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Aphasediagramstructure determines the
optimal sensitivity-precision trade-off in
signaling systems
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Signal transduction is crucial for many biological functions. However, it is still unclear how signaling
systems function accurately under noisy situations. More specifically, such systems operate in a
regime of low response noise, while maintaining high sensitivity to signals. To gain further insight on
this regime, here we derive a fundamental trade-off between response sensitivity and precision in
biological signaling processes under the static noise condition. We find that the optimal trade-off in
signaling networks can be better characterized by a phase diagram structure rather than topological
structures. We confirm that the patterning network of early Drosophila embryos agrees with our
derived relationship, and apply the optimal phase diagram structure to quantitatively predict the
patterning position shifts of the downstream genes, including hunchback, Krüppel, giant, knirps and
even-skipped, upon the dosage perturbation of the morphogen Bicoid.

In living organisms, signaling systems are crucial for many biological
functions, e.g., transmitting the environmental nutrient signal in bacteria
chemotaxis1, interpreting themorphogen concentration in thedevelopment
of multicellular organisms2,3, T cell activation in response to antigens in
immune systems4, and a variety ofmedicine signaling in disease treatments5.
However, how signaling systems can perform their functions with high
accuracy remains intriguing6,7.

To ensure proper functions, signaling systems need to be precise in
responding to external signals. However, they are inevitably exposed to
noise including randomness of molecular processes8,9, heterogeneity
between individuals9,10, and environmental fluctuation11, etc. At the same
time, signaling systems also need to be sensitive to signal changes. While
noise controlling mechanisms have been studied extensively, e.g., feedback
control12, pathway redundancy12–14, temporal average and spatial signal
integration14–18, etc., someof themare achievedby sacrificing sensitivity, e.g.,
the negative feedbackmechanism7. In recent years, there are some attempts
on revealing the relationbetween sensitivity andprecision for systemsunder
fluctuating noise resembling the fluctuation-dissipation theorem11, it is still
unclear on this relation for systems affected by static noise, signals affected
bywhich do not fluctuate over time but deviate from the population average
constantly (Fig. 1a). Hence, we focus on the static noise component in
this study.

To study the relationship between noise and sensitivity, instead of
following the conventional bottom-up approach, e.g., computationally
exploring different network topologies19,20, we attempt to directly derive
the relationship between response sensitivity and precision from a top-
down approach. Specifically, while the topological representation of
complex networks is widely utilized in network enumeration, some
recent seminal studies demonstrated that the geometric representation
(e.g., the landscape, phase space, or phase diagram) of a network can be
better at characterizing its function than the topological
representation21–26. Hence, we focus on the phase diagram structure,
which is amenable for analytical derivation.

In this paper, we establish a general relationship between response
noise and sensitivity in signaling systems containing static noise, and pro-
vide the optimal condition for achieving the lower limit of noise for given
sensitivity. Furthermore, we confirm that this optimal relationship is better
characterized by a defined phase diagram structure rather than some spe-
cific network topologies. We then apply this relationship in analyzing the
patterning network in early Drosophila embryos. The gene expression data
matches well with the derived noise-sensitivity relationship, and the pre-
dicted optimal phase diagram structure yields a parameter-free quantitative
explanation on the measured patterning shifts of the downstream genes
under Bicoid (Bcd) dosage perturbation.
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Results
The lower limit of response noise is bound by sensitivity
To address the trade-off between sensitivity and precision of the response in
signaling systems, we first focus on a simplified signal transduction process.
As illustrated in Fig. 1, the input (I) is static and encoded into two static
intermediate signals (S1;2)withnoise,which aredeterministically responded
to by a response module. This simplified process is a generalized feedfor-
ward cascade, i.e., I ! S1 ! R and I ! S2 ! R are two arbitrary feed-
forward pathways. Feedforward cascades are ubiquitousmotifs in biological
systems27, e.g., the osmotic stress response pathway in cells28, the multiple
morphogens transmitting positional information in multicellular
systems2,3,13, and the T cell activation pathway in immune systems4. In this
model, the consideration of two intermediate signals represents the simplest
non-trivial scenario (refer to Supplementary Note 1 for the derivation of
multiple intermediate signals). Here we focus on the static noise source
stemming from the encoding process, whereby the intermediate signals
(S1;2) exhibit variability among different individuals compared to the
ensemble average (Fig. 1a). This choice ismade as temporal fluctuations are
commonly dampened by mechanisms such as temporal averaging15–18

(further discussion on the effect of fluctuating noise alongside static noise is

provided in the Discussion). The response module could manifest as a
complex, multi-node regulatory network. For the purpose of examining the
properties of signal noise, we initially consider the response module to be
deterministic. Detailed exploration of its noise effect is reserved for the
Discussion.

The function of this signaling system can be characterized by two
important traits: sensitivity and precision. Given a single-valued response
curve of the system, to avoid negative values, we define sensitivity as
d Rh i=dI� �2

,where . . .h idenotes the ensemble average, anduse the response
noise (defined as the variance of the response σ2R) as a proxy for precision
(which negatively correlates to the noise) for convenience (Fig. 1c). Due to
the randomness in the intermediate signals, the response to a given input is
noisy. Hence, a trade-off between sensitivity and precision is expected
(Fig. 1d). For example, while a “constant response” can achieve high pre-
cision (zero noise) in a deterministic model, its sensitivity is also zero. Next,
we explore what is the general trade-off relationship and how to achieve a
lower noise limit for a given sensitivity.

The behavior of the response module in this signal system can be
characterized by aphase diagram (Fig. 2), onwhich a signal curve represents
the average intermediate signals under different inputs, and iso-response

Fig. 1 | Illustration of the trade-off between sensitivity and precision of the
response in a signaling process. a The noise of a biochemical signal SðtÞ can gen-
erally be decomposed into time-varying fluctuation around the temporal average �S,
and the static noise, i.e., the deviation of the individual temporal average from the
ensemble-temporal average �S

� �
. Our model focuses on the static noise. Green,

yellow and blue lines represent the signal in three hypothetical individual systems.
b In our model, a signaling system contains a response module (the dashed

rectangle) that responds to the external input I via two intermediate signals S1 and
S2. The response R is deterministic, while the noisy intermediate signals depend on
the input. cAs a proxy for the precision, the response noise is defined as the variance
of the response for a given external input. Error bars are the square root of the noise.
The response sensitivity is defined as the squared slope of the average response curve.
dGiven the response sensitivity, a lower limit on the response noise is expected. The
actual value of the noise relies on the detail of the system.
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curves are defined as points with the same response on the phase diagram.
Since in the feedforward cascade there is no feedback from the response
module to the intermediate signal, the intermediate signals encoding the
input can be expressed as:

S1;2 ¼ f 1;2ðIÞ þ a1;2η1;2; ð1Þ

where f 1 and f 2 are two arbitrary deterministic functions, a1;2 denotes the
noise amplitudes,η1 andη2 areGaussian randomvariableswith zeromeans,
unit variances, and a correlation coefficient ρ ¼ η1η2

� �
denoting the

encoding noise. The correlation between the two signals could stem from
their common external noise or interaction. Equation (1) without the noise
term is theparametric formof the signal curve on thephasediagram(Fig. 2).

While the form of the iso-response curve family is generally unknown,
to perform analytical analysis, we resort to the linear perturbation
approximation, which is a widely-used approach in studying systems near
fixed points. We will address the nonlinear interactions or large noise via
numerical simulations in the next section, and confirm that the sensitivity-
precision trade-off derived from the linear approximation is still valid.

In the neighborhood of the intersection point of the signal curve and
the iso-response curve R ¼ R0, we have R≈R0 þ ∇SR � ΔS. For signals
determined by Eq. (1), R≈R0 þ ∂R

∂S1
a1η1 þ ∂R

∂S2
a2η2. Combining with the

identities, d Rh i
dI ≈ ∂R

∂S1
f 01 Ið Þ þ ∂R

∂S2
f 02 Ið Þ, the slope of the iso-response

curve kr ¼ krðS1; S2Þ ¼ � ∂R
∂S1

= ∂R
∂S2
, and the slope of the signal

curve ks ¼ f 02 Ið Þ=f 01 Ið Þ, wefind that the response noise σ2R is proportional to
the response sensitivity d Rh i=dI� �2

, following:

σ2R ¼ hðR� R0Þ2i ¼ λ ×
dhRi
dI

� �2

; ð2Þ

where the structural factor λ ¼ k2r a
2
1þa22�2kra1a2ρ

ks�krð Þ2
1

f 01 Ið Þ2 is determined by the

structureof thephasediagram(kr), the encoding functions (f 1;2 and ks), and
the noise structure of the signals (a1;2 and ρ). For different response mod-
ules, kr in the structural factor is varying, which yields an inequality:

λ≥ λmin ¼ a21a
2
2ð1� ρ2Þ

ðk2sa21 þ a22 � 2ksa1a2ρÞ
1

f 01ðIÞ2
; ð3Þ

where λmin is only determined by the encoding function and the noise
structure, i.e., an external factor beyond the response module, which also
depends on f 2 asks ¼ f 02 Ið Þ=f 01 Ið Þ. Therefore, for a givenupstreamsignaling

pathway, the response noise (σ2R) and the response sensitivity d Rh i=dI� �2
of

a response module follow a general relationship:

σ2R ≥ λmin ×
dhRi
dI

� �2

: ð4Þ

To achieve the lower limit of response noise for given sensitivity or,
equivalently, to minimize λ with respect to the response module, the phase
diagram of the response module should follow:

kr ¼ � a22 � ksa1a2ρ
ksa

2
1 � a1a2ρ

: ð5Þ

Equation (5) defines the phase diagram structure for the optimal
response module in the signaling system under consideration here, and it
could be used to further predict behavior of the system, which we will apply
later in the patterning network in early Drosophila embryos. It is worth
noting that this result relies on the feedforward architecture of the signaling
cascade. If there exist feedback mechanisms from the response module to
the intermediate signals, the function f 1;2 could also become reliant on R,
thereby implying a potential extra dependency between ks and kr.

So far, we have derived a general relationship between the response
sensitivity and response noise representing the sensitivity-precision trade-
off, and the corresponding optimal phase diagram structure. An immediate
question is to search for potential optimal network topologies for the
response module to achieve the lower limit of response noise.

The optimal response module is defined by the phase diagram
To systematically explore the potential optimal network topology for the
response module with respect to the sensitivity-precision trade-off, we
enumerate all possible three-node network topologies, i.e., 3411 different
topologies after removing symmetric structures (see “Methods” section and
Supplementary Fig. 1a–c for details).

We apply a coarse-grained nonlinear model, using a sigmoid function
mimicking the saturation effect, to describe the network dynamics:

τi
dRi

dt
¼ 1

1þ expðr0i �
P

rjiRj �
P

rsjiSjÞ
� Ri; ð6Þ

whereRi (i ¼ 1; 2; 3) represents thenormalized instantaneous level ofnode i,
whose steady-state value is regarded as the response of the signaling system,
i.e., there are three responses of this system,Sj (j ¼ 1; 2) is the jth intermediate
signal, τi is the timescale of node i, r0i is a parameter of the regulatory
function, rji is the regulatory matrix representing the regulation from node j
to node i (rji>0 represents positive regulation, rji<0 represents negative
regulation), and rsji is the regulatorymatrix representing the regulation from
the jth intermediate signal to node i. To test the generalizability of the model,
we also apply different formalisms such as the gene circuit model29,30 or a
Monod–Wyman–Changeux (MWC) model inspired formalism31–33 to
describe the network dynamics (see Supplementary Note 2 for more details).

Throughout the simulation, we assume that the intermediate signals
encode the input as:

�
S1 ¼ e3ðI�1þa1η1þac1ηcÞ

S2 ¼ e�3ðIþa2η2þac2ηcÞ
; ð7Þ

where a1 ¼ ac1 ¼ 0:02, a2 ¼ �ac2 ¼ 0:03 represent noise amplitude, η1,
η2, and ηc are independentGaussian randomvariableswith zeromeans and
unit variances, η1 and η2 represent the independent part of the encoding
noise, ηc represents the common part of the encoding noise. For the other
parameters, i.e., the rji, rsji, and τi, we test 10,000 randomly chosen para-
meter sets for each network, and simulate 50 times for each parameter set to
evaluate the response noise and the response sensitivity (see “Methods”
section for details). This form of encoding function follows the classic
mechanism, synthesis-diffusion-degradation model, for morphogens

Fig. 2 | Illustration of a phase diagram of the response module. Different
responses, to various S1 and S2, are exhibited as different colors on the S1 � S2 plane.
The iso-response curves and the signal curve are two decisive geometric features. The
green curve denotes an example iso-response curve R ¼ R0. The signal curve (red
curve) represents the intermediate signals S1 and S2 under different external input I
without noise. The green and red dashed lines denote the linear extension and the
slopes, kr and ks, of the two curves at the intersection point, respectively.
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encoding positional information in multicellular organisms, e.g., the spatial
distribution of Bcd in the earlyDrosophila embryos34. In additional, we also
test twoother forms of the encoding function (see SupplementaryNote 2 for
more details).

The resulting noise and sensitivity from all different topologies, dif-
ferent parameter sets, and different input levels exhibit a clear trade-off
(Fig. 3a, only one-tenth of the data points are shown due to the limitation of
graphical computationpower), the lowerbound agreeswellwith the derived
equation without any parameter fitting (Eqs. (3) and (4)), despite the strong
nonlinearity. By combining the structural factor λ to the horizontal axis, the
data all collapse onto the predicted line described by Eq. (2) with the coef-
ficient of determination being R2 ¼ 1:00 under the logarithmic scale
(Fig. 3b). In the analysis, we exclude the resulting data points exhibiting
multistability since their apparent response noise is dominated by the gap
between different stable states rather than the encoding noise (see “Meth-
ods” section and Supplementary Fig. 1d for details).

Generally, as long as the noise is low enough to fulfill the linear
approximation in deriving Eq. (4), our result remains unaffected by varying
the mathematic formalism of the dynamical system (Eq. (6)). This includes
employing different formalisms of Eq. (6) such as the gene circuit model29,30

or an MWC inspired model31–33 (Supplementary Fig. 2a, b), altering the
noise correlation between the two intermediate signals (Supplementary
Fig. 2c, d), and adjusting the form of the encoding functions (Eq. (7))
(Supplementary Fig. 3). Further details can be found in Supplemen-
tary Note 2.

However, we could not identify any network topology that is
apparently preferred in achieving the lower bound of the response noise.
To evaluate the performance of each topology, we calculate its optimal
tendency (OT), defined as the proportion of the simulation results that lie
close to the lower bound (λ ≤ 1:1λmin) (the statistic is different from the
Q-value measuring network robustness19,35, as it is not based on para-
meter sets, but the individual resulting points in Fig. 3). The histogram of
the OT values shows a unimodal distribution with no obvious long tail or
extra peak in the higher end (Fig. 4a). Besides, we find that the OT values
for different network categories do not depend on their feedback types,
i.e., the number of positive-feedback or negative-feedback sub-circuits
(Fig. 4b). These results suggest that network topologiesmay not affect the
performance of a response module regarding the sensitivity-precision
trade-off. Moreover, by performing a hierarchical clustering, which is a
promising method in searching core topological structures19, for the
high-OT network topologies (the top 2% of all networks, see “Methods”
section for details), we find no distinct clusters (Fig. 4c), indicating no

characteristic topological structure can be identified.We further perform
a t-distributed stochastic neighbor embedding (t-SNE) (Fig. 4d; see
“Methods” section for details) for the high-OT networks, which also
suggest no obvious separable clusters. One concern is that the three-node
network is not the minimal module to achieve the optimal trade-off
between sensitivity and precision. Therefore, we also test the topological
structures in the simplest case, i.e., one-node network topologies, and
confirm that no dependence on the type of auto-regulation (see Sup-
plementary Note 3 and Supplementary Fig. 3c–f for details). These
analyses indicate that the phase diagram structure, rather than the net-
work topology, can better characterize the optimal response module.

The patterning network in earlyDrosophila embryos is optimized
After numerically testing the noise-sensitivity relationship on coarse-
grained three-node networks, we further test whether it can be applied in
real biological systems. Here we consider the intensively-studied gene reg-
ulatory network controlling the developmental pattern in early Drosophila
embryos24,30,32,36–39. During early Drosophila embryogenesis, multiple genes
express spatial patterns along themain body axis, i.e., the anterior-posterior
(A-P) axis. By considering theA-Pposition (x) as the input of the patterning
network and the gene expression level (G) as the response, the response
sensitivity is equivalent to the squared spatial slope of the gene expression
pattern, i.e., dG=dx

� �2
.

Based on this idea, we extract the gene expression noise and sensitivity
in the published data set38, combine the data of 7 different gene expression
patterns including hunchback (hb), Kruppel (Kr), giant (gt), knirps (kni),
even-skipped (eve), runt (run), and paired (prd), and observe a global trade-
off (Fig. 5a). Furthermore, the identified lower bound agrees well with the
derived relationship (Eq. (4)). Moreover, near the respective boundary
positions of each pattern, the data lie close to the lower bound (Fig. 5b, for
other genes, see Supplementary Fig. 4). Therefore, it suggests that the pat-
terning network, at least for the gene expression boundaries, could be
optimized.

To further test this hypothesis, we estimate the structure factor of the
underlying patterning network by modifying Eq. (2) as λest. ¼ σ2G=

dG
dx

� �2
since the structural factor can be used to evaluate the distance
from optimality (Fig. 3a). A clear negative correlation between λest.
and dG=dx

� �2
is observed (Fig. 5c, the Pearson correlation coefficient ρ ¼

�0:90 under the logarithmic scale), suggesting that the gene expression
boundaries are being optimized in the patterning network. In contrast, the
randomly generated networks, used in the previous section, only exhibit a
mild negative correlation (Fig. 5d, ρ ¼ �0:20, under the logarithmic scale).

Fig. 3 | The noise-sensitivity relationship of all three-node network topologies.
a The lower bound of response noise clearly depends on the response sensitivity in
the simulation data (dots), which aligns well with the theoretical prediction (dashed
line, Eq. (4)). Data with dR=dI

� �2
≤ 10�10 are discarded due to the limited precision

in numerical simulations. Results without stable steady-state solutions or with

multistability are also discarded. In our simulation, all three nodes receive the
intermediate signals indicated by the red and blue triangles in the inset. b By
combining the structural factor λ to the horizontal axis, data from all network
topologies (dots) align well with the theoretical prediction (red dashed line, Eq. (2))
with the coefficient of determination R2 ¼ 1:00.
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Subsequently, assuming thepatterningnetwork is optimized,wederive
its phase diagram structure, which is then utilized to predict additional
behaviors of the patterning network. Considering the patterning network as
a highly coarse-grained model, we depict it as a signaling system in accor-
dance with the framework proposed in Fig. 1b. Here, the input variable
becomes theA-Ppositionx, and the intermediate signals representmaternal
morphogen concentrations. In this setup, the feedforward pathway is
modified to x !maternalmorphogens! downstream gene expression. It
is worthmentioning that the resultant downstream gene expression pattern
is an outcome of the downstream gene regulatory network, which interprets
the signals conveyed by maternal morphogen concentrations. It is well
known that multiple maternal morphogens encode the positional infor-
mation and govern patterning36, e.g., Bcd, Nanos (Nos), Caudal (Cad),
Torso (Tor), maternal Hb (mHb), and etc. For the sake of simplicity, we
consider two static maternal morphogens being the intermediate signals,
including a static proxy of Bcd (B) and a second posterior-originated
maternal morphogenM (Fig. 6a, b) following:

�
B ¼ expð�xL=‘Þ
M ¼ f ðð1� xÞLÞ ; ð8Þ

where x is the normalized relative A-P position ranging from 0 to 1, L ¼
Lh i þ aLηL denotes the embryo length, aL represents the variability

amplitude of embryo size, ηL is a Gaussian random variable with a zero
mean and a unit variance representing the variability of embryo size40,41,
ℓ = 0.165〈L〉 is the length constant of the Bcd profile41, and the function f
depicts the shape of the second maternal morphogen. Since we assume the
second maternal morphogen is originated from the posterior end, the
argument of its distribution function is the absolute distance fromposterior,
i.e., ð1� xÞL. Without losing generality, we use a normalized unit such that
Lh i ¼ 1. For simplification, this model only considers the embryo size
variability as the noise source. A more general model considering
independent noise terms is discussed in the Supplementary Note 4. The
identity of the second maternal morphogen could be an unidentified
morphogen36 or an effective morphogen integrating multiple known
maternal morphogens, nevertheless, this does not affect the results.

The deterministic response of the patterning network can be char-
acterized by a phase diagram and formulated as R ¼ R B;Mð Þ, where R
represents the expression level of a gene. Furthermore, the observed spatial
expression pattern is denoted as G xð Þ (Fig. 6c), i.e., on average

RðxÞ ¼ RðBðxÞ;MðxÞÞ ¼ GðxÞ: ð9Þ

On the one hand, following the procedure in deriving Eq. (5), we can
use the linear approximation to derive the optimal slope of the iso-response
curves.On the other hand,we can combineEq. (8) andEq. (9) to completely

Fig. 4 | The performance of all three-node network topologies. a The OT shows a
narrow distribution, indicating no apparent difference between topologies is pre-
sented regarding the trade-off. bNo clear dependence between OT and the number
of feedback loops (both positive and negative feedback). For illustration, the dot size
is set to be proportional to the number of network topologies in each category.
c Hierarchical clustering of the high-OT networks shows no characteristic traits in
the topological structure. Each row represents one network topology. Each column

represents one edge between nodes as indicated by the labels below each column.
Red, green, and black correspond to positive, negative, and no regulation, respec-
tively. The dendrogram on the left indicates the assigned clusters. The height of the
dendrogram indicates the average difference (Hamming distance) between two
clusters. d t-SNE result shows no distinct clusters for the high-OT topologies. Each
dot represents one network topology.

https://doi.org/10.1038/s42005-024-01567-z Article

Communications Physics |            (2024) 7:80 5



eliminate the influence of the noise term aLηL, which yields an analytical
form of the optimal phase diagram as:

RðB;MÞ ¼ G
‘ lnB

‘ lnB� f �1ðMÞ

� �
; ð10Þ

where the exact form of G is not required for our analysis. Based on this
optimal phase diagram structure, we further predict the average patterning
under Bcd dosage perturbation. To do that, Eq. (8) is modified as:

�
B ¼ D expð�x=‘Þ
M ¼ f ð1� xÞ ; ð11Þ

where D denotes the fold change of the Bcd dosage, and D ¼ 1 for the
wildtype (Fig. 6a). Combining Eqs. (10) and (11), we have the predicted
response at position x as:

Rðx;DÞ ¼ G
‘ lnD� x

‘ lnD� x � ð1� xÞ

� �
¼ G

‘ lnD� x
‘ lnD� 1

� �
: ð12Þ

Here we use f �1 f 1� xð Þ	 
 ¼ 1� x in the derivation to get rid of the
function f in the expression. Although the function f may not be invertible
in the whole domain x 2 0; 1½ �, we can dissect the x range into subdomains
in which it is invertible and perform the derivation from Eq. (10) for each
domain separately.

Combining with Eq. (9), the model predicts that a response R0 that
originally occurs at x0 as D=1, now shifts to x following:
Gðx0Þ ¼ R0 ¼ Rðx;DÞ ¼ Gð‘ lnD�x

‘ lnD�1Þ, and therefore x0 ¼ ‘ lnD�x
‘ lnD�1 yielding:

Δx ¼ xðD;R0Þ � x0 ¼ ‘ð1� x0ÞlnD: ð13Þ

This prediction serves as an independent validation for the observed
optimality (Fig. 5). Indeed, this parameter-free prediction agrees well with
the experimental data42,43 (with the coefficient of determination R2 ¼ 0:93,
Fig. 6d). In previouswork, the dosage of Bcdwas perturbed and the position
shifts of its downstream patterning were quantified including the bound-
aries or peaks of four gap genes hb, Kr, kni, and gt, and the peaks of a pair-
rule gene eve, along with the cephalic furrow (CF) position (see Supple-
mentary Fig. 5 for details).Most of the existing gene networkmodels cannot
quantitatively explain thesepatterningpositiondeviations as far asweknow.
Moreover, ourmodel uses one single dosage response function, i.e., amaster

Fig. 5 | The optimality of the expression boundaries of the developmental pat-
terns in early Drosophila embryos. a The expression data of 7 different genes
exhibits a global trade-off. As predicted, the lower bound of noise, indicated by the
dashed line, is proportional to the sensitivity following Eq. (4) with λmin ¼ 0:0072.
We use the published data38, only the gene expression profiles within 40 ~ 44min-
utes into n.c.14 are included here. bData near the Hb expression boundary lie close

to the lower bound (dashed line). Insert, the average Hb profile. For illustration, the
dots are colored according to the distance from the boundary. c, d The estimated
structural factor λest. of the patterning data, reflecting the distance to the lower
bound, exhibits a greater negative correlation to sensitivity (with a Pearson corre-
lation coefficient ρ ¼ �0:90) comparing to that in random networks (ρ ¼ �0:20).
Different color in c denote different genes as in a.

https://doi.org/10.1038/s42005-024-01567-z Article

Communications Physics |            (2024) 7:80 6



curve44, to explain the behavior of all measured patterns without any
parameter fitting. Since these different patterns are controlled by different
regulators and different network topologies, this result implies the uni-
versality of the relationship derived, it is also consistent with the numerical
simulation results that no preferred network topology can be identified to
achieve the optimal trade-off between sensitivity and precision.

The validity of the prediction in Eq. (13) hinges upon the assumption
that the second maternal morphogen conveys positional information
regarding the distance to the posterior pole. If the source of the second
maternal morphogen relocates away from the posterior pole, the prediction
will diverge from the experimental data. Nonetheless, despite the ongoing
uncertainty surrounding its identity, this assumption remains reasonable for
nearly all the proposed candidates for the second maternal morphogen to
the best of our knowledge.

We also test a more comprehensive noise structure for the maternal
morphogens, including the common noise from size variability discussed
above and additional independent noise, and find a similar result (see
Supplementary Note 4 and Supplementary Fig. 6 for details). As a com-
parison, a model with a single maternal morphogen, i.e., the threshold
dependent model45, exhibits a large deviation between prediction and
experimental data, i.e., a much smaller coefficient of determination R2 ¼
0:41 (Supplementary Fig. 6b).

Discussion
Signaling systems are critical for many biological functions. However, noise
inevitably affects their performance. In this study, we investigate the trade-
off between sensitivity and precision in near-steady-state signaling systems.
Here we only consider a static encoding noise. But for a real biological
system, other types of noise could affect the response behavior as well46,47.
For example, temporal fluctuating noise, either intrinsic or extrinsic, is
another potential noise source. While fluctuating noise can be well atte-
nuated by temporal averaging via positive feedback, without affecting the
sensitivity in signaling systems7,16, we find that the timescale of the dyna-
mical systemdoes not affect the performance regarding the noise-sensitivity
relationship we derived (see Supplementary Note 5). Therefore, our dis-
cussion of encoding noise could serve as an example for the, perhaps more
critical, static noise in signaling systems.

Besides the static noise as the only input noise, we apply several other
assumptions in the derivation of the trade-off relation and in the numerical
simulation for simplification, e.g., only two intermediate signals are involved
in the pathway, the output response does not show multistability, and the
input noise is low. However, we find that the discovered trade-off between

sensitivity and precision could still be valid if we relax the above constraints.
Firstly,we canmathematically derive the samenoise-sensitivity relation (Eq.
(4)) in pathways with an arbitrary number of intermediate signals (see
SupplementaryNote 1).When there is only one intermediate signal, Eq. (4)
becomes an equality reproducing the well-known noise propagation rela-
tion. Moreover, although we do not explicitly consider the interaction
between intermediate signals S1;2, the noise-sensitivity relation (Eq. (4))
remains valid in systemswhere S1;2 mutually regulate each other. This holds
true as long as the downstream network does not depend on dynamic
decoding, e.g., pre-steady-state decoding48. The encoding function (Eq. (1))
can be interpreted as a steady state relation, i.e., although S1;2 regulate each
other dynamically, there still exists a stable value depending on the input
level I. Hence the general formalism of the encoding function remains
unchanged, and subsequent derivations remain unaffected by this alternate
interpretation of Eq. (1). Secondly, the addition of intrinsic fluctuating noise
will only increase the response noise and, therefore, the derived inequality
(Eq. (4)) is conserved. For example, iffluctuating noise is added in the three-
node network simulation, the noise-sensitivity scatter plot remains nearly
the same as sensitivity is high enough albeit a plateau appears at low
dR=dI
� �2

end (see “Methods” section and Supplementary Fig. 7a, for
details). These plateaus resulted from intrinsic noise likely also appears in
the gene expression data of the patterning network in Drosophila embryos
when the sensitivity is low (i.e., low slope in the expression curves) (Fig. 5b
and Supplementary Fig. 4). Due to the interference of intrinsic noise, data of
an optimized system could also deviate from the lower bound on the noise-
sensitivity scatter plot, for example, the gene expression peaks of the
developmental patterns in early Drosophila embryos. Thirdly, the derived
trade-off relationship is still valid for multistable systems despite their
exceedingly high apparent noise dominated by the gap between different
stable states (Supplementary Fig. 7b). Since our definition of sensitivity is
based on the average response ( Rh i), multistable systems still have a con-
tinuous, single-valued average response curve, and the sensitivity is still well-
defined. Finally, although a rigorous derivationwithout the small noise limit
could be challenging, simulations show that the trade-off still shows up even
if the encoding noise (a1, a2, ac1, and ac2 in Eq. (7)) is increased by 10 times
(Supplementary Fig. 7c).

We notice that the trade-off between sensitivity and precision dis-
covered in our study is different from a previous published relationship
found in biological systems11, in which the response of a system to the input,
equivalent to d Rh i

dI in our framework, was found to be proportional to the
noise of the response, equivalent to the variance σ2R, i.e.,

d Rh i
dI / σ2R. We find

that the approximations in deriving that relationship are not justified in our

Fig. 6 | The Bcd dosage response of the patterning network in early Drosophila
embryos. a, b In the simplified model, the patterning network is assumed to be
controlled by two morphogens, including the Bcd gradient (B) and a posteriorly
originated gradient (M), that encodes the A-P position x. a The average Bcd profile
follows an exponential curve. b The shape of the secondmorphogen is arbitrary and

denoted by the function f . c The response of patterning network R could be the
expression level of different target genes, whose wildtype patterns are denoted as
G(x). d Based on the derived phase diagram structure, the predicted pattern position
shift, Δx= ℓ(1-x0) lnD, upon Bcd dosage perturbation (Eq. (13)) aligns well with the
experimental measured shift42 with the coefficient of determination R2 = 0.93.
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model (see Supplementary Note 6 for details). This suggests that different
noise structures could yield different trade-off relationships. Therefore, it is
crucial to determine what the dominant noise structure is before applying
specific theories. Our results could be an important step in extending the
fluctuation-response relationship to nonequilibrium systems while static
noise, rather than temporal fluctuation, are under consideration.Moreover,
it has been proposed that fluctuations can be attenuated by consuming
energy6, and dynamical decoding temporal-modulated signals can reduce
the noise-induced information loss48,49. It remains to take the energy dis-
sipation and dynamic signaling into account to further explore the trade-off
between sensitivity and precision of biological signaling systems.

Our results reveal a design principle for the response module in sig-
naling networks to achieve optimal performance regarding the sensitivity-
precision trade-off. This design principle can be characterized by a phase
diagram structure as given by Eq. (5), but not a network topological
structure. In short, the iso-response curve and signal curve are better to be
near orthogonal rather than near parallel to each other, while the specific
optimal condition is given by Eq. (5) (Supplementary Fig. 3f). With this
optimal phase diagram structure (Eq. (5)), we can predict non-trivial
behaviors of the system even without knowing the real network topological
structure. As a demonstration, we show the practicality of this phase dia-
gram method in a real biological system, the patterning network in early
Drosophila embryos (Fig. 5a, b), and derive a parameter-free prediction on
its behavior underBcddosage perturbation (Fig. 6, Eqs. (12) and (13)) based
on the optimal phase diagram structure (Eq. (10)). Although our model is
highly simplified (Fig. 6), the agreement between prediction and data sug-
gests that we might have captured a core property of this patterning
network.

In terms of modeling a complex network, the phase diagram repre-
sentation shows several advantages comparedwith themore widely applied
network topology representation. First, it is a technically more convenient
mathematical tool for analyzing some network functions. To analyze a
network topology, a set of ordinary differential equations (ODEs) is
needed20,32. However, ODE models always require some pre-defined func-
tions and contain many uncertain parameters even with proper coarse-
graining, while the phase diagram representation could contain fewer
parameters by coarse-graining andomitting irrelevant details, e.g., the linear
approximation in deriving the trade-off relationship (Eq. (2)). Besides, it
could be computationally-expensive to reveal design principles by network
enumeration and parameter sampling19,20,35,50, while analytical derivation
could be possible by utilizing the phase diagram representation, e.g., the
analytical derivation of the optimal phase diagram (Eqs. (5) and (10)).
Moreover, the phase diagram structure could be more tightly connected
with some network functions. Although many network topology motifs
have been identified to achieve certain biological functions27, it has been
reported that the connection between the function and the topological
structure could be loose in some scenarios21,22,51. In our example, the optimal
response module regarding the sensitivity-precision trade-off does not
correlate with its topology (Fig. 4, e.g., all topologies have a ∼ 6% chance in
achieving the optimal performance), but it can be mapped into a unique
phase diagram structure. It is worth noting that the exact value of the OT
peakpositiondepends largely on the chosen threshold forλ, i.e., the criterion
for good performance, it occurs near 6% when choosing λ≤ 1:1λmin.

Actually, the geometric representation including the phase diagram
has been successfully applied to study a variety of complex biological
processes23,26,52–55. For example, a phase diagram can directly decode the cell
fate decision process in developing neural tubes (also referred to as a
decoding map)53. The gene-free geometric modeling has been applied to
construct a phase diagram, resembling the Waddington landscape, to
reproduce the cell fate dynamics in the vulval development in the nematode
Caenorhabditis elegans55–57. A geometric method is used to reveal the trade-
off between internal and external noise resistance in biological clocks23. A
Waddingtonian-like dynamical landscape can be constructed from quan-
titative gene expression data and accurately characterize the cell fate tran-
sition of pluripotent stem cells54. These studies imply that the topological

representation is no longer the necessary option for describing a complex
network.

It should be pointed out that the topological representation and geo-
metric representation are not mutually exclusive. The topological repre-
sentation provides a more intuitive image of the complex network and is
more straightforward when compared with gene-centered biological
observations.While thephasediagram isusually analyzed after constructing
the network topology of the dynamical system in the literatures, we propose
that the phase diagram structure could be determined theoretically in the
first place, and potentially as a constraint in constructing the network
topology of the dynamical system. This could be a complemental approach
in modeling complex networks.

Moreover, this approach resonates with an emerging method in
modeling based on first principles44,58,59, which does not heavily depend on
the experimental data as the widely used data-driven modeling. For
example, by optimizing the direction inference (i.e., inferring binary
information) against noisy sensory signals in a one-dimensional chemo-
tactic system, the resulting model based on information-theoretically opti-
mal dynamics is equivalent to the standard, experiment-based biochemical
chemotactic network model60. In addition, without data fitting, the para-
meters of the gap gene networkmodel in a topological representation could
be determined bymaximizing the positional information carried by the gap
gene patterns during Drosophila embryogenesis. Surprisingly, the gene
expressionpattern canbe nearlywell generatedwith this optimizednetwork
model32. These studies show that the principle-based top-down approach
can become a complement of the data-driven bottom-up method in con-
structing biological models.

In conclusion, we would expect that combining the phase diagram
representation with the data-free optimality approach could open a new
avenue in studying and designing complex gene regulatory networks.

Methods
Enumeration of three-node network topologies
Mathematically, the total number of the three-nodenetwork topologies is 39

considering 9 edges between 3 nodes and 3 possible types of regulation for
each edge, i.e., positive regulation, negative regulation or no regulation.
However, after discarding symmetric topologies, only 3411 different net-
works remain. Although each topology has at most 5 different symmetric
structures, i.e., 2 rotation symmetric operations between three nodes and 3
reflectional symmetric operations between the node pairs. There are 33 ¼
27 topologies that are identical to themselves in the rotational symmetric
structures, and36 ¼ 729 topologies that are identical to themselves inoneof
their reflectional symmetric structures (seeSupplementaryFig. 1 fordetails).
Therefore, after removing the symmetric topologies, 39þ2× 33þ36

6 ¼ 3411
network topologies remain.

Parameter sampling in network enumeration
In our simulation, 10,000 different parameter sets are sampled for each
network. Specifically, rji follows a Gaussian distribution with a zero mean
and a standard deviation of 10, their signs are changed according to the
topology, i.e., positive values for the positive regulation, negative values for
the negative regulation, and zero if no regulation is present for the target
node pair; rsji also follows a Gaussian distribution with a zero mean and a
standard deviation of 10; r0i ¼ �1 is the leakage; τi follows a log-uniform
distribution where the range of log10τi is 2, i.e., log10τi follows a uniform
distribution with a range of 2. In each parameter set, the timescale τi is
normalized so that the smallest one is 0:1. For each parameter set, its
response noise and sensitivity are evaluated with a random input signal
I 2 0; 1½ �. The response noise is evaluated by 50 repetitions with the same
parameters and variating S1;2 following Eq. (7).

Determination of multistability in simulations
The k-means clustering and mean shift clustering are combined to deter-
mine whether a result shows multistability. Specifically, k-means is used to
find the two steady-state values as the initial centers, the mean shift
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clustering is then applied to search the refined centers. If the result shows
monostability, the two identified centers will colocalize, otherwise, two
separate centers will be found. The threshold for colocalization is set to be
0:1, i.e., the two centers is defined as colocalization if their distance is less
than 0.1, and defined as multistability otherwise. No difference is noticed if
the threshold value is 0.5.

Network topology clustering
In the clustering procedure, a network topology is represented by a
9-dimensional vector, each dimension represents one of the 9 edges. The
value is 1, �1, or 0, if the corresponding edge is a positive, negative, or no
regulation, respectively. The pairwise distance between topologies is defined
as the Hamming distance between the corresponding vector, i.e., the
number of different edgesbetween the two topologies. Symmetric structures
are included for the clustering. In the t-SNEanalysis, the samedata structure
is used, i.e., each topology is represented by a 9-dimensional vector with the
value of 0; ± 1. The pairwise distance is also defined as the Hamming
distance.

Network enumeration with intrinsic noise
Another three-node network enumeration is performed to evaluate the
effect of intrinsic noise. In this simulation, Eq. (6) is modified as (Langevin
equation):

dRi

dt
¼ 1

τi

1
1þ expðr0i �

P
rjiRj �

P
rsjiSjÞ

� Ri

" #
þ aint;iηint;i;

where aint,i=0.01 (i ¼ 1; 2; 3) represents the amplitude of intrinsic noise,
ηint;i (i ¼ 1; 2; 3) denotes the white noise, which is described by an inde-
pendent Gaussian random variable with the autocorrelation function
hηint;iðtÞηint;iðt0Þi ¼ δðt � t0Þ, where δ t � t0ð Þ is the Dirac delta function.
Other parameters and the simulation scheme are the same as the simulation
in the main text.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The gene expression data in early Drosophila embryos (Fig. 5) can be
downloaded from publication38. The dosage response data (Fig. 6d) are
provided by the authors of the reference42 and shown in the supplementary
information (Supplementary Fig. 5). All other relevant data are available
from the authors upon reasonable request.

Code availability
All numerical simulations and data analysis are performed with MATLAB
2021b. The customcodes that support thefindings of this study are available
from the corresponding author on reasonable request.
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