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Statics and dynamics of non-Hermitian
many-body localization

Check for updates
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Many-body localized phases retainmemory of their initial conditions in disordered interacting systems
with unitary dynamics. The stability of the localized phase due to the breakdown of unitarity is of
relevance to experiment in the presence of dissipation. Here we investigate the impact of non-
Hermitianperturbationsonmany-body localization.We focuson the interactingHatano-Nelsonmodel
which breaks unitarity via asymmetric hopping. We explore the phase diagram for the mid-spectrum
eigenstates as a function of the interaction strength and the non-Hermiticity. In contrast to the non-
interacting case, our findings are consistent with a two-step approach to the localized regime.We also
study the dynamics of the particle imbalance. We show that the distribution of relaxation time scales
differs qualitatively between the localized and ergodic phases. Our findings suggest the possibility of
an intermediate dynamical regime in disordered open systems.

The investigation of isolated quantum systems has led to a remarkable
understanding of novel states ofmatter1,2. However, naturally occurring and
engineered quantum systems are typically coupled to an environment, even
if the coupling is weak. The dynamics of such open systems, over a reduced
set of trajectories, can often be described by an effective non-Hermitian
Hamiltonian which breaks unitarity3. These have been realized in pio-
neering experiments on photonic4–7 andmatter-light8–12 systems. The study
of non-Hermitian Hamiltonians allows an enriched classification scheme
for describing quantum matter13,14. For example, non-Hermitian systems
with parity and time-reversal symmetry can have real eigenvalues, much
like their Hermitian counterparts15–17. Non-Hermitian perturbations can
also lead to novel phases and phase transitions beyond the equilibrium
paradigm12,18–20. For a review of the applications of non-Hermitian sys-
tems see21.

An important class of isolated quantum systems are those that fail to
equilibrate on long timescales. This includes many-body localized (MBL)
phases which retain memory of their initial conditions, as observed in
analog anddigital quantumsimulators22–28. The fate ofMBL inopen systems
has also been investigated in cold atom settings via a controlled coupling to
the environment29–35. This is of considerable interest in solid state devices
due to their intrinsic coupling to other degrees of freedom36,37. The stability
of MBL has also been studied38,39 including the effects of local dissipation in
the Lindblad formalism29–32,40–43, and by coupling to delocalized environ-
ments; see for example35,44. Effectivenon-Hermitianmodels canalsoprovide
insight into the stability of quantum matter in the presence of coupling
to an environment. In the context of non-Hermitian MBL, pioneering
studies have focused on the link between the phase diagram and spectral

properties45, together with mobility edges46,47. Extensions of these investi-
gations have also considered wavepacket dynamics48 and the effects of
quasiperiodic potentials49,50.

In this work we explore the phase diagram of the interacting Hatano-
Nelsonmodel as a function of non-Hermiticity and the interaction strength;
see Fig. 1. Using exact diagonalization (ED), we provide evidence for a two-
step approach towards the localized regime, with a significant separation
between eigenstate and spectral transitions. The latter yields a dynamical
instability within the localized regime. We provide predictions for the
relaxation time scales of the particle imbalance with a view towards cold
atom experiments.

Results
Model
We consider an interacting version of the one-dimensional Hatano-Nelson
model51–55 with L sites and periodic boundary conditions
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where J is the hopping strength, g parametrizes the hopping asymmetry,
hi represents on-site disorder and U is the nearest-neighbor interaction
strength. For simplicity we consider hard-core bosons b̂i and b̂

y
i

where n̂i ¼ b̂
y
i b̂i. The disorder is drawn from a uniform distribution

hi∈ [−h,h]. The asymmetry in thehopping terms renders themodel non-
Hermitian when g ≠ 0. Throughout this work we consider half-filling and
set J = 1.
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As discussed in Supplementary Note 1, the model (1) can be derived
within the Lindblad formalism by assuming a specific form of the jump
operators56 and post-selecting on jump-free trajectories. It therefore pro-
vides auseful framework for investigating the stabilityofMBLwhencoupled
to an environment.Although the experimental realization of such systems is
hindered by the need for post-selection, thismay bewithin reach formodest
system sizes57,58. In particular, non-reciprocal transport has been realized in
cold atoms59 and non-Hermitian effects have been simulated with trapped
ions60. References 56,61,62 discuss the experimental realizations of non-
Hermitian models related to the model (1) using cold atoms.

Before embarking on a detailed study of themodel (1) wefirst discuss
some limiting cases. In the non-interacting limit with U = 0, all states are
localized for g = 063. However, for g ≠ 0 it undergoes a delocalization
transition51–55. In theHermitian case (g = 0)withU ≠ 0, themodel exhibits
an MBL transition36,64–67. In the clean limit (h = 0) the model exhibits
PT -symmetry breaking transitions in both the ground state and excited
state sectors with only the former surviving to the thermodynamic limit68.
In this paperwe study the interplay betweennon-Hermiticity andMBLby
considering both the mid-spectrum states of the model (1) and its
dynamics. To obtain the mid-spectrum states we employ ED and retain a
total of NT ¼ d0:04N e eigenstates (rounded up to the nearest integer)
which are closest to the mid-point of the spectrum, TrðĤÞ=N ; hereN ¼
ð L
L=2Þ∼ 2L=

ffiffiffi
L

p
is the dimension of the Hilbert space.

Symmetry
The non-Hermitian Hamiltonian (1) exhibits time-reversal symmetry
which ensures that the eigenvalues are either real or occur in complex
conjugate pairs45,69. In thenon-interacting limitwithU = 0 it has been shown
that the localized eigenstates correspond to purely real eigenvalues and the
delocalized states correspond to complex conjugate pairs51–55. At large dis-
order all states are localized for U = 0, corresponding to an entirely real
spectrum. In contrast, in the interacting case it is only the fraction of
complex eigenvalues that goes to zero. In fact, the number of complex
eigenvalues remains non-zero and grows exponentially with increasing
system size, as shown in Fig. 2. For weak disorder the number of complex
eigenvalues NC approaches the total number of computed eigenvalues
NT ∼ 2L=

ffiffiffi
L

p
but the number of real eigenvalues NR remains non-zero, see

Fig. 2a. Conversely, in the strong disorder regime the number of real
eigenvalues approaches the total number of eigenvalues but the number of

complex eigenvalues remains non-zero, see Fig. 2b. Aswe discussmore fully
below, in the many-body problem localized eigenstates may correspond to
complex eigenvalues.

Spectral transition
Following ref. 45 we first consider the behavior of the fraction of complex
eigenvalues f C ¼ NC=NT with increasing disorder strength, where the
overbar denotes disorder averaging. As shown in Fig. 3a the spectrumof the
Hamiltonian undergoes a transition at a critical disorder strength where fC
goes from increasing to decreasing with increasing system size45. However,
the number of complex eigenvaluesNC doesnot go to zerowith increasingL
in the strong disorder regime. This is in contrast to the non-interacting
(U = 0) case54. InFig. 1weplot the evolutionof this boundaryas a functionof
the non-Hermiticity g and the disorder strength h. It can be seen that at large
non-Hermiticity the transition occurs for larger disorder strength.

Eigenstate transition
Having established the locus of the spectral transition, we now turn our
attention to the stability of the eigenstates. In theHermitian case, one of the
hallmarks of localized eigenstates is their stability to local perturbations65.
An extension of this to the non-Hermitian case was suggested in ref. 45.
First, we denote the left and right eigenstates of the non-Hermitian
Hamiltonian (1) by ∣Ek

�
R and ∣Ek

�
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�
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�
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∣Ek with the complex eigenenergies Ek ¼ Ek þ iΛk. Denot-

ing the eigenstates which correspond to purely real eigenenergies by ∣Ek
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L we examine the quantity
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where V̂NH is a non-Hermitian perturbation and E0
k ¼ EkþL

EkjV̂NH jEk

� �
R is the perturbed eigenvalue. Here we take V̂NH ¼ b̂

y
1b̂2

Fig. 1 | Phase diagram of the interacting Hatano-Nelson model as a function of
the non-Hermiticity parameter g and the disorder strength h.We set the hopping
strength to J = 1 and the interaction strength toU = 2. The results are obtained using
exact diagonalization (ED) with L = 8, 10, 12, 14, 16 sites. The left boundary (blue
line) corresponds to the instability G of real eigenstates to a non-Hermitian per-
turbation (2). The right boundary (black line) indicates the spectral featurewhere the
fraction of complex energy eigenvalues fC goes from increasing to decreasing with
increasing L. Region I corresponds to unstable real eigenstates and increasing fC.
Region II corresponds to stable real eigenstates and increasing fC. Region III cor-
responds to stable real eigenstates and decreasing fC. The error bars indicate the
variation of the finite-size crossing points for each data set.

Fig. 2 | The number of real and complex eigenvalues in the interacting Hatano-
Nelson model as a function of the disorder strength h. a The number of complex
eigenvalues NC and b real eigenvalues NR both grow exponentially as a function of
the system size L. We set the hopping strength to J = 1, the interaction strength to
U = 2 and the non-Hermiticity parameter to g = 0.5. The black dashed line corre-
sponds to the total number of computed eigenpairs NT ∼ 2L=

ffiffiffi
L

p
. The data points

correspond to the mean over 104 disorder realizations. The error bars correspond to
the standard error of the mean; for weak disorder they are smaller than the markers.
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and the eigenstates are ordered with increasing E0
k. In Fig. 3b we plot the

evolution of the instability parameter G versus disorder strength for
different system sizes. It can be seen that the eigenstates are stable
(unstable) above (below) a critical disorder strength.However, the value of
the critical disorder strength differs from that obtained from fC. In Fig. 1
weplot the locus of the stability line obtained fromEq. (2). It can be seen to
be well-separated from the spectral transition in our finite-size
simulations. That is to say, the instability of the real eigenstates occurs
in advance of the spectral transition where fC→ 0 with increasing L. This
suggests the possibility of a two-step transition to the localized phase in
open systems. This is consistent with results obtained from the study of
mobility edges47.

Role of interactions
Having established the presence of two boundaries in the non-Hermitian
problemwenow turn our attention to the role of the interaction strength. In
Fig. 4 we show the evolution of the boundaries with increasingU for a fixed
value of the non-Hermiticity g. It can be seen that in the non-interacting
limit with U = 0 the transitions coincide52,54,70; that is to say the localization
transition coincides with the spectral transition from complex to fully real.
However, in the presence of interactions the phase structure changes. The
two transitions separatewith increasingU. This suggests the possibility of an
intermediate regime as one goes from weak disorder to strong, as found
in Fig. 1.

Dynamics
To further characterize the localized and delocalized phases, we turn our
attention to non-equilibriumdynamics.We focus on the particle imbalance
I(t) = ∣ne(t)− no(t)∣/[ne(t)+ no(t)] as measured in experiments on isolated
systems22. Here ne(t) and no(t) are the occupations of the even and odd
lattice sites, respectively. In the case of an initial density wave ∣Ψð0Þ� ¼
∣0101 . . .i the imbalance can be rewritten as

IðtÞ ¼ 1
N

����
XL

i¼1

ð�1Þi ΨðtÞjn̂ijΨðtÞ
� �����; ð3Þ

where N = L/2 is the total number of particles. The state of the system
evolves according to

∣ΨðtÞ� ¼ expð�iĤtÞ∣Ψð0Þ�

jj expð�iĤtÞ∣Ψð0Þ�jj ð4Þ

where the normalization is explicitly enforced; the operator expð�iĤtÞ does
not preserve the normof ∣Ψð0Þ�when Ĥ is non-Hermitian. In the context of
Lindbladian dynamics this corresponds to trajectories which are post-
selected on the absence of quantum jumps3,21.

To explore the impact of complex eigenvalues on the relaxation
dynamics, we consider the formation of a steady state in I(t). In Fig. 5a we
plot the time-evolution of I(t) in both the delocalized and localized regimes
corresponding to h = 3 and h = 18, respectively. In each case we take a single
realization of the disorder with at least one complex conjugate eigenvalue
pair in the spectrum. It is readily seen that I(t) approaches a steady state after
a time τ, as indicated by the red square markers. Heuristically, one expects
that τ is governed by the largest imaginary eigenvalue Λmax, corresponding
to the largest rate of amplification; the positive and negative imaginary parts
of the complex eigenvalue pairs correspond to amplification and decay,
respectively. This is borneout inFig. 5bwhich shows thedistributionof τ for
different disorder realizations and twovalues of the disorder strengthh; only
realizationswith complex eigenvalues in their spectra are considered for this
analysis. The dashed line is a guide to the eye showing τ ¼ Λ�1

max. A notable
feature of Fig. 5b is that the distribution of timescales changes markedly in
going from theweak to the strongdisorder regime. In the localizedphase the
distribution of the scaled quantity τΛmax shows a concentration of time-
scales in the vicinity of τ ¼ αΛ�1

max, where log10α≈1:3.However, in theweak
disorder regime we see a broader distribution of timescales which are only

Fig. 4 | Evolution of the phase diagram of the interacting Hatano-Nelson model
as a function of interaction strength U and the disorder strength h.We set the
non-Hermiticity parameter to g = 0.5 and the hopping strength to J = 1. The tran-
sition points and error bars are extracted using the method described in Fig. 3 using
the same system sizes. Regions I-III are defined in Fig. 1. The single-particle loca-
lization transition (red square) is computed from the crossing points of the fraction
of complex eigenvalues fC for L = 100, 200, 300. Inset: evolution of the width Δh of
region II, corresponding to the horizontal separation between the data points in the
main panel, as a function of U.

Fig. 3 | Determination of the locations of the spectral and eigenstate transitions.
a Variation of the fraction of complex eigenvalues fC as a function of the disorder
strength h for different system sizes L, with the non-Hermiticity parameter g = 0.5
and the interaction strength U = 2. The crossing point at h ≈ 10.8 shows the separ-
atrix between regions II and III in Fig. 1. An eigenvalue is considered real if its
absolute imaginary part is below 10−13 and complex otherwise. b Variation of the
eigenstate instability measure G as a function of the disorder strength h for different
system sizes L, with g = 0.5 and U = 2. The crossing point at h ≈ 9.1 shows the
separatrix between regions I and II in Fig. 1. In our finite-size simulations the
transitions in panels (a, b) are well-separated. The vertical shaded regions extend
between the lowest and highest values of h where the data for different values of L
cross. The vertical line (red) indicates the mid-point of the region. The mid-point
and region width are plotted as the markers and the error bars, respectively, in
Figs. 1, 4. In both panels the data points are computed as the mean over 104 disorder
realizations. The error bars corresponding to the standard error of the mean are
smaller than the markers.
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bounded from below by Λ�1
max. Moreover, the distribution of timescales

becomes elongated along the axis τ ¼ αΛ�1
max in the vicinity of the transition

region (region II), as depicted in Figs. 1, 4.
To explore this further we plot the distribution of τΛmax for different

values of the disorder strength. Thedistributiondevelops a sharp peak in the
vicinity of the eigenstate transition at h ≈ 10, for the chosen parameters. The
peak location at α ¼ τΛmax with log10α≈1:3 coincides with the relationship
observed inFig. 5, anddoesnot changewith increasingdisorder strength.To
show thismore clearly, in the inset of Fig. 6we plot the evolution of τΛmax at
the overall peak of the distribution shown in the main panel. The peak
location shifts to lower values with increasing h, becoming independent of h
in the localized phase. This is consistent with a direct relationship between τ
andΛ�1

max in the localized phase. This is inmarked contrast with the thermal
phase which shows a broader distribution without a sharp peak.

Discussion
The preceding analysis shows that the phase diagram in Figs. 1, 4 can be
interpreted in terms of the dynamical behavior of physical observables. In
particular, the presence of complex eigenvalues directly impacts on the
memory lifetime of the initial state. For weak disorder (region I), this
memory is lost due to the presence of complex eigenvalues, reflecting
delocalized eigenstates and non-Hermiticity. For intermediate disorder
(region II), thememory of generic initial states is still eroded due to complex
eigenvalues, despite the onset of localization. Nonetheless, the presence of
localized real eigenstates can lead to long-lived memory of the initial con-
ditions. Only at strong disorder (region III), where the vast majority of the
eigenvalues are localized, and the eigenvalues are real, do generic initial
states have long lifetimes. However, even here, this lifetime is not infinite—
there is always some residual decay due to the presence of complex
eigenvalues.

Although we cannot exclude the possibility that the eigenstate and
spectral transitions merge in the thermodynamic limit, the crossing points
are well-separated for a broad range of parameters and accessible system
sizes. This suggests the possibility of an intermediate region for at least part
of the parameter space. In contrast, in the single-particle limit of the
model (1), delocalization is always accompanied by complex eigenvalue
formation and vice versa. As such, an intermediate region is absent in the
single-particle case.

Conclusion
In this work we have investigated the phase diagram of the interacting
Hatano-Nelsonmodel as a function of the interaction strength and the non-
Hermiticity. We have mapped out two regimes for MBL via the mid-
spectrum eigenstates. In particular, we have shown that the delocalization
instability of the real eigenstates occurs at a weaker disorder strength than
the transition to a predominantly real spectrum.We have also explored the
non-equilibrium dynamics of this model and shown the appearance of a
dynamical signature in the vicinity of the eigenstate transition. It would be
interesting to explore the phase diagramof this problem in the frameworkof
Lindbladian dynamics. Finally, we note that the apparent extrapolation of
region II to infinitesimal non-Hermiticity in Fig. 1 is suggestive of it probing
the separation between landmarks in the Hermitian MBL transition42. To
rigorously establish or exclude such a connection would be an interesting
subject of future research.

Methods
The eigenvalues and eigenvectors of the model (1) are calculated via an
equivalent spinmodel using ED. The hard-core bosons aremapped to spins
using the transformation b̂i ! Ŝ

�
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Ŝ
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of the spin. The spin Hamiltonian is
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þ
iþ1 þ eg Ŝ
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Fig. 6 | The distribution τΛmax develops a sharp peak near region II of the phase
diagram. Distribution of τΛmax as a function of the disorder strength h. The non-
Hermiticity parameter is set to g = 0.5 and the system size is L = 14, as used in Fig. 5.
The distribution exhibits a broad maximum which shifts towards lower values with
increasing disorder strength h, as indicated by the black arrow. In the vicinity of the
transition region (region II) shown in Figs. 1 and 4 the distribution develops a sharp
peak, as indicated by the red arrow. The location of this peak occurs at τ ¼ αΛ�1

max,
with log10α≈1:3 in agreement with Fig. 5. Inset: The location of the overall broad
peak for L = 14 moves to lower values of α ¼ τΛmax with increasing disorder
strength. The value of α becomes independent of h in the localized phase
with log10α≈1:3.

Fig. 5 | The clustering of the relaxation timescale τ of the particle imbalance I(t) is
controlled by the largest imaginary eigenvalue Λmax at strong disorder. a Time-
evolution of I(t) for a fixed realization of the disorder with h = 3 (blue) and h = 18
(burgundy) selected to have at least one complex eigenvalue pair in the spectrum.We
set the non-Hermiticity parameter to g = 0.5 and the system size is L = 14. I(t) is well
approximated by a steady state after a time τ as indicated by the red squares. We
define τ as the time where ∣I(t)− I(∞)∣/∣I(∞)∣ < ϵ for all t > τ, where ϵ = 10−8 and
I(∞) = I(t→∞). The latter is inferred from exact diagonalization by setting ∣ΨðtÞ� in
Eq. (3) as the right eigenstate with the largest imaginary eigenvalue. bDistribution of
τ for different realizations of the disorder with h = 3 (blue) and h = 18 (burgundy). In
the localized phase the distribution of timescales clusters around a peakmaximum at
τ ¼ αΛ�1

max, where log10α≈1:3 depends on the definition of τ.
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The matrix elements of Ĥ are computed in a basis of product states using
QuSpin71. Figures 1–4 are obtained from the midspectrum eigenstates and
eigenvectors using the shift-invert ED routine in SciPy72; related algorithms
have been used in the Hermitian case73,74. The right eigenvectors are
obtained directly, and the left eigenvectors are obtained from the right
eigenvectors of the transposedmatrix. The dynamics in Figs. 5, 6 is obtained
by iterating Eq. (4) using small time steps δt. This avoids the growth
of the norm due to complex eigenvalues. Explicitly, we decompose

expð�iĤδtÞ ¼ PN
k¼1 ∣Ek

�
R exp ð�iEkδtÞL Ek

�
∣ using the completeness

relation Î ¼ PN
k¼1∣EkiR LhEk∣

21, where N is the dimension of the Hilbert
space. The largest time step δt is chosen so that the norm of a vector with
components expð�iEkδtÞ is kept below 10−10. The data in Fig. 5a is obtained
by sampling on a linear grid until t = 10−1 and logarithmically thereafter.

Data availability
The simulation data that have been generated and analyzed during this
study are deposited in the King’s Open Research Data System (https://doi.
org/10.18742/25130666)75.
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