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Combinatorial optimization problems are ubiquitous and computationally hard to solve in general.
Quantum approximate optimization algorithm (QAOA), one of the most representative quantum-
classical hybrid algorithms, is designed to solve combinatorial optimization problems by transforming
the discrete optimization problem into a classical optimization problem over continuous circuit
parameters. QAOA objective landscape is notorious for pervasive local minima, and its viability
significantly relies on the efficacy of the classical optimizer. In this work, we design double adaptive-
region Bayesian optimization (DARBO) for QAOA. Our numerical results demonstrate that the
algorithm greatly outperforms conventional optimizers in terms of speed, accuracy, and stability. We
also address the issues of measurement efficiency and the suppression of quantum noise by
conducting the full optimization loop on a superconducting quantum processor as a proof of concept.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum
advantage in practical classical tasks.

Combinatorial optimization,which involves identifying anoptimal solution
fromafinite set of candidates, has awide rangeof applications across various
fields, such as logistics,finance, physics, andmachine learning.However, the
problem in many typical scenarios is NP-hard since the set of feasible
solutions is discrete and expands exponentially with the growing problem
sizewithout any structure that seems to admit polynomial-time algorithms.
As a representative NP-hard problem, MAX-CUT aims to find a bi-
partitionof the input graph’s vertices, such that thenumber of edges (or total
edge weights) between the two subsets reaches the maximum. Classical
approaches such as greedy algorithms and AI methods by graph neural
networks, despite remarkable attempts and progresses1–3, are generally
inefficient to address combinatorial optimization problems such as MAX-
CUT due to their NP-hard nature. In the recent two decades, quantum
computing approaches have emerged as a new toolbox for tackling these
difficult but crucial problems, including quantum annealing4–8 and quan-
tum approximate optimization algorithm (QAOA)9–13, from both theore-
tical and experimental perspectives. In this article, we focus on the latter
paradigm, which is fully compatible with the universal gate-based quantum
circuit model and is considered to be one of themost promising algorithms
in the noisy intermediate-scale quantum (NISQ) era for potential quantum
advantages.

In the QAOA paradigm, the exponential solution space is encoded in
the Hilbert space of the output wavefunction of a parameterized quantum
circuit. By this, the classical optimization problems in the discrete domain

are relaxed to a continuous domain composed of circuit variational para-
meters via QAOA as a proxy. However, the classical optimization over the
continuous circuit parameter domain is still challenging (the worst case is
NP-hard14) since the energy landscape of the QAOA ansatz is filled with
local minima and a large amount of independent optimization processes is
required to identify a near-optimal solution10,15. In addition, barren plateaus
can also emerge in the QAOA landscape with increasing qubit number or
circuit depth16–19. To overcome these optimization difficulties, various
learning-based20–28 or heuristic-based approaches10,29–33 have previously
been explored. These methods either rely on optimization data previously
obtained or require a huge number of circuit evaluation budgets in total by
progressively searching solutions of QAOA with different depths. A uni-
versally efficient and effective optimization approach suitable for real
quantum processors without prior knowledge remains elusive.

In this work, we design a gradient-free classical optimizer dubbed
Double Adaptive-Region Bayesian Optimization (DARBO), which exploits
and explores the QAOA landscape with a Gaussian process (GP) surrogate
model and iteratively suggests the most possible optimized parameter set
restricted by two auto-adaptive regions, i.e., an adaptive trust region and an
adaptive search region. The performance of DARBO for QAOA and ulti-
mately for combinatorial optimization problems in terms of speed, stability,
and accuracy is superior to existing methods. Furthermore, DARBO is
robust against measurement shot noise and quantum noise. We demon-
strated its effectiveness in extensive numerical simulations as well as a proof
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of concept demonstration of the quantum-classical optimization pipeline,
where QAOA is implemented and evaluated on a real superconducting
quantum processor using five qubits with integrated quantum error miti-
gation (QEM) techniques.

Results
QAOA framework with DARBO
MAX-CUT problem and a large family of combinatorial optimization
problems can be embedded into a more general formalism as quadratic
unconstrained binary optimization (QUBO)34, where the objective
function C(z) to optimize is in the form as follows in terms of binary-
valued variables z:

CðzÞ ¼
X
ij

wijzizj; ð1Þ

where wij can be regarded as the edge weights defined on a given graph.
TheQAOA framework is designed as a quantum-enhancedmethod to

solve these QUBO problems. The quantum circuit ansatz for QAOA con-
sists of the repetitive applications of two parameterized unitary operators.
We denote the number of repetitions as p, and the number of qubits (binary
freedoms in QUBO) as n. The quantum program ansatz is constructed as:

∣ψðγ; βÞ� ¼ Uðγ; βÞ∣0ni ¼
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whereX andZ are Paulimatrices oneach site andH areHadamard gate. The
trainableparametersγ andβboth consistp real-valued components, and the
outer classical training loop adjusts these parameters so that the objective
C(γ, β) = 〈ψ(γ, β)∣∑ijwijZiZj∣ψ(γ, β)〉 is minimized. Therefore, by utilizing
the QAOA framework, the optimization over discrete binary z variables is
reduced to the optimization over continuous variables of β and γ.

However, the continuous optimization problem still faces lots of
pressing challenges. In the QAOA framework, gradient descent optimizers
commonly utilized in the deep learning community do not work well. The
common ansatze consisting of a large number of parameters can enjoy the
benefits of over-parameterization and their global minima are easier to
locate35,36. However, QAOA ansatz has a small number of parameters and
thus a large number of local minima, which often destroys the effort of
conventional optimizers to identify the global minimum. Besides, barren
plateaus that render the gradient variance vanishing exponentially canoccur
similarly as the generic cases in variational quantum algorithms. More

importantly, gradient evaluations on real quantum chips are too noisy and
costly to use for a classical optimizer.

Bayesian optimization (BO) is a class of black-box and gradient-free
classical optimization approaches that can effectively optimize expensive
black-box functions and tolerate stochastic noise in function evaluations.
The method typically creates a surrogate for the unknown objective, and
quantifies and manages the uncertainty using a Bayesian learning
framework37,38. Although conventional BOhas become a highly competitive
technique for solving optimizing problems with a small number of para-
meters, it usually does not scale well to problems with high dimensions37–40.
Aside from the plentiful local minima in the exponentially large search
space, another challenge with BO is that the surrogate function fitting with
very few samples can hardly be globally accurate.

To overcome the above issues and enable efficient QAOA executions
on real quantum chips, we propose DARBO as a powerful classical opti-
mizer for QAOA. The schematic quantum-classical hybrid workflow for
DARBO-enabled QAOA is shown in Fig. 1. The advantages of DARBO are
both from its Bayesian optimization nature and the two adaptive regions
utilized in the algorithm. The idea of including an adaptive trust region is
directly borrowed from TuRBO38 and is inspired by a class of trust region
methods from stochastic optimization41. These methods utilize a simple
surrogate model inside a trust region centered on the current best solution.
For instance, COBYLA42 method used as a baseline in this workmodels the
objective function locally with a linear model. As a deterministic approach,
COBYLA isnot goodathandlingnoisyobservations. By integratingwithGP
surrogate models within an adaptive trust region, DARBO inherits the
robustness to noise and rigorous reasoning about uncertainties that global
BO enjoys as well as the benefits that local surrogate model enables. In
addition, the introduction of an adaptive search region makes DARBO
more robust to different initial guesses bymoving queries in some iterations
to a more restricted region. The search efficiency increases when the search
space is reduced by the adaptive search region, giving DARBO a higher
chance of finding the global minimum rather than local minima.

In this study, the end-to-end performance of QAOA with DARBO is
evaluated and benchmarked on the basis of analytical exact simulation,
numerical simulation with measurement shot noise, and quantum hard-
ware experiments (with bothmeasurement shot noise and quantum noise).
Overall, DARBO outperforms other common optimizers by a large margin
in terms of (1) efficiency: the number of circuit evaluations to reach a given
accuracy is the least, (2) stability: the fluctuation of the converged objective
value across different initializations and graph instances is the least, (3)
accuracy: the final converged approximation ratio is the best, and (4) noise
robustness: theperformance advantage is getting largerwhennoisepresents,
which is unavoidably the case on quantum processors.
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Fig. 1 | The proof-of-concept workflow for error mitigated QAOA on the
superconducting quantum processor with DARBO. We compile and deploy the
5-qubit QAOA program for given objective functions on a 20-qubit real super-
conducting quantum processor and evaluate the objective value with quantum error

mitigation methods. DARBO treats the QEM-QAOA as a black-box, and optimizes
the circuit parameters by fitting the surrogate model with constraints. The con-
straints are provided by the two adaptive regions, which are responsible for surrogate
model building and acquisition function sampling, respectively.
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We use approximation ratio r as a metric to measure the end-to-end
performance of QAOA. In MAX-CUT problem, r is defined as the ratio of
obtained cut valuederived fromtheobjective expectationover the exactmax
cut value (r = 1 indicates a perfect solution for the problem), and 1− r is the
(relative) approximation gap. Throughout this work, we investigate the
MAX-CUTproblemon thew3Rgraphwhich is a family of regularweighted
graphs whose vertices all have degrees of three.

Analytically exact simulation
Wefirstly report the results on optimization trajectories andfinal converged
objective values for analytically exact quantum simulation, which computes
the objective function by directly evaluating the expectations from the
wavefunction. Figure 2 shows the results for a collection of different opti-
mizers, including Adam43, COBYLA42, and DARBO. The results are col-
lected from five different n = 16 w3R graph instances, and for each graph
and each optimization method, the best record over 20 independent opti-
mization trials is reported. The results show the superior efficiency of
DARBO over other common optimizers. For all different p values, the
approximation gaps 1− r of Adam andCOBYLA are 1.02 ~ 2.08 times and
1.28 ~ 3.47 times larger than those of DARBO, respectively. In addition to
the efficiency and accuracy, the DARBO performance is also more stable in
terms of different problem graph instances. The optimization settings, five
graph instances and the results of more choices of common optimizers are
shown in SupplementaryNotes 1–3, respectively.We also report the fidelity
of three chosen optimizers on different sizes of the graphs in the Supple-
mentaryNote3,which essentially gives theprobability of obtaining the exact
solution state from measuring the QAOA circuit.

It is worth noting that stability is of great importance for optimizing
over the QAOA parameter landscape, as the great number of local minima
requires generically exponential independent optimization trials to reach a
global minimum10. As a result, with the increasing depth p of QAOA, the

optimizationproblembecomesharder, andwe see thatAdamandCOBYLA
do not even exhibit a monotonic growth of the accuracy as p increases,
despite the fact that the cut size given by the optimal ∣ψðγ; βÞ� (over the
choice of 2p parameters (γ, β)) is clearly non-decreasing with p. The reason
of the performance drop is due to a lack of training stability and the sen-
sitivity on initial parameter choices for conventional local optimization
methods. DARBO, on the contrary, does give better results with large depth
p. In other words, one important optimization advantage brought by
DARBO is its capability of finding the near optimal parameters with a small
number of independent optimization trials, which are not enough to locate
the global optimal parameters for conventional optimizers. Some advanced
optimizationmethods such as FOURIERheuristics reported in ref. 10 can be
good at locating global minimum but depend on progressive optimization
on lower-depth QAOA, leading to a much larger total amount of required
circuit evaluations.

Numerical simulation with finite measurement shots
With the introduction of noise, DARBO shows more advantageous results
compared to other optimizers, including Adam43, COBYLA42 and SPSA44.
In Fig. 3, we show the optimization results ofQAOAon five different n = 16
w3R graph instances with p = 10 with different measurement shots at each
iteration, and for each graph and each optimizationmethod, the best record
over 20 independent optimization processes is reported. For results on
QAOA of different p, see Supplementary Note 4. Since QAOA for MAX-
CUThas a commutable objective function, the budgets of themeasurement
shots are all taken on the computational basis. It is natural that with more
measurement shots, better accuracy could be achieved for the objective
evaluation. Taking m as the given number of measurement shots, we
evaluate the final QUBO objective by reconstructing from measurement
bitstrings represented by binary valued zij = ± 1 where i ≤m runs over dif-
ferent shots and j ≤ n runs over different qubits. The objective value C is

Fig. 2 | QAOA optimization for MAX-CUT problem on w3R graphs (exact
simulations). All the optimizations are performed on n = 16 w3R graphs. a–e The
optimization trajectories from different optimizers, i.e., Adam (in blue color),
COBYLA (in red color), and DARBO (in green color) are plotted versus the number
of circuit evaluations. Results on different circuit depths from p = 2 to p = 10 are
reported, respectively. fThe final converged approximation gap 1− r after sufficient

numbers of optimization iterations. For each circuit evaluation, we query the exact
expectation of the objective function via numerical simulation. Each line is averaged
over five w3R graph instances, where the shaded range shows the standard deviation
of the results across different graph instances. For each graph instance, the best
optimization result among the 20 independent optimization trials is reported. The
error bar in (f) shows the standard deviation across different graph instances.
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estimated as:

C ¼ 1
m

Xm
i¼1

Xn
j¼1

Xn
k¼1

wjkzijzik: ð2Þ

This value is a random variable with a Gaussian distribution whose mean
value is determined by the analytical expectation value of the objective
function, and the standard deviation is controlled by the number of total
shotsm with 1ffiffiffi

m
p scaling.

ForDARBO,we can reach a satisfying optimized objective valuewith a
small number of circuit evaluations, e.g., 200 measurement shots at each
round are more than enough. The optimization efficiency gets further
improved with an increased number of measurement shots. In Fig. 3, the
approximation gaps 1− r of Adam, COBYLA, and SPSA are 4.20 ~ 4.59,
3.95 ~ 4.10, and 4.07 ~ 4.79 times larger than those ofDARBO, respectively.
Besides, the solution quality from DARBO across different problem
instances is impressively stable. The efficiency, accuracy, and stability of
DARBO are all much better than those of other optimizers evaluated in our
experiments. In addition, the performance gap betweenDARBO and other
optimizers is getting larger compared to the infinite measurement shots
(analytical exact) case, which reflects the noise robustness and adaptiveness
of our proposed optimizer.

As a gradient-free optimization approach, Bayesian optimization has
the advantages of robustness to noise and rigorous reasoning about
uncertainty. Naïve BO methods have already been utilized to optimize
variational quantum algorithms45–48, but they often suffer from the low
efficiency. Benefiting from the adaptive trust region and local Gaussian
process (GP) surrogate model, DARBO has better potential to optimize
noisy problems38. Instead of directly using the currently best-observed
solution x*, we use the observation with the smallest posterior mean under
the surrogate model, and therefore the noise affecting x* has limited effects
on the optimization. DARBO is specifically suitable for optimization with
shot noises induced by statistical uncertainty of finite measurement shots,
since its GP surrogate model assumes that the observations are Gaussian-
distributed random variables49 which is consistent with the case for mea-
surement results with finite shot noises.

Experiments on superconducting quantum hardware
Finally, we run QAOA equipped with DARBO on real quantum hardware
to demonstrate its performance. Quantum error, in addition to shot noise,
has a huge impact onoptimization performance on real quantumhardware.
It has been studied that quantum noises would in general flatten the
objective function landscape and induce barren plateaus in variational
quantum algorithms18. Here we investigate the effect of quantum noise on
the performance of DARBO for QAOA, and at the same time analyze how

the common errormitigation strategies50–53 can help in theDARBOprocess
and achieve better end-to-end results.

The target problem is to optimize a five-variable QUBO (see Supple-
mentary Note 5 for the problem definition in detail). The experimental
results are shown in Fig. 4. We carry out the optimization on (1) raw
objective value directly evaluated from measurement results on real hard-
ware, (2)mitigation objective value evaluated frommeasurement results on
real hardware with integrated quantum error mitigation techniques
including layout benchmarking, readout error mitigation, and zero-noise
extrapolation, see “Method” for more details, and (3) numerical exact value
without quantum noise as a comparison. The optimization results are
shown in terms of objective optimization history and success ratio from
sampling the final QAOA circuit. Although the expectation value is con-
veniently taken as the objective value for the optimization process, the
success ratio is another important representativemetric to straightforwardly
evaluate the final performance of QAOA for the QUBO objective since the
true objective value can be directly reconstructed by the bitstringmeasured.

We noticed that DARBO conducted even on raw measurements can
improve the cut estimation from the initial value, although it is not good
enough compared to the ideal one due to the large influence of quantum
noise. The optimization results combined with QEM are much better than
the raw evaluations, both in terms of objective evaluation and success ratio
from sampling the final QAOA circuit. Moreover, the performance gap
betweenoptimization on themitigation value fromexperiments and that on
the ideal value from numerics becomes larger for larger p, which is con-
sistent with the fact that deeper circuits bring larger quantumnoise. Still, we
show that a deeper QAOA with p = 2 gives a better approximation of the
QUBO objective than a shallowQAOAwith p = 1, achieving a better trade-
off between expressiveness and the accumulated noise.

The raw data collected directly from real quantum hardware contain
both quantumnoises andmeasure shot noises, which are essentially the bias
and variances from the perspective of machine learning. In this QEM-
QAOA+DARBO framework, QEM helps to reduce the effects of bias on
the hardware (gate noises, readout noises, decoherence noises and so on) by
mitigating these errors, and DARBO avoids the negative influence of var-
iances from repetitivemeasurements (shot noises). Therefore, these two key
components together make the proposed framework a powerful optimi-
zation protocol for combinatorial optimization problems.

Discussion
With a better exploration of theQAOA landscape, the optimization routine
based on Bayesian optimization shows weak initial parameter dependence
and a better probability of escaping the local minimum. Although, in this
work, the dimension of the parameter spaces is still relatively low, an
interesting future direction is to generalize similar BO methods from the
QAOA setup to other variational quantum algorithms, which has a larger

Fig. 3 | QAOA optimization for MAX-CUT problem on w3R graph (simulation
with measurement shot noise).All the optimizations are performed on n = 16 w3R
graphs with p = 10. a–c The optimization trajectories from different optimizers, i.e.,
Adam (in blue color), COBYLA (in red color), SPSA (in brown color), and DARBO
(in green color) in terms of the number of circuit evaluations. Results for different
shot numbers from shots = 200 to shots = 5000 are reported, respectively. dThe final
converged approximation ratio 1− r after sufficient numbers of optimization

iterations. For each circuit evaluation, we collect the number of shot measurements
to further reconstruct the loss expectation value. Each line is averaged over five w3R
graph instances where the shaded range shows the standard deviation of the results
across different graph instances. For each graph instance, the best optimization
result from 20 independent optimization trials is kept. The error bar in (d) shows the
standard deviation across different graph instances.
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number of parameters. Recently, several advanced BO variants have been
proposed to increase the optimization efficiency and robustness in high-
dimensional problems40,54,55 and in problems with noisy observations39,56–58.
These approaches show superior optimization performances in challenging
benchmarks with large parameter sizes and the presence of noises. For
instance, an advanced BO approach could efficiently optimize a higher
dimensional problem (D = 385)54, and accurately find the best experimental
settings for the real-world problems in chemistry59, material sciences60, and
biology61. These cases are potentially relevant for optimization in variational
quantum eigensolver, quantum machine learning, and quantum archi-
tecture search scenarios.

We also note that the double-adaptive region idea in BO is a general
framework. The detail settings in the DARBO approach could be designed
differently for different optimization problems. As a future direction,
DARBO algorithm could be extended to include more than two adaptive
search regions, and the ranges of these regions themselves could also be
adapted during the optimizations.

To successfully scale the QAOA program on real quantum hardware
with meaningful accuracy, more pruning and compiling techniques for
QAOA deployment, as well as more error mitigation techniques, can be
utilized in future works. For example, by differentiable quantum archi-
tecture search-based compiling62, we can greatly reduce the number of two-
qubit quantumgates requiredwith even better approximationperformance.
There is also QAOA tailored error mitigation algorithm63 that trades qubit
space for accuracy.

In summary, we proposed an optimizer—DARBO suitable for
exploring the variational quantum algorithm landscapes and applied it to
theQAOA framework for solving combinatorial problems. The end-to-end
performance for combinatorial problems is greatly improved in both
numerical simulation and experiments on quantum processors. These
promising results imply a potential quantum advantage in the future when
scaling up the QAOA on quantum hardware, and give a constructive and
generic method to better exploit this advantage.

Methods
Double adaptive-region Bayesian optimization
In this work, the QAOA problem is formulated as a maximization problem
with an objective function of�L with D total number of parameters to be
optimized:

maxx2X � Lðγ; βÞ; ð3Þ

Generally, initialized with one randomly selected point from [0,1]D, a
Bayesian optimization (BO) algorithm optimizes a hidden objective

function y = y(x) over a search space X by sequentially requesting y(x)
on points x 2 X , usually with a single point in each iteration37,64. At
each iteration i, a Bayesian statistical surrogate model s regressing the
objective function is constructed using all currently available data
(x1, y1),…, (xi−1, yi−1). The next point xi to be observed is determined by
optimizing a chosen acquisition function, which balances exploitation and
exploration and quantifies the utility associated with sampling each x 2 X .
This newly requested data (xi, yi) is then updated into the available dataset.
ThisBOprocedure continuesuntil the predeterminedmaximumnumberof
iterations (1000 in this work) is reached or the convergence criteria are
satisfied. The general BO approach is available in the ODBO package61.

Gaussian process surrogate model. In this study, we use the Gaussian
process (GP)65 as the surrogate model40,55. With a given set of available
observations (X, y), GP provides a prediction for each point x0 as a
Gaussian distributed y0 ∼N ðμðx0Þ; σ2ðx0ÞÞ, where μðx0Þ (Eq. (4)) is the
predictive mean and σðx0Þ is the corresponding uncertainty (Eq. (5))

μðx0Þ ¼ kðx0;XÞTK�1y ð4Þ

σ2ðx0Þ ¼ k ðx0; x0Þ � k ðx0;XÞTK�1k ðx0;XÞ; ð5Þ

where k is a Matérn5/2 kernel function (Eq. (6)) with a parameter set
θ = {σv, l} to be optimized, andK ¼ kðX;XÞ þ σ2nI with a white noise term
σn

65. In this study, the variance parameter σv and isotropic lengthscales l
constructed by automatic relevance determination in the kernel k are
optimized by Adam43 implemented in GPyTorch66:

kðx; x0Þ ¼ σ2v 1þ
ffiffiffi
5

p
r þ 5

3
r2

� �
exp �

ffiffiffi
5

p
r

� �
; ð6Þ

where r ¼k x � x0k2=l.
The DARBO algorithm is inspired by one of the most efficient BO

algorithms, trust regionBayesianoptimization algorithm(TuRBO)38, which
performs global optimization by conducting BO locally to avoid exploring
highly uncertain regions in the search space. TuRBO was developed to
mainly resolve the issues of high-dimensionality and heterogeneity of the
problem and has been demonstrated to obtain remarkable accuracy on a
range of datasets38. We have applied TuRBO to QAOA problem and
identified its performance advantages. DARBO inherits the advantages of
TuRBO with an additional abstraction of the adaptive search region;
therefore, it further enhances the optimization efficiency of QAOA
problems.

Fig. 4 | Quantum optimization of a five-variable QUBO problem on real quan-
tum hardware. Measurement shots = 10,000. a, b show results from two circuit
depths p = 1 and p = 2 QAOA, respectively. The line is the average optimization
trajectory of five independent optimization trials, while the shaded area represents
the standard deviation across five independent optimization trials. Averaged loss
refers to the expectation value of the problem QUBO Hamiltonian. Raw (in orange
color): at each step, we obtain the loss expectation directly frommeasurement results

on the real quantum processor. Mitigation (in blue color): at each step, we obtain the
loss expectation from measurement results integrated with QEM techniques. Ideal
(in red color): at each step, we obtain the loss from numerical simulation. c The
success ratio when we run inference on the trained QAOA program, i.e., the
probability that we can obtain a correct bitstring answer for the problem on real
quantum hardware. The dashed line is the random guess baseline with a probability
of 1/16. We report the best success ratio of the five optimization trials.
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Adaptive trust region. In DARBO, instead of directly querying the next
best point for the quantum circuit, we first determine the two adaptive
regions, starting from the adaptive trust region. At optimization iteration
i, the adaptive trust region (TR) is a hyper-rectangle centered with the ith
base side length Lmin ≤ Li ≤ Lmax at the current best solution x*38. In our
case, theminimum allowed length Lmin = 2

−10, and themaximumallowed
length Lmax = 3.2. To obtain a robust and accurate surrogate for more
efficient acquisitions, the GP surrogate model is regressed locally within
the trust region, s.t. points far away from the current best solution cannot
affect the regression quality. If themost recent queried point is better than
the current best solution, we count the query in this iteration as a success.
Otherwise, we count it as a failure. To guarantee that it is small enough to
ensure the accuracy of the local surrogate model and big enough to
include the actual best solution, the TR (trust region) length Li is auto-
matically updated with the proceeding of BO cycles as follows:

L0 ¼ 1:6;

Li ¼
minðLmax; 2Li�1Þ; if ts ≥ τs

Li�1=2; if tf ≥ τf

(
ði≥ 1Þ

where τs and τf are the threshold hyperparameters for the number of the
maximum consecutive successes and that of the maximum consecutive
failures, respectively, and ts and tf are the actual numbers of consecutive
successes and failures in the current BOprocedure.We set τs = 3 and τf = 10
in this study. If Li reaches the minimum allowed Lmin before the end of the
execution, we rescale Li as Li = Li × 16. The introduction of TR could not
only enjoy the traditional benefits of robustness to noisy observations and
rigorous uncertainty estimations in BO, but also allow for heterogeneous
modeling of the objective functionwithout suffering fromover-exploration.

Adaptive search region.We alsomaintain a second adaptive region, the
adaptive search region, with the proceeding of the optimization. The
region is automatically determined by the switch counter cs, which counts
the consecutive searching failure number in the current search region.
Once cs reaches the maximum allowed consecutive failure hyperpara-
meter κs = 4, the adaptive search region switches to the other pre-
determined searching region. This also indicates that exploitation within
this current region might be currently exhausted. The adaptive search
regions serve as constraints for the parameters x. Only the points in the
current searching region will be considered as possible candidates to be
queried, and the switch counter allows BO search with different con-
straints. Inspired by the conclusion from ref. 10 that the parameter space
can be reduced in given graph ensembles the two adaptive search regions
are determined as A = [−π/2, π/2]D (the restricted search space) and
B = [−π, π]D (the full search space) in our study.

Note that the two adaptive regions take different roles in the DARBO
algorithm. The adaptive trust region provides a more precise surrogate
model around the best solution by limiting the training points to be fitted in
GP,while the adaptive search region constrains the candidate parameter sets
temporarily by switching between the restricted search space and the full
search space. In this work, to search more efficiently, we further restrict the
acquisition function to select new candidate points that lie in the overlap
between the TR and the adaptive search region, as in the default imple-
mentation of the ODBO package61. For the cases where there is no overlap
between the adaptive trust region and the adaptive search region, we reset
the trust region to be equal to the current adaptive search region.

Upper confidence bound acquisition function. In order to query the
next best point, acquisition functions that balance exploitation and
exploration using the posterior distributions from GP (Eq. eq:mu and
eq:sigma) are required. The point with the highest acquisition value is the
candidate point to be queried from the quantum circuit. In this study, we
only evaluate the points within the adaptive search region using upper

confidence bound (UCB)67 acquisition function in Eq. (7):

αUCBðxÞ ¼ μðxÞ þ βσðxÞ; ð7Þ

where β = 0.2 is a predefined hyperparameter to control the degree of
exploration, and μ and σ are the predictivemean and uncertainty from local
GP modeled with points in the adaptive trust region.

Quantum error mitigation
Besides the quantum algorithm, another key to operating experiments on
quantum devices is the investigation andmitigation of quantum errors.We
utilize a number of error mitigation methods in order to obtain desirable
results for our QAOA program.

Layout benchmarking. The qubit quality and the single- and two-qubit
gate fidelity vary across different quantum devices and vary over time.
Device error can be initially attenuated by selecting qubits with better
quality and links that host two-qubit gates with a lower error rate. These
metrics can be benchmarked and collected by calibration experiments,
including T1/T2 characterization and randomized benchmarking. In
particular, we chose two-qubit gates that are directly connected on
hardware to avoid additional swap manipulations introduced in quan-
tum compiling.

In order to further determine the circuit structures, especially the
applying order of those two-qubit couplings (all two-qubit couplings
commute with each other inQAOA forQUBOobjectives), we runmultiple
reference circuits by permuting those two-qubit gates under the same set of
parameters and identify the optimal circuit structure that shows the highest
fidelitywith the ideal state. These trial experiments provide valuable insights
on the circuit structures with overall low noise effects that balance the
influence of crosstalk and circuit depth. The key tradeoff in layout bench-
mark is that: on the one hand, for compact two-qubit gate layout, the overall
circuit depth is short, while there are more two-qubit gates applied at the
same timewhichmay induce larger cross-talk effect. On the other hand, the
two-qubit layout can be placed in a rather sparse fashion, which has less
cross-talk effects but takes longer physical evolution time. Therefore, we can
explore different two-qubit layouts to minimize the overall noise effect. In
our implementation, we use brute-force search. For systems with larger
sizes, greedy search or more advanced reinforcement learningmethods can
be explored for better scalability, which is an interesting future direction.

Readout error mitigation. The imperfect measurement operation on a
quantum circuit can result in readout errors that bias the original
quantum state to certain bit strings. The readout error on the device used
in the experiments is around 10−1. We mitigate the readout error by
several steps: (1) learn how the readout is biased by measuring states that
produce fixed bitstring outputs, (2) encode all deviations in a confusion
matrix, and (3) invert the confusion matrix and apply it to raw counts of
bitstrings to correct the measurement bias. The size of the confusion
matrix is 2n where n is the number of measured qubits. For the error
learning process, we tried both local learning and global learning modes.
The local learning process characterizes the readout bias on each single
qubit independently (involving 2 calibration circuits in the minimal
case), while the global learning process models the readout bias of the
Hilbert space expanded on all the qubits (involving 2n calibration circuits)
by capturing the readout correlation between qubits. We find that the
local learning is good enough in our experiments as the readout corre-
lation is negligible on the device we used.

Zero-noise extrapolation. Zero-noise extrapolation (ZNE) is one of the
most widely used error mitigation methods that can be applied without
detailed knowledge of the underlying noisemodel and exhibits significant
improvement in the results evaluated on quantumdevices. Themain idea
of ZNE is to obtain expectation values at several different error rates and
extrapolate to the zero noise limit according to those noisy expectation
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values. Suppose that two-qubit gates contribute themost of the errors, we
conduct experiments on different error rates [1, 3, 5] by locally folding
those two-qubit gates [U,UU†U,UU†UU†U] to avoid circuit depth that
challenges the coherence time. As for the experiments in the main text,
for p = 1 (p = 2), we adopt linear (quadratic polynomial) extrapolation to
estimate the mitigated results. All the expectation values used in ZNE are
firstly mitigated by readout error mitigation.

All the numerical simulations and quantum hardware experiments
including errormitigation in thiswork are implemented andmanagedusing
TensorCircuit68—a high-performance and full-featured quantum software
framework for the NISQ era.

Data availability
All graphs and results presented in this study are shared on a github
repository (https://github.com/sherrylixuecheng/EMQAOA-DARBO).
The additional figures for test results are shown in the Supplementary
Information and the full statistics of the optimized losses and r values are
included in a separate excel (Supplementary Data 1).

Code availability
The entire DARBO framework is available on github (https://github.com/
sherrylixuecheng/EMQAOA-DARBO) with example jupyter notebooks
and all the testing results. The example codes toperformQAOAevaluations
and DARBO optimizations are also available on TensorCircuit (https://
github.com/tencent-quantum-lab/tensorcircuit)68, and ODBO (https://
github.com/tencent-quantum-lab/ODBO)61.
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