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Generative modeling has seen a rising interest in both classical and quantummachine learning, and it
represents a promising candidate to obtain a practical quantum advantage in the near term. In this
study, webuild over an existing framework for evaluating the generalization performance of generative
models, and we establish the first quantitative comparative race towards practical quantum
advantage (PQA) between classical and quantum generative models, namely Quantum Circuit Born
Machines (QCBMs), Transformers (TFs), Recurrent Neural Networks (RNNs), Variational
Autoencoders (VAEs), andWassersteinGenerative Adversarial Networks (WGANs). After defining four
types of PQAs scenarios, we focus on what we refer to as potential PQA, aiming to compare quantum
modelswith the best-knownclassical algorithms for the task at hand.We let themodels race on awell-
defined and application-relevant competition setting, where we illustrate and demonstrate our
framework on 20 variables (qubits) generative modeling task. Our results suggest that QCBMs are
more efficient in the data-limited regime than the other state-of-the-art classical generative models.
Such a feature is highly desirable in a wide range of real-world applications where the available data is
scarce.

Generative modeling has become more widely popular with its remarkable
success in tasks related to image generation and text synthesis, as well as
machine translation1–6, making this field a promising avenue to demonstrate
the power of quantum computers and to reach the paramount milestone of
practical quantum advantage (PQA)7. The most desirable feature in any
machine learning (ML) model is generalization, and as such, this property
should be considered to assess its performance in search of PQA. However,
the definition of this property in the domain of generative modeling can be
cumbersome, and it is yet an unresolved question for the case of arbitrary
generative tasks8. Its definition can take on different nuances depending on
the area of research, such as in computational learning theory9 or other
practical approaches10,11. Reference 12 defines an unambiguous framework
for generalization on discrete search spaces for practical tasks. This approach
puts all generative models on an equal footing since it is sample-based and
does not require knowledge of the exact likelihood, therefore making it a
model-agnostic and tractable evaluation framework. This reference also
demonstrates footprints of a quantum-inspired advantage of Tensor Net-
work Born Machines13 compared to Generative Adversarial Networks14.

To the best of our knowledge, in the search for PQA, a concrete
quantitative comparison between quantum generative models and a
broader class of classical state-of-the-art generativemodels is still lacking. In
particular, quantum circuit Born machines (QCBMs)15 have not been
compared up-to-date with other classical generative models in terms of
generalization, although they have been shown recently for their ability to
generalize16. In this paper, we aim to bridge this gap by providing a
numerical comparison between quantum and classical state-of-the-art
generative models in terms of generalization.

In this comparison, thesemodels compete for PQA. For this ‘race’ to be
well-defined, it is essential to establish its rules first. Indeed, a clear-cut
definition of PQA is not present in the relevant literature so far, especially
when it comes to challengingML applications such as generativemodeling,
or in general, to practical ML.

Previous works emphasize either computational quantum advantage,
or settings that are not relevant from a real-world perspective, or scenarios
that usedata sets that give anadvantage to thequantummodel fromthe start
(and also bear no relevance to a real-world setting)17–21. One potential
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exception would be the case of ref. 22, which showed an advantage for a
quantumMLmodel in a practical setting.However, besides the challenge of
relying on loaded quantum data23, it is still unclear if it would be relevant to
some concrete real-world and large-scale applications, although the authors
mention some potential applications in the domain of quantum sensing.

We acknowledge as well previous works that have attempted or pro-
posed ways to perform model comparisons, within generative models and
beyond. For instance, a recent work24 has developed a metric for assessing
the quality of variational calculations for different classical and quantum
models on an equal footing. Another recent study25 proposes a detailed
analysis that systematically compares generative models in terms of the
quality of training to provide insights on the advantage of their adoption by
quantum computing practitioners, although without addressing the ques-
tion of generalization. In another recent work26, the authors propose the
generic notion of quantum utility, a measure for quantifying effectiveness
and practicality, as an index for PQA, but thiswork differs fromour study in
the sense that PQA is defined in a broad perspective as the ability of a
quantum device to be either faster, more accurate or demanding less energy
compared to classical machines with similar characteristics in a certain task
of interest. Others have emphasized quantum simulation as one of the
prominent opportunities for PQA27. In our paper, we share the long-term
goal of identifying practical use cases for which quantumcomputing has the
potential to bring an advantage.However, ourwork is focusedon generative
models and their generalization capabilities, which is the gold standard to
measure the performance of generative MLmodels in real-world use cases.

In summary, the goal of this framework and of this study is to set the
stage for a quantitative race between different state-of-the-art classical and
quantum generative models in terms of generalization in search of PQA,
uncovering the strengths andweaknesses of eachmodel under realistic ‘race
conditions’ (see Fig. 1). These competition rules are defined in advance
before the fine-tuning of each model and dictated by the desired outcome
from real-world motivated metrics and limitations, making our framework
applicationand/or commercially relevant fromthe start.Hence,we consider
this formalization to be one of the main contributions of this work. This

focus is motivated by the growing interest of the scientific and business
community in showcasing the value of quantum strategies compared to
conventional algorithms, and provides a common ground for a fair com-
parison based on relevant properties. Overall, we show that QCBMs are
competitive with the other classical state-of-the-art generative models and
provide the best compromise for the requirements of the generalization
framework we are adopting. Additionally, we demonstrate that QCBMs
performwell in the low-data regime,which constitutes a bottleneck for deep
learningmodels28–30 andwhichwebelieve to be a promising setting for PQA.

Results and discussion
Defining practical quantum advantage
In this work, we refer to practical quantum advantage (PQA) as the
ability of a quantum system to perform a useful task—where ‘useful’ can
refer to a scientific, industrial, or societal use - with performance that is
faster or better than what is enabled by any existing classical system26,31.
We highlight that this concept differs from the computational quantum
advantage notion (originally introduced as quantum supremacy), which
refers instead to the capability of quantum machines to outperform
classical computers, providing a speedup in solving a given task, which
would otherwise be classically unsolvable, even using the best classical
machine and algorithm18,20,22,32.

By taking inspiration from ref. 33, we define four different types of PQA.
The first version, which we refer to as provable PQA (PrPQA) has the
ultimate goal of demonstrating the superiority of a quantum algorithmwith
respect to the best classical algorithm, where the proof is backed up by
complexity theory arguments34,35. An example of this would be to show a
realization of Shor’s algorithm at scale. To the best of our knowledge, the
equivalent of Shor’s algorithm in the context of real-world ML tasks, i.e.,
useful enough to be included in the definition of provable PQA provided
above, is still missing. Here, we focus on the following three classes, which
might be more reachable with near- and medium-term quantum devices.
We define robust PQA (RPQA) as a practical advantage of a quantum
algorithm compared to the best available classical algorithms. It is worth

Fig. 1 | The practical quantum advantage (PQA) race: a sports analogy. In (a),
each runner (generative model) is characterized by (some of) its strengths and
weaknesses, namely: training efficiency, sampling efficiency, and expressive power.
Note that the power bars are indicative, and that is far from trivial to determine
them, but some insights can be obtained from intuition from the theoretical char-
acterization of some of the models, e.g., via computational quantum advantage
papers, or known properties or highlights for each model. A complete character-
ization of the runner can be used to identify the odds-on favorite, independent of the
specific race context. In (b), the different runners are embedded into a context (i.e.,
‘the real-world application setting’) represented as a concrete instance of a hurdles

race. They all run the same race, but they see the hurdles differently according to
their strengths and weaknesses. The runners can compete on different tracks, for
instance, on shorter or longer tracks. For the PQA race to be well defined, it is
necessary to clearly state what track is taken under examination. In this study, we
propose two tracks, motivated by the limitation of sampling or cost evaluation
budget. Once the track is selected, we can evaluate runners using different criteria:
application-driven metrics need to be defined to fully characterize the race. Our
evaluation criterion is the quality-based generalization, with appropriate metrics
defined in Methods Section ‘Generalization Metrics’ (see also Fig. 2 for further
specific details).
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noting that an RPQA can be short-lived when a better classical algorithm
is potentially developed after an RPQA has been established. On some
occasions, there is no clear consensus about the status of the best avail-
able classical algorithm as it depends on each scientific community. To go
around that, we can conduct a comparison with a state-of-the-art clas-
sical algorithm or a set of classical algorithms. If there is a quantum
advantage in this case, we can refer to it as potential PQA (PPQA). Within
this scenario, a genuine attempt to compare against the best-known
classical algorithms has to be conducted with the possibility that a PPQA
is short-lived with the development or discovery of more powerful and
advanced classical algorithms. A weaker scenario corresponds to the case
where we promote a classical algorithm to its quantum counterpart to
investigate whether quantum effects are useful. A quantum advantage in
this scenario is an example of limited PQA (LPQA). A potential case is a
comparison between a restricted Boltzmann machine36 and a quantum
Boltzmann machine37. In this study, we are pushing the search for PQA
beyond the LPQA scenario to a PPQA, with the hope to include a more
comprehensive list of the best available classical models in our com-
parison in future studies.

In this study, we consider different generative models and let them
compete for PPQA. To illustrate our approach, we propose a simple
sports analogy. Let us consider a hurdles race, where different runners are
competing against each other. Each generative model can thus be seen as
a runner in such a race. Each contender has their strengths and weak-
nesses, which make them see hurdles differently (see Fig. 1a). Thus, one
can aim to investigate relevant model features and determine whether
they constitute a strength for the model under examination. However,
hurdles races take place in a specific concrete context, for instance, with
given wind and track surface conditions, which affect the competition
outcome significantly (see Fig. 1b). The PQA approach takes this con-
crete context into account when evaluating the contenders, who are
analyzed not only ‘in principle’ but also embedded in a specific context.
For example, the track field’s length is crucial for the evaluation since
different runners can perform differently if the ‘rules of the game’ are
modified. The conditions of the race affect the runners’ performance,
which is equivalent to saying that generative models are affected by
factors such as the type and size of the dataset, the ground truth dis-
tribution to be learned, etc. Each instance of a generative modeling task is
unique, just as the conditions for every day of the competitions could be
unique. As such, the tracks and the race conditions must be specified
before the competition happens, to clarify the precise setting where the
search for PQA (or, in our study, for PPQA) takes place.

Lastly, we argue that, when evaluating performance in a concrete
instance of a race on a given track, the measure of success for an athlete
might not necessarily be attributed to the maximum speed. Outside the
analogy, other factors than the speedup are likely needed to be taken into
account to judge if practical quantum advantage has occurred. Quality-
based generalization is one of these playgrounds. This is particularly
relevant when considering combinatorial optimization problems, as
suggested by the generative enhanced optimization (GEO) framework38.
This reference introduces a connection between generative models and
optimization, which is in and of itself a new perspective on a family of
commercially valuable use cases for generative models beyond large
language models and image generation, but that is not fully appreciated
yet by the ML community. Remarkably, quality-based generalization
turns out to be paramount when the generative modeling task under
examination is linked to a cost-equipped optimization problem. In this
scenario, it is desirable to learn to generate solutions with the lowest
possible cost, at least lower (i.e., of better quality) compared to the
available costs in a training dataset. The utility, the minimum value, and
the quality coverage have been introduced precisely to quantify this
capability. However, these metrics can be computed in different ways
according to the main features of a specific use case, i.e., as in the analogy
of a track field defining the rules of the game. In Section ‘Competition
details’, we propose two distinct ‘track fields’ that give us two different
lenses, according to which we conduct a comparison of generative
models toward PPQA in an optimization context that takes the resource
bottlenecks of the specific use case into consideration.

Competition details
In our study, we compare several quantum and state-of-the-art classical
generative models. On the quantum side, we use quantum circuit Born
machines (QCBMs)15 that are trained with a gradient-free optimization
technique. On the classical side, we use Recurrent Neural Networks
(RNN)39, Transformers (TF)2, Variational Autoencoders (VAE)40, and
Wasserstein Generative Adversarial Networks (WGAN)14. More details
about these models and their characteristics along with their hyperpara-
meters are explained in Supplementary Note 1 ‘Generative Models’.

As a test bed, and to illustrate a concrete realization of our frame-
work, we choose a re-weighted version of the Evens (also known as
parity) distribution where each bitstring with a non-zero probability has
an even number of ones16. Although the cost values for the bitstrings of
the Evens dataset are synthetic and used mainly to provide a simple
illustration of the framework, this distribution embeds a combinatorial

Fig. 2 | An illustration of the scheme used for training and assessing the quality-
based generalization of our generativemodels.Given the training dataset with size
∣Dtrain∣ = ϵ∣S∣, sampled from the Evens distribution where jSj ¼ 2Nvar�1, we choose
different generative models, and select the track we want to compare them on (i.e.,
select the ‘rules of the game’ used to probe the generativemodels).We then train and
fine-tune them using the chosen dataset. After this step, we estimate the quality-
based metrics Cq,MV, and U using the selected track, T1 or T2, to assess the quality

of the queries generated by eachmodel. In thefirst trackT1, we useQ = 104 queries to
estimate our metrics, whereas, for the second track T2, we require Qu = 102 unique
and valid samples atmost to compute ourmetrics.We also choose different values of
the data portion ϵ to investigate its influence on the generalization of each generative
model. For a fair comparison, we use the same training budget Nepochs = 1000.
Additionally, we useNseeds = 10 different initializations for each generative model to
obtain error bars on metrics.
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constraint that is relevant in marginal probabilistic inference tasks41,42,
and in modular constrained optimization43, and it also has real-world
applications, namely in the parity-constrained facility location problem44.
For the Evens distribution, the size of the solution space, for Nvar binary
variable, is given by jSj ¼ 2Nvar�1. Furthermore, we choose a synthetic
cost, called the negative separation cost c16, which is defined as the

negative of the largest separation between two 1 in a bitstring, i.e.,
c(x) =− (z+ 1), where z is the largest number of consecutive zeros in the
bitstring x. For instance, c (‘11100011’) =−4, c (‘10110011’) =−3, and c
(‘11111111’) =−1. Note that the minimum of this cost function is known
exactly and it is equal to− (Nvar− 1), which corresponds to the bitstring
‘100…001’.

Fig. 3 | A quality-based generalization comparison betweenQCBMs, RNNs, TFs,
VAEs, andWGANs.Here, we plot the quality coverage, utility, andminimum value
for the two tracks T1 and T2 forNvar = 20 binary variables. Additionally, the models
are trained using Nseeds = 10 random seeds, and the outcomes of the metrics are
averaged over these seeds with error bars estimated as one standard deviation, which
can be computed for each metric as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance =Nseeds

p
. a Corresponds to data

fraction ϵ = 0.01, hence to a size of the training dataset of 5242. Here, the VAE
(Variational AutoEncoder) provides the best overall performance for T1 (a1–a3),
whereas the WGAN (Wasserstein Generative Adversarial Network) is superior

compared to the othermodels for T2 (a4–a6). bCorresponds to ϵ = 0.001, hence to a
smaller size of the training dataset equal to 524. From the T1 point of view (b1–b3),
we observe that the QCBM (Quantum Circuit Born Machine) obtains the lowest
utility compared to the other models while having a competitive diversity of high-
quality solutions. From the perspective of T2 (b4–b6), QCBMs are competitive with
the VAE and ahead of the WGAN, the TF (Transformer), and the RNN (Recurrent
Neural Network). These results highlight the efficiency of the QCBMs in the scarce-
data regime. Note that the dashed horizontal lines correspond to the minimum cost
of −12 in the training data.
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Given this cost function, we can define our re-weighted training dis-
tribution Ptrain over the training data, such that:

PtrainðxÞ ¼
expð�βcðxÞÞ

P
y2Dtrain

expð�βcðyÞÞ ; ð1Þ

with inverse temperature β � β̂=2, where β̂ is defined as the standard
deviation of the scores c in the training set. If a data point x =2Dtrain, then
we assign Ptrain(x) = 0. The re-weighting procedure applied to the
training data encourages our trained models to generate samples with
low costs, with the hope that we sample unseen configurations that have a
lower cost than the costs seen in the training set38. To achieve the latter, it
is crucial that the Kullback-Leibler (KL) divergence between the
generative model distribution and the training distribution does not
tend to zero during the training to avoid memorizing the training data16.
It is important to note that it is not mandatory to apply the re-weighting
of the samples as part of the generative modeling task. However, the re-
weighting procedure in Eq. (1) has been shown to help in finding high
quality samples12,16,38,45. Since all the models will be evaluated in their
capabilities to generate low-cost and diverse samples, as dictated by the
evaluation criteria Cq,MV, and U, we used the re-weighted dataset to
train all the generative models studied here. In reality, the bare training
set consists of T data points with their respective cost values c, and any
other transformation could be applied to facilitate the generation of high-
quality samples.

In our simulations,we chooseNvar = 20 as the size of eachbitstring, and
we train our generative models for two training set sizes corresponding to
ϵ = 0.001 and ϵ = 0.01 (see Fig. 2). We choose the training data for the two
different epsilons, such that we have the sameminimum cost of−12 for the
two datasets. The purpose of this constraint is to rule out the effect of the
minimum seen cost in our experiments. We have selected these small
epsilon values to probe the model’s capabilities to successfully train and
generalize in this scarce-data regime.

We focus our attention on evaluating quality-based generalization for
the aforementioned generative models (the ‘runners’) using two different
competition rules (the ‘tracks’). These two tracks described next are moti-
vated, respectively, by the sampling budget and the difficulty of evaluating a
cost function, which are common bottlenecks affecting real-world tasks.
Specifically:
• Track 1 (T1): there is a fixed budget of queries Q generated by the

generative model to compute the quality coverage Cq, minimum value
MV and the utility U to establish the most advantageous models (see
Methods ‘GeneralizationMetrics’). This criterion is appropriate in the
casewhere it is cheap to compute the cost associatedwith sampleswhile
only having access to a limited sampling budget. For instance, a defi-
nition of PPQA based on T1 can be used in the case of generative
models requiring expensive resources for sampling, such as QCBMs
executed on real-world quantum computers. Here, one aims to reduce
the number of measurements asmuch as possible while still being able
to see an advantage in the quality of the generated solutions.

Fig. 4 | Summary of the best quality-basedmetrics of QCBMs, RNNs, TFs, VAEs,
andWGANs. The setup is the same as in Fig. 3, where the two tracks T1 and T2 for
Nvar = 20 binary variables are considered, the models are trained using Nseeds = 10
random seeds. The error bars correspond to one standard deviation defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Variance =Nseeds

p
where the number of seeds Nseeds = 10. In (a), we represent the

best quality metrics with a data fraction ϵ = 0.01, which corresponds to a size of the
training dataset of 5242. Here, we observe that the VAE (Variational AutoEncoder)
has the best performance for track T1, whereas theWGAN (Wasserstein Generative

Adversarial Network) is the best model for track T2. In (b), we represent our best
results for ϵ = 0.001, hence for a smaller size of the training dataset equal to 524.Here,
we remark that the QCBM (Quantum Circuit Born Machine) has optimal perfor-
mances for track T1 and is competitive with the othermodels on track T2 in terms of
MV andUwhile providing a betterCq. To improve the comparison clarity, we added
horizontal lines, which correspond to the largest quality coverage, the lowest
minimum values, or the lowest utilities among all the models.
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• Track 2 (T2): there is a fixed budget Qu of unique, unseen and valid
samples to compute the quality coverage, the utility and theminimum
value. This approach implies the ability of sampling from the trained
models repeatedly to get up to Qu unique, unseen and valid queries.
Note that somemodelsmight never get to the targetQu, for instance, if
they suffer from mode collapse. In this case, the metrics can be com-
puted using the reached ~Qu. This track is motivated by a class of
optimization problems where the cost evaluation is expensive. Exam-
ples of such scenarios includemolecule design and drug discovery that
involve clinical trials. In these settings, the cost function is expensive to
compute. This track is aimed to provide a proxy reflecting these real-
world use cases. In this case, one aims to avoid excessive evaluations of
the cost function, i.e., for repeated samples.

Regarding the sampling budget, we use Q = 104 configurations to
estimate our quality metrics for track T1. From the perspective of track T2,
we sample until we obtain Qu = 102 unique configurations that are used to
computeourquality-basedmetrics.Note thatwe checkedhowmany sample
batches are needed, and we observed that Q = 104 is enough to extract
Qu = 102 unique configurations for all the generative models in our study.
Our metrics are averaged over 10 random seeds for each model while
keeping the same data for each portion ϵ. For a fair comparison between the
generative models, we conduct a hyperparameters grid search using
Optuna46, andwe extract the best generativemodel that allows obtaining the
lowest utility after 100 training steps. Note that, in order to carry out the
hyperparameters tuning process, one could also utilize MV,Cq, or any
appropriate combination of the threemetrics. Additionally, as a fair training
budget, we train all our generative models for Nepochs = 1000 steps. We
compute our quality-based generalizationmetrics for tracks T1 andT2 after
each 100 training steps. We do not include this sampling cost in the eva-
luation budget (Q orQu), as in this study,we are not focusing on the training
efficiency of these models, so we allow potentially unlimited resources for
the training process. However, for a more realistic setting, the sampling
budget could be customized to keep the training requirements into account.
For clarity, Fig. 2 provides a schematic representation of our methods. The
hyperparameters of each architecture and the parameter count are detailed
in Supplementary Table I.

Numerical experiments
We show the generalization results of the different generativemodels for the
two levels of data availability, ϵ = 0.01, 0.001, and for the twodifferent tracks,
T1 and T2. We start our analysis with ϵ = 0.01 as illustrated in Fig. 3a. By
looking at the first trackT1, and focusing on theMV results, we observe that
the models experience a quick drop for the first 100 training steps. It is also
interesting to see that all themodels produce samples with a cost lower than
theminimum cost value provided in the training set samples. Furthermore,
we can see that VAEs, WGANs, and QCBMs converge to the lowest
minimum value of−19, whereas RNNs and TFs jump to higher minimum
values with more training steps. In this case, these two models gradually
overfit the training data and generalize less to the low-cost sectors. This
point highlights the importance of early stopping ormonitoring ourmodels
during training toobtain their best performances.Theutility (T1) provides a
complementary picture, where we observe the VAE providing the lowest
utility throughout training, followed by the QCBM and then by the other
generative models. This ranking highlights the value of QCBMs compared
to the other classical generative models. One interesting feature of QCBMs
compared to the other models is the monotonic decrease of the utility in
addition to its competitive diversity of samples, as illustrated by the quality
coverage (T1). The quality coverage also shows the ability of QCBMs, in
addition to VAEs and WGANs, to generate a diverse pool of unseen solu-
tions with a lower cost compared to the costs shown in the training data.
From the point of view of the second track T2, we observe that theWGAN
has the best performance in terms of the three metrics. Additionally, all the
models are still generalizing to configurationswith a lower cost compared to
what was seen in the training data. A complementary picture of the best

qualitymetrics throughout training is provided inFig. 4a for clearer visibility
of the ranking of generative models in our race.

We now focus our attention on the results obtained for the degree of
data availability corresponding to ϵ = 0.001 as illustrated inFig. 3b.Weagain
observe that all the models are generalizing to unseen configurations with a
lower cost than the minimum cost seen in the training data. For the first
track, T1, we highlight that theQCBMprovides the lowest utility compared
to the other models while maintaining a competitive minimum value and
diversity of high-quality solutions. For the second track, T2, we observe that
the QCBM is competitive with the VAE while providing the best quality
coverage Cq. This point is clearer when analyzing and comparing the best
quality-based metrics values in Fig. 4b.

Overall, QCBMs provide the best quality-based generalization per-
formances compared to the other generative models in the low-data regime
with the limited sampling budget, i.e., for ϵ = 0.001 and T1 with a sampling
budget of Q = 104 queries. More specifically, our QCBM competes on the
quality coverage and the minimum value metrics and excels in the trend of
the utility. This efficiency in the low-data regime is a highly desirable feature
compared to classical generative models, which are known in real-world
settings to be data-hungry28–30. It is worthwhile to note that the usedQCBM
has the lowest number of parameters compared to the other generative
models as outlined in Supplementary Note 1. Although using the para-
meters count to compare substantially different generative models is not
necessarily a well-founded method (even if widespread), we highlight that
the quantum models can achieve results that are competitive with classical
models that have significantly more parameters, sometimes one to two
order(s) of magnitude more. Overall, these findings are promising steps
toward identifying scenarioswhere quantummodels canprovide apotential
advantage in the scarce data regime. More details about the best results
obtained by our generative models can be found in Supplementary Note 2
‘Additional quality-based generalization results’.

Finally, we would like to note that QCBMs are also competitive with
RNNs and TFs in terms of pre-generalization and validity-based general-
ization metrics (see Methods ‘Generalization Metrics’) for both data avail-
ability settings, ϵ = 0.001, 0.01, as outlined in Supplementary Note 3 ‘Pre-
generalization and validity-based generalization results’. The VAE and the
WGAN tend to sacrifice these aspects of generalization compared to
quality-based generalization. Here, the QCBM provides the best balance
between quality-based and validity-based generalization (see Supplemen-
tary Note 3).

Conclusions
In this paper, we have established a race between classical and quantum
generativemodels in terms of quality-based generalization and defined four
types of practical quantum advantage (PQA). Here, we focus on what we
referred to as potential PQA (PPQA), which aims to compare quantum
models with the best-known classical algorithms to the best of our efforts
and compute capabilities for the specific task at hand. We have proposed
twodifferent competition rules for comparingdifferentmodels anddefining
PPQA.We denote these rules as tracks based on the race analogy.We have
usedQCBMs,RNNs,TFs,VAEs, andWGANs toprovide an instanceof this
comparison on the two tracks. Thefirst track (T1) relies on assuming a fixed
sampling budget at the evaluation stage while allowing for an arbitrary
number of cost function evaluations. In contrast, the second track (T2)
assumes we only have access to a limited number of cost function evalua-
tions, which is the case for applications where the cost estimation is
expensive. We also study the impact of the degree of data available to the
models for their training. Our results have demonstrated that QCBMs are
the most efficient in the scarce-data regime and, in particular, in T2. In
general, QCBMs showcase a competitive diversity of solutions compared to
the other state-of-the-art generative models in all the tracks and datasets
considered here.

It is important tonote that the two trackswe chose for this study arenot
comprehensive, even though they arewellmotivatedby plausible real-world
scenarios.One could also use different rules of the gamewhere, for example,
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the training data can be updated for each training step, as it is customary in
the generator-enhanced optimization (GEO) framework38, or where the
overall budget takes into account the number of samples required during
training. The two tracks introduced here serve the purpose of illustrating the
possibilities ahead from this formal approach. In particular, such an
approach helps to unambiguously specify the criteria for establishing PQA
for generative models in real-world use cases, especially in the context of
generativemodeling to generate diverse and valuable solutions, which could
boost in turn the solution to combinatorial optimization problems. This
characterization is a long-sought-after milestone by many application sci-
entists in the quantum information community, and we believe this fra-
mework can provide valuable insights when analyzing the suitability of the
adoption of quantum or quantum-inspired models against state-of-the-art
classical ones.

Despite the encouraging results obtained from our quantum-based
models, we foresee a significant space for potential improvements
regarding all the generative models used in this study and some not
explored here. In particular, one can embed constraints into generative
models such as in U(1)-symmetric tensor networks45 and U(1)-sym-
metric RNNs47,48. Furthermore, including other state-of-the-art gen-
erative models with different variations is vital for establishing a more
comprehensive comparison, extending the list of competitors both on the
classical and quantum side49–53. Moreover, the extension of this work to
more realistic datasets is also crucial in the quest to investigate
generalization-based PQA. Although for the quantum circuit layout and
system sizes used here, one can have an efficient simulation with tensor
networks for large system sizes through a synergistic framework between
classical simulation techniques and quantum circuits54. The latter can be
harnessed to provide a good starting point for quantum circuits based on
tensor networks and overcome widespread trainability issues such as
barren plateaus. We hope that our work will encourage more compar-
isons with a broader class of generative models and that it will be
diversified to include more criteria for comparison into account.

Methods
Generalization metrics
The evaluation of unsupervised generative models is a challenging task,
especially when one aims to compare different models in terms of gen-
eralization. In this work, we focus on discrete probability distributions of
bitstrings where an unambiguous definition of generalization is possible12.
Here, we start from the framework provided in ref. 12 that puts different
generative models on an equal footing and allows us to assess the general-
ization performances of each generativemodel from a practical perspective.

In this framework, we assume that we are given a solution space S that
corresponds to the set of bitstrings that satisfy a constraint or a set of
constraints, such that jSj≤ 2Nvar whereNvar is the number of binary variables
in a bitstring. A typical example is the portfolio optimization problem,
where there is a constraint on the number of assets to be included in a
portfolio. Additionally, we assume that we are given a training dataset
Dtrain ¼ fxð1Þ; xð2Þ; . . . ; xðTÞg, where T = ϵ∣S∣ and ϵ is a tunable parameter
that controls the size of the training dataset such that 0 < ϵ ≤ 1.

The metrics provided in ref. 12 allow probing different features of
generalization. There are three main pillars of generalization: (1) pre-gen-
eralization, (2) validity-based generalization, and (3) quality-based gen-
eralization. In the main text, we focus on quality-based generalization and
providedetails aboutpre-generalizationandvalidity-basedgeneralization in
SupplementaryNote 3 ‘Pre-generalization andvalidity-based generalization
results’.

In typical real-world applications, it is desirable to generate high-
quality samples that have a low cost c compared towhat has been seen in the
training dataset. In the quality-based generalization framework, we can
define the minimum value as:

MV ¼ min
x2Gsol

cðxÞ; ð2Þ

which corresponds to the lowest cost in a given set of unseen and valid
queries Gsol, which we obtain after generating a set of queries G ¼
fxð1Þ; xð2Þ; . . . ; xðQÞg fromagenerativemodel of interest. Inour terminology,
a samplex is valid ifx∈ Sand it is consideredunseen ifx∉Dtrain. In the ideal
scenario,MV is equal to the lowest possible cost, corresponding to the global
solution of the problem of interest.

To avoid the chance effect of using theminimum, we can average over
different random seeds. We can also define the utility that circumvents the
use of the minimum through:

U ¼ hcðxÞix2P5
; ð3Þ

whereP5 corresponds to the set of the 5% lowest-cost samples obtained from
Gsol. The averaging effect allowsus to ensure that a lowcostwasnot obtained
by chance. Ideally, the best quality-based generalization corresponds to U
equal to the lowest possible cost in our problem of interest.

Inquality-basedgeneralization, it is also valuable tohave adiverse set of
samples that have high quality. To quantify this desirable feature, we define
the quality coverage as

Cq ¼
jgsolðc<minx2Dtrain

cðxÞÞj
Q

; ð4Þ

where gsolðc< min
x2Dtrain

cðxÞÞ corresponds to the set of unique valid and unseen
samples that have a lower cost compared to theminimal cost in the training
data. The choice of the values of the number of queries Q depends on the
tracks/rules of comparison presented in Section ‘Defining practical quan-
tum advantage’. Note that an ideal diversity of quality samples corresponds
to Cq = 1, where all the generated queries are new, unique, and have a cost
lower than the minimal training cost. Although this is the ideal case, softer
upper bounds can be devised taking into accountmore realistic scenarios, as
proposed in refs. 12,16. On the other side of the spectrum, a very bad quality
diversity corresponds to Cq = 0 where all the queries are either inside the
training data, are not valid, or have a cost above the minimal training cost.

Data availability
The data generated in this study is available from the corresponding author
upon reasonable request.

Code availability
The code used to produce the results of this study is available from the
corresponding author upon reasonable request.

Received: 13 July 2023; Accepted: 6 February 2024;

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–44 (2015).
2. Vaswani, A. et al. Attention is all you need. Advances in Neural

Information Processing Systems 30 (2017).
https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

3. Ramesh, A. et al. Zero-shot text-to-image generation. In International
Conference on Machine Learning, 8821–8831 (PMLR, 2021).
https://arxiv.org/abs/2102.12092.

4. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-
resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10684–10695 (2022).
https://arxiv.org/abs/2112.10752.

5. Team, O. Chatgpt: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt (2022).

https://doi.org/10.1038/s42005-024-01552-6 Article

Communications Physics |            (2024) 7:68 7

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752
https://openai.com/blog/chatgpt


6. Ouyang, L. et al. Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing
Systems, Vol. 35 (eds Koyejo, S.et al.) 27730–27744 (Curran
Associates, Inc., 2022).
https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

7. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J. & Biswas, R.
Opportunities and challenges for quantum-assistedmachine learning
in near-term quantum computers. Quant. Sci. Technol. 3,
030502 (2018).

8. Alaa, A., Van Breugel, B., Saveliev, E. S. & van der Schaar, M. How
faithful is your synthetic data?Sample-levelmetrics for evaluatingand
auditing generative models. In Proceedings of the 39th International
Conference on Machine Learning, Vol. 162 (eds Chaudhuri, K. et al.)
290–306 (PMLR, 2022).
https://proceedings.mlr.press/v162/alaa22a.html.

9. Vapnik, V. N. An overview of statistical learning theory. IEEE Trans.
Neural Netw. 10, 988–999 (1999).

10. Zhao, S. et al. Bias and generalization in deep generative models: an
empirical study. Adv. Neural Inform. Process. Syst. 31.
https://proceedings.neurips.cc/paper/2018/hash/
5317b6799188715d5e00
a638a4278901-Abstract.html (2018).

11. Nica, A. C. et al. Evaluating generalization in gflownets for molecule
design. In ICLR2022 Machine Learning for Drug Discovery.
https://openreview.net/forum?id=JFSaHKNZ35b (2022).

12. Gili, K., Mauri, M. & Perdomo-Ortiz, A. Generalization metrics for
practical quantumadvantage in generativemodels. arXiv:2201.08770
(2022). https://arxiv.org/abs/2201.08770.

13. Han, Z.-Y., Wang, J., Fan, H., Wang, L. & Zhang, P. Unsupervised
generative modeling using matrix product states. PRX 8,
031012 (2018).

14. Goodfellow, I. Nips 2016 tutorial: Generative adversarial networks.
arXiv:1701.00160 (2016). https://arxiv.org/abs/1701.00160.

15. Benedetti,M. et al. Agenerativemodelingapproach for benchmarking
and training shallow quantum circuits. npj Quant. Inform. 5, 45 (2019).

16. Gili, K., Hibat-Allah, M., Mauri, M., Ballance, C. & Perdomo-Ortiz, A.
Doquantumcircuit bornmachinesgeneralize?Quant. Sci. Technol.8,
035021 (2023).

17. Havlíček,V. et al. Supervised learningwithquantum-enhanced feature
spaces. Nature 567, 209–212 (2019).

18. Boixo, S. et al. Characterizing quantum supremacy in near-term
devices. Nat. Phys. 14, 595–600 (2018).

19. Arute, F. et al. Quantum supremacy using a programmable
superconducting processor. Nature 574, 505–510 (2019).

20. Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U.On the complexity
and verification of quantum random circuit sampling. Nat. Phys. 15,
159–163 (2019).

21. Madsen, L. S. et al. Quantum computational advantage with a
programmable photonic processor. Nature 606, 75–81 (2022).

22. Huang, H.-Y. et al. Quantum advantage in learning from experiments.
Science 376, 1182–1186 (2022).

23. Umeano, C., Paine, A. E., Elfving, V. E. & Kyriienko, O. What can we
learn fromquantumconvolutional neural networks?arXiv:2308.16664
(2023). https://arxiv.org/abs/2308.16664.

24. Wu, D. et al. Variational benchmarks for quantum many-body
problems. arXiv:2302.04919 (2023).
https://arxiv.org/abs/2302.04919.

25. Riofrío, C. A. et al. A performance characterization of quantum
generative models. arXiv:2301.09363 (2023).
https://arxiv.org/abs/2301.09363.

26. Herrmann, N. et al. Quantum utility - definition and assessment of a
practical quantum advantage. In 2023 IEEE International Conference
on Quantum Software (QSW), 162–174 (IEEE Computer Society,
2023).

https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.
00028.

27. Daley, A. J. et al. Practical quantumadvantage in quantumsimulation.
Nature 607, 667–676 (2022).

28. Marcus, G. Deep learning: A critical appraisal. arXiv:1801.00631
(2018). https://arxiv.org/abs/1801.00631.

29. Zhang, Y. & Ling, C. A strategy to apply machine learning to small
datasets in materials science. Npj Comput. Mater. 4, 25 (2018).

30. Tripp, A., Daxberger, E. & Hernández-Lobato, J. M. Sample-efficient
optimization in the latent space of deep generative models via
weighted retraining. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS 20
(2020). https://proceedings.neurips.cc/paper/2020/file/81e3225c6a
d49623167a4309eb4b2e75-Paper.pdf.

31. Alsing, P. et al. Accelerating progress towards practical quantum
advantage: A national science foundation project scoping workshop.
arXiv:2210.14757 (2022). https://arxiv.org/abs/2210.14757.

32. Preskill, J. Quantumcomputing in theNISQera andbeyond.Quantum
2, 79 (2018).

33. Rønnow, T. F. et al. Defining and detecting quantum speedup.
Science 345, 420–424 (2014).

34. Coyle, B., Mills, D., Danos, V. & Kashefi, E. The born supremacy:
quantum advantage and training of an ising born machine. npj Quant.
Inform. 6. https://www.nature.com/articles/s41534-020-00288-9
(2022).

35. Sweke, R., Seifert, J.-P., Hangleiter, D. & Eisert, J. On the quantum
versus classical learnability of discrete distributions. Quantum 5,
417 (2021).

36. Hinton, G. A Practical Guide to Training Restricted Boltzmann
Machines, 599–619 (Springer, 2012).

37. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R.
Quantum boltzmann machine. Phys. Rev. X 8.
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050
(2018).

38. Alcazar, J., Vakili, M. G., Kalayci, C. B. & Perdomo-Ortiz, A. Geo:
enhancing combinatorial optimization with classical and quantum
generative models. arXiv:2101.06250.
https://arxiv.org/abs/2101.06250 (2021).

39. Cho, K., van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the
properties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (eds Wu, D.,
Carpuat, M., Carreras, X. & Vecchi, E. M.) 103–111 (Association for
Computational Linguistics, 2014).
https://aclanthology.org/W14-4012.

40. Rolfe, J. T. Discrete variational autoencoders. In International
Conference on Learning Representations
https://openreview.net/forum?id=ryMxXPFex (2017).

41. Ermon, S., Gomes, C. P., Sabharwal, A. & Selman, B. Optimization
with parity constraints: From binary codes to discrete integration. In
Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI’13, 202–211 (AUAI Press, 2013).

42. Xue, Y., Li, Z., Ermon, S., Gomes, C. P. & Selman, B. Solvingmarginal
map problems with np oracles and parity constraints. In Advances in
Neural Information Processing Systems, vol. 29 (Curran Associates,
Inc., 2016).
https://proceedings.neurips.cc/paper_files/paper/2016/file/
a532400ed62e772b9dc0b86f46e583ff-Paper.pdf.

43. Caldwell, J. R., Watson, R. A., Thies, C. & Knowles, J. D. Deep
optimisation: Solving combinatorial optimisation problems using
deep neural networks. arXiv:1811.00784.
https://arxiv.org/abs/1811.00784 (2018).

44. Kim, K., Shin, Y. & An, H.-C. Constant-factor approximation
algorithms for parity-constrained facility location and k-center.
Algorithmica 85, 1883–1911 (2023).

https://doi.org/10.1038/s42005-024-01552-6 Article

Communications Physics |            (2024) 7:68 8

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.mlr.press/v162/alaa22a.html
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://openreview.net/forum?id=JFSaHKNZ35b
https://arxiv.org/abs/2201.08770
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/2308.16664
https://arxiv.org/abs/2302.04919
https://arxiv.org/abs/2301.09363
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00028
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00028
https://arxiv.org/abs/1801.00631
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://arxiv.org/abs/2210.14757
https://www.nature.com/articles/s41534-020-00288-9
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050
https://arxiv.org/abs/2101.06250
https://aclanthology.org/W14-4012
https://openreview.net/forum?id=ryMxXPFex
https://proceedings.neurips.cc/paper_files/paper/2016/file/a532400ed62e772b9dc0b86f46e583ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/a532400ed62e772b9dc0b86f46e583ff-Paper.pdf
https://arxiv.org/abs/1811.00784


45. Lopez-Piqueres, J., Chen, J. & Perdomo-Ortiz, A. Symmetric tensor
networks for generative modeling and constrained combinatorial
optimization.Machine Learning: Science and Technology 4.
https://iopscience.iop.org/article/10.1088/2632-2153/ace0f5 (2022).

46. Akiba, T., Sano, S., Yanase, T., Ohta, T. &Koyama,M.Optuna: A next-
generation hyperparameter optimization framework. In Proceedings
of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2019).

47. Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G. &
Carrasquilla, J. Recurrent neural network wave functions. Phys. Rev.
Res. 2, 023358 (2020).

48. Morawetz, S., De Vlugt, I. J., Carrasquilla, J. & Melko, R. G. U (1)-
symmetric recurrent neural networks for quantum state
reconstruction. Phys. Rev. A 104, 012401 (2021).

49. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models.
Adv. Neural Inform. Process. Syst. 33, 6840–6851 (2020).

50. Dinh, L., Sohl-Dickstein, J. & Bengio, S. Density estimation using real
NVP. In International Conference on Learning Representations.
https://openreview.net/forum?id=HkpbnH9lx (2017).

51. Kyriienko, O., Paine, A. E. & Elfving, V. E. Protocols for trainable and
differentiable quantum generative modelling. arXiv:2202.08253.
https://arxiv.org/abs/2202.08253 (2022).

52. Zoufal, C., Lucchi, A. & Woerner, S. Quantum generative
adversarial networks for learning and loading random distributions.
npj Quant. Inform. 5. https://doi.org/10.1038/s41534-019-0223-2
(2019).

53. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural
networks. Nat. Phys. 15, 1273–1278 (2019).

54. Rudolph, M. S. et al. Synergistic pretraining of parametrized quantum
circuits via tensor networks. Nat. Commun. 14, 8367 (2023).

Acknowledgements
We would like to thank Brian Chen for his generous comments and
suggestions, which were very helpful. We also acknowledge Javier
Lopez-Piqueres, Daniel Varoli, Vladimir Vargas-Calderón, Brian
Dellabetta and Manuel Rudolph for insightful discussions. We also
acknowledge Zofia Włoczewska for assistance in designing our figures.
Our numerical simulations were performed using Orquestra™. M.H.
acknowledges support from Mitacs through Mitacs Accelerate. J.C.
acknowledges support from Natural Sciences and Engineering
Research Council of Canada (NSERC), the Shared Hierarchical
Academic Research Computing Network (SHARCNET), Compute
Canada, and the Canadian Institute for Advanced Research (CIFAR) AI
chair program. Research at Perimeter Institute is supported in part by
the Government of Canada through the Department of Innovation,

Science and Economic Development and by the Province of Ontario
through the Ministry of Colleges and Universities.

Author contributions
M.H., M.M., J.C., and A.P.-O. wrote the manuscript, designed the
comparison framework, and analyzed the results. M.H., M.M., and A.P.-O.
designed the numerical experiments to test the framework. M.H. ran all the
simulations. A.P.-O. and M.M. co-supervised the project.

Competing interests
Theauthorsdeclare the followingcompeting interests:M.H.,M.M., andA.P.-
O. were employed by Zapata Computing Canada Inc. during the
development of this work.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01552-6.

Correspondence and requests for materials should be addressed to
Alejandro Perdomo-Ortiz.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01552-6 Article

Communications Physics |            (2024) 7:68 9

https://iopscience.iop.org/article/10.1088/2632-2153/ace0f5
https://openreview.net/forum?id=HkpbnH9lx
https://arxiv.org/abs/2202.08253
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s42005-024-01552-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A framework for demonstrating practical quantum advantage: comparing quantum against classical generative�models
	Results and discussion
	Defining practical quantum advantage
	Competition details
	Numerical experiments

	Conclusions
	Methods
	Generalization metrics

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




