. Then the probability

that the state ∣ψt2
i is projected on ∣0i∣ f i is Pð0; f Þ ¼ j 0h ∣h f jψt2

ij2, which
is equal to

Pð0; f Þ ¼ 1
2

cos2
θ

2

� �
þ sin2

θ

2

� �
jhf jUjf ij2 � sinðθÞRehf jUjf i

� �
:

ð37Þ
And the measured result ∣1i ∣f � has the probability

Pð1; f Þ ¼ 1
2

sin2
θ

2

� �
þ cos2

θ

2

� �
jhf jU jf ij2 þ sinðθÞRehf jUjf i

� �
:

ð38Þ
Knowing theprobabilitiesP(0, f) (orP(1, f)) and ∣〈f∣U∣f〉∣2, one can infer

the amplitude Rehf jU jf i. The imaginary part of 〈f∣U∣f〉 can be similarly
measured by replacing the single-qubit gate Ry(θ) with Rx(θ).

Converting the above scheme to the quantum circuit model, we have

ð39Þ

Fig. 3 | Statistics of the initial and final states measured by the IBM quantum
computer ibm_lagos. (a) is for the initial state and (b) is for the final state. The
ibm_qasm_simulator andibm_lagos_simulator are provided byQiskit,

which classically simulates the quantum computers without andwith the noises. The
probabilities are estimated based on 8192 shots of the circuits. The error bars are
given by 10 × 8192 shots of the circuits.
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The first qubit is the ancillary qubit providing the space for interference.
Here V is the operation preparing the state ∣f

�
. If the state ∣f

�
is not in the

computational basis, then the unitary operation V† is required in order to
project on ∣f

�
. If we need to measure the amplitude hf jUjf 0i, then addi-

tional unitary operations are required to transform ∣f 0
�
to ∣f

�
. In our

example, measuring the amplitudes 〈am∣USE∣sn〉 and 〈rs∣ψ(l)〉 needs three
qubits, while measuring the amplitude 〈ψ(l)n∣USE∣bam〉 requires four
qubits.

There is a free parameter θ in the above scheme. Based on Eqs. (37)
and (38),we can solve the amplitudeRehf jUjf i as the functionof the angleθ
and the probabilities P(0, f) and P(1, f) (assuming sin θ ≠ 0), given by

Rehf jUjf i ¼ tan
θ

2

� �
Pð1; f Þ � cot

θ

2

� �
Pð0; f Þ þ cot θ: ð40Þ

The state-of-art quantumcomputers are still verynoisy. Therefore the
measured probabilities P(0, f) and P(1, f) are likely deviated from the
theoretical values. However, if the deviation can be predicted, then
choosing the appropriate angles θ can still give the accurate amplitude
Rehf jUjf i. In other words, the noisy deviations in P(0, f) and P(1, f) are
canceled with each other in Eq. (40). We exploit such error mitigation
schemes in our experiments. The angles are decided by the noisy simula-
tion results. Qiskit includes the noisy simulation custom for each quantum
processor, where the noises are predicted based on the benchmarked
metrics of quantum computers. A systematical study on the above error
mitigation scheme for measuring the amplitudes will be addressed in the
future. The measured amplitudes, as well as compared to the theoretical
values, are presented in Fig. 4.

Experimental setups
We conduct all the experiments on the IBM quantum processor ibm_-
lagos, through the access of IBM Quantum Researchers Program. The
quantum computer ibm_lagos is a seven-qubit quantum computer with
the quantum volume 32. The typical metrics of ibm_lagos are as follows:
the average CNOT errors: 1.092 × 10−2; the average readout errors:

1.197 × 10−2; the average T1 time: 144.52 us; the average T2 time: 103.14 us.
The experiments are completed in two months due to the limited monthly
allocation of running hours. Therefore themetrics ofibm_lagos changed
in time. Both the circuits on measuring the initial or final state distribution
and the quasiprobabilistic trajectories are submitted with 8192 shots. Then
the probabilities are estimated by the distribution of 8192 outputs. The
standard deviations are obtained via repeating 10 times of the circuits with
8192 shots.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The Qiskit codes of this study are available from the corresponding author
upon reasonable request.
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