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Collective non-Hermitian skin effect:
point-gap topology and the doublon-holon
excitations in non-reciprocal many-body
systems
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Open quantum systems provide a plethora of exotic topological phases of matter that have no Hermitian
counterpart. Non-Hermitian skin effect, macroscopic collapse of bulk states to the boundary, has been
extensively studied in various experimental platforms. However, it remains an open questionwhether such
topologicalphasespersist in thepresenceofmany-body interactions.Previousstudieshaveshownthat the
Pauli exclusion principle suppresses the skin effect. In this study, we present a counterexample by
demonstrating the presence of the skin effect in doublon-holon excitations. While the ground state of the
spin-half Hatano-Nelsonmodel shows no skin effect, the doublon-holon pairs, as its collective excitations,
display themany-bodyskineffect even instrongcoupling limit.Weestablish the robustnessof this effectby
revealing a bulk-boundary correspondence mediated by the point gap topology within the many-body
energy spectrum. Our findings underscore the existence of non-Hermitian topological phases in collective
excitations of many-body interacting systems.

Dissipation is a ubiquitously observed phenomenon in many physical sys-
tems. In quantum systems, the presence of the dissipation leads to complex-
valued eigenenergies, which mark the onset of non-Hermitian quantum
mechanics. Non-reciprocal interactions, which are typical in out-of-
equilibrium phenomena, are another important source of non-Hermiticity.
The broad applicability of non-Hermitian quantummechanics has attracted
considerable interest in various fields of physics, such as high-energy
physics1–4, optics5–10, cold atoms11–15, and condensed matter systems16–23.

Recent progress in the field of non-Hermitian topological phases has
showngreat promise indiscoveringnew types of topological phases24–36. The
non-Hermitian skin effect (NHSE),which exhibits themacroscopic collapse
of the eigenstates to the boundary, is the representative example37–52.
However, the fate of theNHSE in the presence of themany-body interaction
is still elusive. Previous studies reveal that the NHSE can be fragile against
many-body effects53–58. For instance, in the half-filled interacting Hatano-
Nelson model, the macroscopic accumulation of charge at the boundary is
generally prohibited by the Pauli exclusion principle.

In thiswork,wefirstly establish the case that theNHSE robustly exists as
a formof collective excitations.Unlike spinlessmodels, the antiferromagnetic
Mott insulator ground states of the spin-half Hatano-Nelson model harbor
the doublon-holon pairs as well-defined collective excitations even in strong

interacting limits. Here, we define the state which shows theminimum value
of the real part of complex energies as the ground state because the imaginary
part of energies is regarded as the dissipation character of non-Hermitian
states. While the ground state does not exhibit the NHSE, we show that the
excited stateswith the doublon-holonpairs show thehelical skin effect,where
the doublon and the holon exhibit the counterpropagating accumulations of
the charge at the opposite boundaries. We formally establish this exotic
collective NHSE by illustrating bulk-boundary correspondence mediated by
point-gap topology in the many-body energy spectra.

Results and discussion
Lattice model and symmetries
We consider the one-dimensional interacting Hatano-Nelson model of
spin-half fermions, which is described by the following Hamiltonian:

H ¼ �t
XL�2

l¼0

X
σ

eAcylþ1;σcl;σ þ e�Acyl;σclþ1;σ

� �

þ U
XL�1

l¼0

nl;"nl;# þ HB:

ð1Þ
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Here, cyl;σ (cl,σ) are the fermion creation (annihilation) operators with spin σ
(= ↑, ↓) at the l-th site, nl;σ ¼ cyl;σcl;σ is the number operator, and U is the
strength of on-site Coulomb repulsion between doubly occupied fermions.
The lattice size is denoted by L and A represents the imaginary vector
potential that introduces non-reciprocal hopping16,17. The boundary term
HB accounts for the hopping Hamiltonian between the end sites. For
example, in open boundary conditions (OBC), HB is 0, while HB ¼
�tðeAcy0;σcL�1;σ þ e�AcyL�1;σc0;σ Þ for periodic boundary conditions (PBC).
In general twisted boundary conditions (TBC), HB takes a form,
�tðeAþiϕcy0;σcL�1;σ þ e�A�iϕcyL�1;σc0;σ Þ, where ϕ represents the U(1)-gauge
(magnetic) flux.

The symmetry of the Hamiltonian depends on both boundary con-
ditions and the presence of the many-body interactions. In the non-
interacting limit (U = 0), under PBC and TBC the Hamiltonian operator is
normal (HH† =H†H), which allows to have orthonormalized eigenstates
(see Supplementary Note 1). The corresponding eigenvalue spectra in PBC
can form a closed contour with non-trivial point gap topology. In the cor-
responding OBC, the normality is lost. Instead, there exists the similarity
transformation with the invertible operation S that satisfies HA=0 = S−1HS,
where HA=0 is the Hermitian Hamiltonian without the imaginary vector
potential A (see Supplementary Note 2). As a result, all eigenvalues exhibit
purely real numbers59.

Even in the finite many-body interaction (U ≠ 0), we can find the
similarity transformation S such thatHA=0 = S

−1HS underOBC, resulting the
purely real eigenvalues. However, the normality is broken regardless of the
boundary conditiondue to the inclusionofU.Moreover,H for PBCandTBC
becomes PT -pseudo-Hermitian, where P and T are inversion and time-
reversal operators, respectively (see Supplementary Note 3). Consequently,
the eigenvalues are either real or occur in complex-conjugate pairs60.

Non-Hermitian skin effect
We represent the many-body eigenstates using orthonormal basis states:

∣Ψn

� ¼ YN
j¼1

cylnj ;σnj ∣vaci; ð2Þ

where lnj andσnjdenote the site index and spin state of the jth fermion for the
nth basis state, respectively. ∣vaci represents the vacuum state, and N is the
total number of fermions. The similarity transformation S such that
HA=0 = S−1HS underOBC is given as following (see SupplementaryNote 2):

S ¼
X
n

e
A
PN

j¼1
lnj ∣Ψn

�
Ψn

�
∣: ð3Þ

The non-orthonormal factor Cn Að Þ ¼ e
A
PN

j¼1
lnj causes coefficients of

eigenstates to vary exponentially with A, playing a crucial role in
determining the NHSE in many-body systems56,61.

With respect to the half-filled ground state (N = L), Cn(A) can vary
dependingon the distribution of doubly occupied sites, called doublons, and
empty sites, referred to as holons (see Supplementary Note 4). Explicitly, let
Nd be the total number of doublon-holon pairs. Cn Að Þ is expressed as

Cn Að Þ ¼ eA
LðL�1Þ

2 e
A
PNd

j¼1
ldnj�lhnj

� �
; ð4Þ

where ldnj and l
h
nj denote the site indices of the jth doublon and holon for the

nth basis state ∣Ψni, respectively. For states with no doublon-holon pair
(Nd = 0),Cn Að Þ reaches its minimumwith a constant value of eA

LðL�1Þ
2 . These

states exhibit little influence from the NHSE. On the other hand, for states
with finite doublon-holon pairs, Cn Að Þ grows exponentially as the strength
of A increases. The larger the segregation between doublons and holons,
quantified by

PNd
j¼1ðldnj � lhnjÞ, the larger Cn Að Þ becomes. Hence, the NHSE

in the half-filled case is characterized by the segregation of doublons
and holes.

The relation between the NHSE and the segregation of doublons and
holons can be explained by considering the non-reciprocalmobility of these
particles. As illustrated in Fig. 1, let us imagine that a doublon-holon pair
forms between neighboring sites in a half-filled state.When a positiveA > 0
is present, the hopping strength from the left site to the right site becomes
larger than the opposite direction. This enhances the fermion on the left side
of the holon site to preferentially occupy that site, leading to the holon’s
movement to the right. In contrast, one of the fermions occupying the
doublon site ismore likely to hop to the next site on the right, resulting in the
doublon’s movement to the left. As a result, doublons and holons become
separated and localized at opposite boundary sites under OBC. Conversely,
for PBC, doublons and holons merge again. This distinctive non-reciprocal
behavior of doublons and holons underpins the emergence of the NHSE in
the half-filled case.

In many-body systems governed by the Pauli exclusion principle, one
effective approach to demonstrate the NHSE is by quantifying the asym-
metry in the distribution of number density along an open-boundary
chain56. To achieve this, we calculate the number density distribution of the
right eigenstates using the formula: nREðlÞ ¼ hΨR

E j
P

σc
y
l;σcl;σ jΨR

Ei=hΨR
EjΨR

Ei.
This distribution’s asymmetry results in the number imbalance of fermions
located at below L/2 (0 ≤ l < L/2) and above L/2 (L/2 ≤ l < L) sites. We can
quantify this imbalance with the following formula:

IR
E ¼

X
L=2≤ l<L

nRE lð Þ �
X

0≤ l<L=2

nRE lð Þ: ð5Þ

The occurrence of non-zero values for IR
E is a distinctive indicator of the

many-body NHSE, as detected within right eigenstates.
Figure 2 exhibits the calculated number density distribution, clearly

showing that the asymmetric nature is present under OBC for both non-
interacting (U = 0) and interacting (U ≠ 0) cases. The corresponding finite
values of imbalance IR

E affirm this. However, the situation differs for PBC,
where IR

E consistently equals zero. These results depict the NHSE in non-
reciprocal many-body systems.

In the non-interacting case (U = 0), IR
E exhibits an arch-like pattern,

ranging from about 1 to roughly 7 for L = 8 as shown in Fig. 2a. In contrast,
strong interactions (U = 10t) yield a stair-like IR

E pattern. This can be
understood by the spectral properties of the Mott insulating region. With a
substantial Coulomb repulsion (U), eigenvalues mainly depend on U
strength, leading to sizable separations related to the number of doublon-
holon pairs (Nd). When Nd-dominated states prevail in the eigenstates, IR

E
attains a maximum value of around 2Nd for OBC. This feature is well
captured by Fig. 2b.

Furthermore, the non-reciprocal hopping causes opposing doublon
and holon propagation. Initially, they gather at opposing boundaries for
finiteA. ThePauli exclusionprinciple thendrives further accumulationnear
by initial sites. This pattern is visually evident in the calculated number
density distributions, depicted in Fig. 2c–f (see also Supplementary Fig. 2 for
the non-interacting case). Consequently, we deduce that the NHSE in the
many-body system can be understood through the segregation of doublons
and holons within the half-filled Hatano-Nelson model of spin-half
fermions.

Complex eigenspectrum and point-gap topology
As shown in Fig. 3a, for PBC, the eigenvalues of the Hamiltonian can take
either onpurely real values or form complex conjugate pairs. This originates
from the pseudo-Hermiticity of the Hamiltonian. To gain a deeper
understanding of the spectral properties, we analyze how eigenvalues
changewith the gauge fluxϕ underTBC. Figure 3b, c provides the trajectory
of complex eigenvalues when the real part of the eigenvalue lies between 4t
and14t (onedoublon-holon sector) andbetween39t and43t (four doublon-
holon sector), respectively.

As ϕ changes from 0 to 2π, complex eigenvalues undergo rotations
in the complex plane, effectively tracing closed paths alongside other
eigenvalues. This rotation ultimately results in non-zero integer winding
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numbers, which can be calculated using the formula:

W Ep

� �
¼

I 2π

0

dϕ
2πi

d
dϕ

log det HðϕÞ � Ep

h i
: ð6Þ

Here, Ep stands for the point gap of the complex energy54,55. This behavior
highlights the intriguing topological aspects inherent to the system.

In the non-interacting case, all complex eigenvalues wind around the
origin (E = 0). It implies that the point gap is straightforwardly identified at
the center of the complex plane (see Supplementary Fig. 3). However, in the
interacting case, as seen in Fig. 3b and c, multiple point gaps are not isolated
but emerge near the energy center of doublon-holon sectors. This multi-
plicity of point gaps defines the non-Hermitian topology of non-reciprocal
many-body systems.

In the strong interaction limit, the many-body NHSE does not emerge
for eigenstates mainly contributed to states with no doublon-holon pair in
the half-filled case. Correspondently, eigenvalues below zero remain purely
real even for PBC. In the second-order perturbation limit, the effective
Hamiltonian in no doublon-holon sector is described with the Heisenberg

interaction, given asHeff = J∑lSl ⋅ Sl+1
62, in the strong interaction limit (see

Supplementary Note 5).
When the total number of doublon-holon pairs is L/2, L/2 number of

doublons and holons occupy all lattice sites. In this situation, we can con-
struct the effective model using attractive half-filled hard-core bosons with
non-reciprocal hopping in the second-order perturbation limit. The effec-
tive attractive interaction, hopping strength, and imaginary vector potential
are estimated by Ueff ¼ � 4t2

U , teff ¼ 2t2
U , and Aeff = 2A, respectively (see

Supplementary Note 5). Since ∣Ueff ∣=teff ¼ 2 is much smaller thanU/t and
Aeff is the twice of A, the robustness of complex eigenvalues can be main-
tained even when U exceeds tmuch largely.

Topological transition and exceptional points
Due to the Hermitian nature of the Coulomb interaction part in Eq. (1), all
eigenvalues asymptotically converge to real numbers in theU-infinite limit
even for PBC. All complex conjugate eigenpairs in finite U eventually
transform into two real eigenvalues. This transition involves the gradual
separation of two real eigenvalues, following the merging of complex con-
jugate eigenpairs along the real axis. This spectral behavior resembles the
PT -phase transition63,64. Figure 4a, b well depict the sequential occurrences
of these transitions when U gradually increases.

We further examine the evolution of complex eigenvalues in the pre-
sence of the gauge flux ϕ under TBC. As shown in Fig. 4c–f, complex
conjugate eigenpair are connected by the ϕ evolution before the transition,
while that eigenpair get separated after the transition. It implies the winding
number in Eq. (6) changes undergoing the transition, giving the different
point-gap topology56,63. Moreover, two eigenstates of the eigenpair involved
in the transition collapse into a singular state at the transition point
(see Supplementary Note 6). The transition point of the winding number is
identified asPT -like topological transitions accompanying the exceptional
point (see SupplementaryNote 7 for the topological transitions as a function
of A).

Beyond half-filling
When the fermion filling deviates from half-filling, unpaired doublons or
holons emerge. Consequently, the NHSE is not exclusively determined by
the doublon-holon pairs. Unpaired holons or doublons can also contribute
to its manifestation.

Fig. 1 | The skin effect of doublon-holon excitations. Schematic diagrams of (a)
doublon (doubly occupied site) and holon (empty site) excitations, and (b) their
motion in the presence of non-reciprocal hopping. As illustrated inb, non-reciprocal
hopping, denoted by red arrows, results in the rightward (leftward) movement of
doublons (holons). The gray arrows in b represent the initial positions of fermion
spins prior to hopping. Under open boundary conditions, doublon and holon
become localized at opposite edges of one dimensional chain. This segregation in
localized doublon and holon is responsible for the Non-Hermitan skin effect.

Fig. 2 | The number density imbalance under open boundary conditions. The
number density imbalance in the half-filled Hatano-Nelson model of spin-half
fermions under both open boundary conditions (OBC) and periodic boundary
conditionswhen the ratio of Coulomb repulsionU to hopping strength t (U/t) is (a) 0
and (b) 10, and the imaginary vector potential A is 0.3. The imbalance IR

E is

calculated by
P

L=2≤ l<Ln
R
E lð Þ �P

0≤ l<L=2n
R
E lð Þ, where nRE lð Þ is the number density of

right eigenvalues at the lth site. c–f the number density distributions as a function of
imaginary gauge potential A for specific right eigenstates, where no, one, two, and
four doublon-holon pairs play a dominant role forOBC.All results are obtained for a
lattice size of eight (L = 8).
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Let us consider the case in which total number of fermions N is one
smaller than the lattice size L. In strong coupling limit, the ground state is
primarily determinedwithin the subspacewhere oneholon emerges and the
remained sites are singly occupied. Although the effective Hamiltonian
between one-fermion sites is described with the magnetic interaction

Jwhich does not induce a non-reciprocal effect, the non-reciprocal hopping
leads to the asymmetric movement of an unpaired holon. This results in a
complex eigenspectrum even within ground manifolds under PBC. The
accumulation of a hole at specific boundary gives rise to an imbalance in the
number density under OBC as shown in Fig. 5.

In excited manifolds, both doublon-holon pairs and unpaired holons
mutually contribute to the generation of complex eigenvalues and the
imbalance in number density under OBC. This interplay is evident in the
step-like imbalance profile. Themaximum imbalance values of 1, 3, 5, and 7
can be interpreted as the accumulation of unpaired hole plus the segregated
doublon-holon pairs. Consequently, the interplay of doublon-holon pairs
and unpaired doublons or holons highlights the intricate nature of the
NHSE beyond half-filling.

Conclusions
We investigate the intriguing behavior of themany-bodyNHSE and unique
features of eigenspectra in the half-filled interacting Hatano-Nelson model
of spin-half fermions. We discover that strong interactions suppress
doublon-holon excitations in the ground state, leading to the absence of the
NHSE. However, excited eigenstates still exhibit these excitations, driven by
non-reciprocal hopping, which causes doublons and holons to move in
opposite directions. The spatial segregation of doublon-holon pairs serves
the hallmark of the many-body skin modes. Moreover, these modes are
attributed to the bulk-boundary correspondencemediated by the point gap
topology within complex many-body eigenspectrums.

Experimentally, realizing these effects can be challenging, but open
quantum systems such as ultracold atoms can be a promising platform.
Experimentswithbosonicultracold atomshave already shown skin effects13.
Because the dynamics of the systems is governed by the Liouvillian master
equations, exploring the interplay between many-body effects and Liou-
villian skin effects15,41,65,66 in such systems holds great potential for unveiling
novel physical phenomena of non-Hermitan many-body physics.

Methods
Many-body calculation
Let N̂ and Ŝz be operators for the total number of fermions and the
z-component of the total spin, given as N̂ ¼ PL�1

l¼0 ðnl;" þ nl;#Þ and
Ŝz ¼

PL�1
l¼0 ðnl;" � nl;#Þ. TheHamiltonian of Eq. (1) commutes both N̂ and

Ŝz operators, regardless of the selected A value and boundary condition.

Fig. 4 | Topological transition and exceptional points. Real components of
eigenvalues varying with the ratio of Coulomb repulsionU to hopping strength t for
(a) 0 ≤U/t ≤ 10 and (b) 10 ≤U/t ≤ 20. a and b represent the eigenvalue spectrum for
no and one doublon-holon sector, respectively.We highlight a few eigenpairs, which
perform the transition from complex conjugate pair to two pure real numbers, using
colormap. c–f show the spectral evolutions of eigenvalues for the crystalmomentum
k = 0 and the z-component of the total spin Sz = 0 eigenstates as a function of the
gauge flux ϕ under twisted boundary conditions. All results are obtained when the
imaginary vector potential A is 0.3 and the lattice size L is 8.

Fig. 5 | Egienspectrum and number density imbalance beyond half-filling.
a Eigenvalue spectrum and (b) the number density imbalance in the Hatano-Nelson
model of spin-half fermions under both open and periodic boundary conditions
when total number of fermions N = 7 is one smaller than the lattice size L = 8. The
green squares and purple circles refer to the results for periodic and open boundary
conditions, respectively. The imbalance IR

E is calculated by Eq. (5). All results are
obtained when the ratio of Coulomb repulsion U to hopping strength t (U/t) is 10
and the imaginary vector potential A is 0.3.

Fig. 3 | Complex eigenspectrum under periodic boundary conditions.
a Eigenvalue spectrum in the half-filled Hatano-Nelson model of spin-half fermions
when the ratio of Coulomb repulsion U to hopping strength t (U/t) is 10 and the
imaginary vector potential A is 0.3. Notably, even under strong interaction limit,
complex eigenvalues remain robust within finite doublon-holon sectors. Spectral
evolution of eigenvalues as functions of the gauge flux ϕ for twisted boundary
conditions in b one and c four doublon-holon sectors. For simplicity, only eigen-
values corresponding to the crystal momentum k = 0 and the z-component of the
total spin Sz = 0 are presented in b and c by utilizing the translation symmetry and Sz
conservation (see Methods). Cross points indicate eigenvalues at ϕ = 0. These
spectral data effectively depict the point-gap topology of complex eigenvalues. All
results are obtained for a lattice size of eight (L = 8).
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Thus, we can determine the eigenvalues of the Hamiltonian by considering
the subspace in which both N̂ and Ŝz are constant.We construct themany-
body Hamiltonian adopting orthonormal basis states given as Eq. (2).

For TBC, we can perform a unitary transformation of local fermionic
operators as follows:

cylσ ! ~cylσ ¼ eilϕ=Lcylσ ; clσ ! ~clσ ¼ e�ilϕ=Lclσ : ð7Þ

This transformation allows us to obtain an effective periodicHamiltonian as
follows:

H ¼ �t
XL�2

l¼0

X
σ

eAþiϕ=L~cylþ1;σ~cl;σ þ e�A�iϕ=L~cyl;σ~clþ1;σ

� �

þ U
XL�1

l¼0

~nl;"~nl;# þ ~HB;

ð8Þ

where ~nl;σ ¼ ~cyl;σ~cl;σ and ~HB ¼ �t
P

σ eAþiϕ=L~cy0;σ~cL�1;σþ
�

e�A�iϕ=L~cyL�1;σ~c0;σ Þ. In TBC, we represent the many-body states using
orthonormal basis states ∣Ψn

� ¼ QN
j¼1 ~c

y
lnj ;σnj

∣vaci.
For PBC and TBC, we can take into account L number of translation

operators, defined as Tlc
y
l0 ;σT

�1
l ¼ cyl0þlmod L;σ (0≤ l; l

0 < L). T0 corresponds
to the identity operator. With the translation symmetry, the many-
body states can be characterized with the crystal momentum
k∈ {0, 2π/L,⋯ , 2π(L− 1)/L}. The translation-symmetrized basis states
can be expressed as follows:

∣Ψn kð Þ� ¼ 1ffiffiffiffiffiffiffiffi
Nnk

p XL�1

l¼0

e�iklTl∣Ψn

�
; ð9Þ

whereNnk is the normalization factor and ∣Ψn

�
is the representative state for

the nth basis state. Tl∣Ψn

�
can be obtained as follows:

Tl∣Ψn

� ¼ YN
j¼1

Tlc
y
lnj ;σnj

T�1
l ∣vaci ¼

YN
j¼1

cylnjþlmod L;σnj
∣vaci: ð10Þ

By utilizing the translation symmetry and expressing the basis states in
terms of crystal momentum under PBC and TBC, we can effectively reduce
the Hilbert space, making it more tractable to calculate the eigenvalues and
eigenstates of the Hamiltonian.

Data availability
The authors ensure the availability of the data supporting the findings of the
current study in both the article and its Supplementary Materials. Addi-
tional information can be provided upon request.
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