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The widespread adoption of machine learning and other matrix intensive computing algorithms has
renewed interest in analog optical computing, which has the potential to perform large-scale matrix
multiplications with superior energy scaling and lower latency than digital electronics. However, most
optical techniques rely on spatial multiplexing, requiring a large number of modulators and detectors,
and are typically restricted to performing a single kernel convolution operation per layer. Here, we
introduce a fiber-optic computing architecture based on temporal multiplexing and distributed
feedback that performs multiple convolutions on the input data in a single layer. Using Rayleigh
backscattering in standard singlemode fiber, we show that this technique can efficiently apply a series
of random nonlinear projections to the input data, facilitating a variety of computing tasks. The
approach enables efficient energy scaling with orders of magnitude lower power consumption than
GPUs, while maintaining low latency and high data-throughput.

Neural network-based machine learning algorithms have advanced dra-
matically in the last decade and are now routinely applied to a wide range of
applications. However, this increase in performance has been accompanied
by rapidly increasing computing demand—particularly in terms of the
energy required to train and run these algorithms1. This has inspired
research in alternative platforms capable of performing the
computationally-intensive matrix-vector multiplications (MVMs) and
kernel convolution operations at the heart of most machine learning algo-
rithms more efficiently. Among these approaches, optical computing is
particularly promising due to its superior energy scaling and potential to
overcome memory-access bottlenecks2–6.

These unique features have led to a series of impressive demonstrations
in which photonic computing systems have performed benchmark tasks
with comparable accuracy to digital electronic neural networks while con-
suming orders of magnitude less energy3,7,8. Most of these photonic com-
puting schemes rely on spatial multiplexing in which input data is encoded
in parallel on an array ofmodulators and theMVMoutput is recordedonan
array of photodetectors. This approach has been explored both in free-space
and integrated photonic platforms. Free-space platforms typically employ
spatial light modulators (SLMs) to encode data and cameras to record the
computed output. While this enables very large-scale computing (e.g. input
vectors as large asN ∼ 106 9), the latency is limited by the SLM and camera
speeds (in systems where the SLM is used to encode the input data). Recent
demonstrations have shown that analog data from the scene can be

processed directly by a free-space, all-optical neural network10,11, over-
coming this latency constraint, although this approach is not easily applied
to arbitrary and complex datasets (e.g. non-optical datasets such as the
SONAR data analyzed in this work). Integrated photonic solutions are both
more compact andhave thepotential for high-speedoperation by exploiting
state-of-the-art modulators and detectors12,13. However, processing large
matrices on-chip remains a challengedue to the size, heat, and complexity of
integrating large numbers of individually addressable modulators. These
limitations have inspired recent proposals for frequency14,15 and temporally
multiplexed architectures in which a single modulator is used to encode an
entire vector16–18. These schemes could fill a gap in the photonic computing
design space between the relatively slow, but large-scale free-space com-
puting platforms that rely on SLMs to encode the input data and the high-
speed but smaller-scale integrated photonic approaches. While initial
demonstrations using temporal multiplexing were limited to a single
neuron16,19, spatio-temporal schemes were recently introduced that support
larger scale networks8,18, highlighting the potential for this approach to
address the limitations of purely spatial multiplexing.

In addition, most of these photonic approaches are unable to natively
perform multiple convolutions on the same input data. Convolutions have
been used in a variety of machine learning techniques (e.g. convolutional
neural networks) due to their ability to extract hierarchical features in a
dataset20,21. To perform multiple convolutions, photonic computing plat-
forms need to generate multiple copies of the input data, separately apply a
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kernel transform to each copy, and record each result. For example, this has
been achieved using free-space optics by applying a series of convolutions in
the Fourier plane of an image using a diffractive optical element designed to
map the result of different convolutions to separate positions on a camera22.
Recently, a time-wavelength multiplexing scheme was proposed to address
this challenge23. This technique performed convolutions in parallel using
optical frequency combs by encoding distinct kernel transforms ondifferent
sets of comb teeth. After wavelength de-multiplexing, an array of photo-
detectors was used to record the output of each kernel transform, enabling
impressive throughput at the cost of increased system complexity and
limited scalability (the number of kernels operations was limited by the
number of individually addressable comb teeth).

In thiswork, we introduce a temporallymultiplexedoptical computing
platform that performs convolutions using a simple and scalable approach
basedondistributed feedback in singlemodefiber.Wefirst encode the input
vectors in the time domain as a pulse-train using a single high-speed
modulator. This pulse-train is then injected into an optical fiber where a
series of partial reflectors provide distributed feedback, generating a series of
delayed copies of the input vector each weighted by the strength of a dif-
ferent reflector. In this demonstration, we rely onRayleigh backscattering in
standard single-mode fiber to provide this distributed feedback. Each
Rayleigh scattering center creates a delayed copy of the input vector with
random amplitude and phase—corresponding to the weights of a trans-
formation matrix (i.e. a random kernel). The backscattered light is then
recorded on a single, high-speed photodetector, performing the accumu-
lation operation and introducing a non-linear transform. As explained in
detail below, if the fiber is longer than the equivalent length of the encoded
pulse train, then the fiber can perform multiple, distinct kernel operations
on the input vectorwithout requiring any additional routing or re-encoding
of the input data. In principle, the weights of the transformation matrices
(i.e. the kernels) could be inverse designed for specific computational tasks.
As proof-of-concept, in this work, we usemultiple random transformations
to compute a non-linear randomprojection of the input vector into a higher
dimensional space.We show that applyingmultiple randomprojections on
the same input data can accelerate a variety of computing tasks including
both unsupervised learning tasks such as non-linear principal component
analysis (PCA) and supervised tasks including support vector machines
(SVM) and extreme learning machines (ELM). More generally, this

approach offers 5 major benefits: (1) It natively performs multiple con-
volutions in parallel on the input data. (2) It is scalable and is capable of
processing relatively large-scale matrices (we demonstrate matrix opera-
tions on vectors with 784 elements) whilemaintaining relatively high-speed
(10 µs per MVM). (3) Since this approach relies on a passive transform to
perform the matrix operations, the energy consumption scales as OðNÞ,
enabling significant reductions in power consumption compared to a gra-
phics processing unit (GPU). (4) The entire system is constructed using
commercially available, fiber-coupled components, enabling a robust and
compact platform. (5) Since the system operates directly on fiber-coupled,
time-series data, this approach could be used to directly analyze data
transmitted over fiber, opening up additional applications in remote sen-
sing, RF photonics, and telecommunications.

Results
Operating principle
Thebasic operatingprinciple is outlined inFig. 1.Data isfirst encoded in the
timedomain as a series of optical pulses. This pulse train is then injected into
an opticalfiberwhere it is partially reflected by a series of Rayleigh scattering
centers. This distributed backscattering process randomly mixes the ele-
ments in the input vector, resulting in a backscattered speckle pattern that
contains a series of random projections of the input vector. The Rayleigh
backscattered (RBS) light is then recorded on a high-speed photodetector
which performs a non-linear transform on the backscattered electric
field24,25. In this work, we relied entirely on the non-linearity introduced by
the detection process, although all-optical non-linearities introduced by
light-matter interactions in optical fibers could be considered in the future.
The digitized speckle pattern can then be used for a variety of computing
tasks including non-linear principal component analysis, support vector
machines, or extreme learning machines. More broadly, the Rayleigh
backscatteringprocess can form thefirst layer of an artificial neural network,
efficiently expanding the input data to higher dimensional space. Since the
specific weights and connections in the first layers of a neural network are
not critical in most applications26, this process can be used to accelerate one
of the most computationally intensive tasks in a neural network. A digital
electronics back-end can then be used to complete the neural network. In
recent years, random projections have been proposed for a variety of
computing tasks in both free-space9,24,25,27,28 and integrated photonic
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Fig. 1 | Operating Principle. Data is encoded in in the time-domain as a train of
optical pulses (represented as blue dots in the equivalent neural network diagram).
This pulse train is then injected into an optical fiber where distributed feedback is
mediated by Rayleigh backscattering. The distributed feedback produces a series of
delayed copies of the original data with random phase and amplitude (the yellow
dots in the neural network diagram). Recording the backscattered signal on a

photodetector then provides a non-linear transform. Overall, this process results in a
random non-linear projection of the original data into a higher dimensional space,
facilitating a variety of computing and data analysis tasks including non-linear
principal component analysis (PCA), support vector machine (SVM), or extreme
learning machine (ELM).
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platforms29,30. While counterintuitive, researchers have shown that random
transforms maintain key features in a dataset such as orthogonality while
facilitating data analysis tasks such as dimensionality reduction or com-
pressive sensing31,32.

Experimentally, this basic approachwas realized using the architecture
shown inFig. 2a.Acontinuouswave (CW) laserwas coupled into anelectro-
optic modulator (EOM) which was used to encode the input data. An
N-element vector,AN , was encoded in the amplitude of a train ofN pulses,
as shown in the inset of Fig. 2a. This pulse train was coupled through a
circulator into standard single-mode optical fiber where it was partially
reflected by a series of Rayleigh scattering centers, creating a series of time-
delayed copies of the original vector with random (though fixed) weights.
The backscattered field, represented by anM-element complex vector eCM ,
was directed to a photodetector which performed a non-linear transform,
generating photocurrent proportional to eCM

�� ��2. We used a narrow-
linewidth (<2 kHz) seed laser to ensure that this coherent summation
produced a repeatable speckle pattern. Figure 2d, e shows examples of an
encoded pulse train and the resulting Rayleigh backscattered speckle pat-
tern, illustrating the dramatic increase in dimensionality provided by the
Rayleigh backscattering process. In this case, the input data was a 60-
element vector (N ¼ 60) representing a SONAR signal (discussed in the
SVM section below) and the backscattered pattern was a ~2000-element
vector.

The random kernel transform introduced by the Rayleigh back-
scattering process can be visualized using the space-time diagram shown in
Fig. 2b. This diagram tracks the position of each pulse over time as it travels
to the end of the fiber along a diagonal path in the upper-right direction. As
each pulse propagates, it is partially reflected by a series of Rayleigh scat-
tering centers and the reflected light travels back to the beginning of thefiber
(along a diagonal path toward the bottom-right of the diagram). The Ray-
leigh backscattering at a given position in the fiber can be described by a
complex reflectance,erk, which is random but fixed. As shown in Fig. 2b, the
backscattered light at timem includes contributions from each input pulse
(once all of the pulses have entered the fiber) weighted by the complex
reflectance at different positions in the fiber. While Fig. 2b presents a

simplified description of the Rayleigh backscattering process as a series of
discrete partial reflectors, in reality, Rayleigh scattering is effectively con-
tinuous. However, the temporal correlation width of the Rayleigh back-
scattered light is set by the bandwidth (or pulse duration) of the encoded
data33. Thus, for the 5 ns pulses used in this work, the Rayleigh back-
scattering process can be approximated as a series of discrete complex
reflectance coefficients spaced every 0.5m in the fiber (the round-trip dis-
tance covered in 5 ns). Using this approximation, we can express the
backscattered light at timem as the sum of each input vector element scaled
by the appropriate reflection coefficient: eCm ¼ PN

n¼1Anerm�nþ1, whereerk ¼ 0 for k<1 or k>M. In other words, the Rayleigh backscattering process
performs a series of vector convolution operations, applying different ran-
domkernels to the input vector as the pulse train propagates down the fiber.
We can also express this transform as a matrix vector multiplication:eCM ¼ eBM ×N ×AN , where eBM ×N is anM ×N transfer matrix. As shown in
Fig. 2c, the matrix eB contains the reflection coefficients,erk, arranged so that
each row ineB contains the same elements as the previous row, shiftedby one
column.

This system becomes particularly interesting if the fiber is longer than
the equivalent length of the encoded pulse train (settingM>N). In this case
the fiber can perform multiple, distinct random kernel operations on the
same input vector. This is significant from a neural network perspective
since convolution operations are known to help extract hierarchical features
in a dataset20,21. This is mathematically very different frommost operations
that have been implemented photonically in the past. First, photonic
computing platforms exploiting random transforms9,29,34 performed global,
fully-random projections of the input data, rather than convolutions. Sec-
ond, most photonic computing platforms, including highly reconfigurable
integrated photonic systems12,13, are limited to applying a single kernel in
each layer, rather than performing multiple, distinct kernel transforms on
the same input data. A notable exception is the time-wavelength multi-
plexed approach which leveraged frequency combs to perform multiple
convolutions in parallel23. However, in addition to the complexity of this
approach, the number of kernels was limited by the number of individually
addressable comb teeth τ.

2800 2900

Fig. 2 | Experimental architecture. a The input vector AN is encoded in the time
domain using an EOM as a train of optical pulses which are injected into the fiber
through a circulator. Rayleigh scattering (described by a series of complex reflectivity
coefficients, eri) provides distributed feedback and the backscattered field, fCM , is then
recorded on a photodetector, providing a non-linear response. b The distributed
scattering process can be described using a space-time diagram which tracks the
position of each pulse as it travels through the fiber. The pulses (shown in different
colors for clarity) are partially reflected by Rayleigh scattering centers with varying

complex reflectivity as they propagate down the fiber. As a result, the backscattered
field contains randomly weighted contributions from each input pulse (i.e. each
element in the input vector). cThe distributed scattering process can be expressed as
themultiplication between a complex transfermatrix B and the input vectorA. dAn
example pulse train representing the SONAR data discussed in the SVM section and
e the resulting RBS pattern. The inset in e shows amagnified view of the RBS pattern.
EOMelectro-opticmodulator, SVMsupport vectormachine, ADCanalog-to-digital
converter, Det photodetector, RBS Rayleigh backscattering.
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In the distributed feedback system, the number of kernel operations
can be increased simply by using a longer optical fiber or a faster data
encoding rate. In particular, the length of the output vector eCM is set by
the length of the fiber, L, and the data encoding rate, f 0, asM ≈ 2· ([2L/(c/
n)]/τ+N), where c is the speed of light, n is the effective index in the
fiber, and τ ¼ 1=f 0 is the length of the pulses representing the elements
of AN . The term in the square brackets represents the round-trip time in
the fiber while the factor of 2 outside the brackets accounts for using a
polarization diversity receiver to record the backscattered light in both
polarizations in parallel (see Methods). The additionalN accounts for the
length of the input vector and assumes we make use of RBS light that
does not include every element in AN (i.e. RBS light collected before the
entire pulse train enters the fiber and after the pulse train starts to leave
the fiber). This expression also assumes that backscattered light is sam-
pled at the data encoding rate of f 0 and that the temporal correlation
width of the Rayleigh pattern matches the pulse duration τ, which is the
case for Rayleigh scattering33. By increasing the data encoding rate and
the fiber length, this technique could be used to process large scale
matrices or perform multiple distinct kernel operations on the same
input vector (the number of distinct kernels is set by the ratioM=N). For
example, this platform could perform MVMs with M ¼ 106 using an
encoding rate of 10 GHz and a 5 km fiber before attenuation becomes
significant (note that 0.2 dB/km is typical for telecom fiber at a wave-
length of 1550 nm, resulting in a round-trip loss of 2 dB for a 5 km fiber).

Although the temporal multiplexing approach presented here trades-
off computing speed for the ability to use a single modulator and detector,
the availability of high-speed optical modulators and detectors (e.g. 20 GHz
devices are widely available) helps to mitigate this trade-off. The time
required to compute aMVMcan be expressed as τMVM ¼ N=f 0 þ 2L= c

n

� �
,

where the first term accounts for the length of the input pulse train and the
second term represents the round-trip time in the fiber. In this work, we
used a500mfiber anda200MHzencoding rate, yielding τMVM≈10 μs forN
approaching 103. Increasing the encoding rate to 20 GHz and using a 5m
fiber could enable a 100× speed-up (τMVM≈100 ns) while performing a
MVM with the same matrix dimensions. This analysis implies that using
higher frequency encoding is generally beneficial, enabling faster compu-
tation for a givenmatrix size. However, as we will discuss below, the power
consumption also increases with the encoding rate and the proper balance
will depend on the application.

Non-linear principal component analysis
As an initial demonstration of this technique, we considered a text-book
example of non-linear principal component analysis. Non-linear PCA is an
unsupervised learning technique that has been used for dimensionality
reduction, singular value decomposition, denoising, and regression
analysis35,36. A standard PCA relies on linear transforms to project data onto
a new coordinate system that represents the variance in a dataset using as
few dimensions as possible. However, relying entirely on linear transforms
limits a standard PCA to analyzing data that is linearly separable37. A non-
linear PCA operates by first applying a non-linear transform to a dataset
before performing a standard PCA, facilitating the analysis of a wider range
of data types.To illustratehowourplatformcanbeused fornon-linearPCA,
we first created a dataset consisting of 500 points (defined by their cartesian
coordinates x; y; z) randomly distributed on 3 concentric spheres with radii
of 1, 2, or 3, as shown in Fig. 3a. Ideally, the PCA would decompose the
output vector into a single non-zero principal component representing the
length of the x; y; z vector. At minimum, the PCA should result in <3
significant PCs representing a low dimensional space in which the data
points can be linearly separated. A standard linear PCA is unable to separate
these 3 classes of points, as shown in Fig. 3b which plots the weights of the
first 2 PCs for each data point. Moreover, simply expanding the dimen-
sionalitywithout applying anon-linear transformwasunable to separate the
classes on its own. To illustrate this, we computationally applied a linear
random transform to each coordinate by multiplying each coordinate by a
3 × 200 random matrix before applying a PCA. As shown in Fig. 3c, this
cascaded transform (linear dimension expansion followed by PCA) is still
linear and is unable to separate the classes.

To perform a non-linear PCA, we used the Rayleigh backscattering
platform to create a non-linear projection of the data onto a higher-
dimensional space before applying a PCA. To do this, we injected each
data point into the fiber using a train of three 50 ns pulses (i.e. an input
vector with N ¼ 3 and τ ¼ 50 ns). The EOM was initially biased at zero
transmission and the voltage sent to the EOMwas set by the amplitude of
the x; y; z coordinates of each point (normalized such that the maximum
coordinate of 3 was set to the maximum transmission voltage for the
EOM, Vπ). We then recorded the Rayleigh backscattered speckle pattern
produced by each point, yielding a M ¼ 200 output vector. This process
effectively projected each 3-dimensional point into a 200-dimensional
speckle pattern.

Fig. 3 | Non-linear principal component analysis
(PCA) using distributed feedback. a The raw
dataset consisted of 500 3-dimensional points
randomly distributed on 3 concentric spheres. The
colors (blue, red, orange) indicate data points on
the 3 different spheres with radii of 1, 2, or 3.
b Linear PCA of the raw data fails to separate the 3
classes of points. Plotted are the weights of the first
2 principle components (PC) for each datapoint.
c A random linear transform is similarly unable to
separate the 3 classes of points. d After the appli-
cation of a non-linear random projection using
Rayleigh backscattering, the 3 classes are clearly
separable using a standard PCA. e Result of a PCA
applied to 3 speckle grains selected from the RBS
pattern, showing that the classes are difficult to
separate without expanding the dimensionality.
f Result of a PCA applied after re-compressing the
RBS speckle pattern into 3 dimensions using a low-
pass filter.
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We then performed a standard linear PCA on the backscattered
speckle patterns. As shown in Fig. 3d, the hybrid photonic/electronic
non-linear PCA efficiently separated the three classes of points. This
separation relied on both expanding the dimensionality and applying a
non-linear transform to the original data. To illustrate this, we also
attempted to perform a PCA using just 3 of the speckle grains in each
backscattered speckle pattern. As shown in Fig. 3e, this was unable to
efficiently separate the three classes (the separation depends on the 3
speckle grains selected, but the result shown is typical for most sets of
3 speckle grains). Expanding the dimensionality increased the chance of
randomly finding a transform that projected the data into a space where
it is highly separable.

While this demonstration showed that non-linear random projec-
tions can help identify variations in a dataset, the benefit of using analog
optics (in terms of power consumption and speed) was limited since the
final PCA was performed on a relatively large dataset with 200 dimen-
sions. Fortunately, after expanding the dataset with the non-linear
transform, we could then compress it into a lower dimensional vector in
the analog optical domain before performing the final PCA while
maintaining many of the benefits. To test this, we re-compressed the 200-
dimensional RBS speckle pattern produced by each point to
3-dimensions by averaging 100 points at a time. Experimentally, this
could be achieved using a photodetector with a low-pass filtering
response. As shown in Fig. 3f, a PCA performed on the re-compressed
vectors was still able to efficiently separate the three classes. This simple
demonstration illustrates how a non-linear random projection can be
used to identify key features in a dataset.

Non-linear support vector machine
The same non-linear random projections can be used to construct a non-
linear support vector machine (NL-SVM). SVMs are a supervised learning
technique designed to separate different classes in a dataset by identifying
themaximummarginhyperplane separating twoclasses.Anon-linear SVM
first projects the data into a higher-dimensional space before finding a
hyperplane to separate different classes38,39. The platform proposed in this
work is ideally suited fornon-linear SVM, since the convolutions introduced
by the RBS process can efficiently project an input dataset into a higher-
dimensional space to facilitate classification.

To explore the use of our platform for NL-SVM, we selected a
benchmark SONAR dataset consisting of SONAR measurements of
either rocks or metal cylinders (phantoms for underwater mines)40. The
dataset consists of 97 measurements of rocks and 111 measurements of
cylinders. Each measurement was obtained using a frequency-modulated

chirped SONAR and contains a 60-element vector representing the
reflected signal as a function of acoustic frequency, as shown in Fig. 4a, b.
This dataset has been divided into a training and a validation dataset,
each containing 104 measurements (we focused on the Aspect Angle
Dependent Test described in40). We first attempted to classify this data by
using a standard linear SVM to assign a hyperplane based on the training
data and then evaluated how well this hyperplane separates the validation
data. A histogram showing the position of the validation data mea-
surements along a 1-dimensional SVM projection is shown in Fig. 4c.
Ideally, the two classes would be completely separable in this space;
however, we observed significant overlap between the classes and
obtained an overall classification accuracy of only 75%. We then used the
RBS platform to perform a random non-linear projection on the SONAR
data before applying an SVM. In this case, each SONAR measurement
(consisting of a 60-element vector) was encoded in a pulse train using
5 ns pulses. The RBS process was used to expand the dimensionality of
the SONAR signal from 60 to 2000. An example of an encoded pulse
train and the resulting RBS pattern are shown in Fig. 2d, e. As shown in
Fig. 4d, the non-linear SVM was much more effective at separating the
two classes, obtaining an accuracy of 90.4% on the validation data,
comparable to the performance of the neural network reported in40. This
illustrates the potential for our platform to facilitate data classification by
transforming input data into higher dimensional space using random
convolutions.

Extreme learning machine
Extreme learning machines are a type of feed-forward neural network in
which theweights and connections in thehidden layers arefixedanda single
decision layer is trained to complete a task41,42. ELMswere initially proposed
to avoid the computational demands of training every connection in a
neural network, but their unique structure is particularly well-suited for
optical implementations. Photonic ELMs can use passive photonic struc-
tures to apply a complex transform (i.e. the fixed layer in the ELM) and rely
on a single electronic decision layer to complete the computing task28,43. This
has enabled photonic computing architectures built around multimode
fiber28 or complex disordered materials24 where precise control of the
transfer matrix would be challenging. Here, we show that our distributed
optical feedback platform can be configured as an ELM to perform image
classification.

We tested our system on two benchmark tasks: classifying the
MNISTDigit database and theMNIST Fashion database44. Each dataset
consists of 60,000 training images and 10,000 test images in 10 classes
(either hand-written digits from 0-9 or 10 types of clothing). Although

Fig. 4 | Non-linear Support Vector Machine
(SVM) using distributed feedback. The SONAR
dataset consisted of 97measurements of rocks (a)
and 111 measurements of cylinders (b).
c Applying a linear SVM directly to the training
data resulted in a classification accuracy of 75%.
d After using the optical platform to perform a
non-linear random projection on the SONAR
data, the SVM accuracy increased to 90.4%.
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the distributed feedback system performs vector convolutions, it can
also be used to perform two-dimensional convolutions on image data
that has been flattened to a one-dimensional vector (see Methods for
details)23. To do this, we encoded each image as a one-dimensional
pulse train by assigning themagnitude of each 5 ns pulse to the intensity
of one pixel in the image. We injected pulse trains representing all
70,000 images in series and recorded 70,000 Rayleigh backscattered
speckle patterns. We then used a ridge regression algorithm to train a
decision layer to classify the 60,000 training images. Finally, we tested
the ELM using the backscattered patterns obtained from the 10,000
validation images. This same process was repeated for the digit and
fashion databases.

As shown in Fig. 5a, b, the distributed feedback ELM system achieved
an accuracy of 96.7% and 85.3% on the digit and fashion databases,
respectively. This performance is comparable to the best performing pho-
tonic neural networks. For example, on the digit database, a free-space
optical extreme learningmachine achievedan accuracy of 92%43, similar to a
diffractive optical neural network which achieved 91.75%11. The time-
wavelength multiplexed convolutional accelerator reported an accuracy of
~88%23. Integrated photonic approaches also report similar accuracies,
including 95.3%13 for a wavelengthmultiplexed scheme and 93.1%8 using a
VCSEL array. Hybrid optical/electronic approaches have yielded accuracy
as high as 98%45. Our results are also similar to digital electronic neural
networks with similar depth (~96%), while multi-layer neural networks
achieve an accuracy above 99%44.

Our approach is able to achieve this accuracy simply by expanding the
dimensionality and leveraging the inherent power of convolutions to extract
high-level features from a dataset, without explicitly training or controlling
the underlying transforms. This demonstration also shows that the same
platform, and, in fact, the same optical fiber, can be used for multiple tasks
simply by re-training the decision layer, consistent with previous demon-
strations of the versatility of photonic ELMs28,43.

The most important parameter impacting the ELM accuracy is the
length of the Rayleigh backscattering pattern (i.e. the length of the output
vector, or the extent to which the system expanded the dimensionality of
the original data). The entire measured RBS pattern consisted of ~2500
speckle grains (a ~6× increase in dimensionality compared to the 400-
pixel MNIST Digit images). To investigate this dependence, we sub-
sampled the measured RBS pattern and repeated the training and test
procedure using output vectors of varying length. As shown in Fig. 5(c),
the accuracy increases rapidly with the length of the output vector before
gradually plateauing. Higher accuracy is achieved for the digit database,
which is consistent with previous studies showing that the fashion
database is more challenging44. Nonetheless, the accuracy increases
monotonically with the size of the output dimension in both cases.
Fortunately, the distributed feedback platform is well suited for this task
and can increase the dimensionality of the output data simply by using a
fiber that is longer than the effective length of the pulse train. Moreover,
since the backscattering process is entirely passive, increasing the
dimensionality in this way has a negligible effect on the power con-
sumption despite increasing the size of the MVM.

Energy consumption
Asdiscussed, thedistributed feedbackprocess effectivelyperformsa series of
random convolutions on the input vector, which can be expressed as a
matrix vector multiplication. This framework allows us to compare the
power consumption that could be achieved by our approach to a standard
digital electronic processor like aGPUby analyzing the energy permultiply-
accumulate (MAC) operation. Our analysis accounts for the energy
required to operate the laser, themodulator, and thephotodetector aswell as
thedigital to analog converter (DAC)andanalog todigital converter (ADC).
Assuming shot-noise limited detection, we first estimated the optical power
required at the detector to obtain a Rayleigh backscattering pattern with the
desired signal-to-noise ratio (SNR), as46:

PRx ¼ 22bq f 0=R ð1Þ

whereb is the effectivenumber of bits (ENOB)with SNR ¼ 6:02× bþ 1:76
in dB, q is the charge of an electron, f 0 is the measurement bandwidth (and
the data encoding rate), and R is the responsivity of the detector. We can
then estimate the required laser power as

Plaser ¼ PRx= TmodrRBS
� � ð2Þ

where Tmod is the transmission through the modulator and rRBS is the
average reflectance due to Rayleigh backscattering in the fiber. Since Ray-
leigh backscattering is a distributed process, the effective Rayleigh back-
scattering coefficient depends on the duration of the pulse train launched
into the fiber and can be estimated as

rRBS ¼ �82 dB=ns
� �

N � τð Þ ð3Þ

for Corning SMF-28e+ (as used in this work)47, whereN is the length of the
input vector and τ is the pulse duration for each element in the input
vector:The total electrical power required to operate the laser can then be
calculated as Plaser=η, where η is the wall-plug efficiency of the laser.

The electrical power consumed by themodulator can be expressed as48

Pmod ¼
N
M

1
2
CmodV

2
π f 0

� �
ð4Þ

whereN is the length of the input vector,M is the length of the output vector
(i.e. the Rayleigh backscattering pattern), Cmod is the capacitance of the
modulator, and Vπ is the peak-to-peak driving voltage of the modulator.
The ratio ofN=M denotes the operating duty-cycle of themodulator andwe
assumeM ≥N , which corresponds to expanding the dimensionality of the
input vector. The electrical power consumed by the photodetector can be
expressed as

Pdet ≈VbiasRPRx ð5Þ

whereVbias is the bias voltage applied to the detector. State-of-the-art DACs
and ADCs require ~0.5 pJ/use and ~1 pJ/use, respectively49–51. The DAC is
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used each time we switch the modulator, which occurs N=M
� �

f 0 times
per second, whereas theADCoperates continuously at a rate of f 0, resulting
in power consumption of

PDAC ¼ 0:5 pJ×
N
M

� �
f 0 ð6Þ

PADC ¼ 1 pJ× f 0 ð7Þ

The total power can then be expressed as Ptotal ¼
Plaser=ηþ Pmod þ Pdet þ PDAC þ PADC. In order to estimate the energy per
MAC, we can then calculate the total number of MACs per second as
N �M=τMVM, where τMVM is the time required to complete a matrix vector
multiplication. Since a MVM is completed in the time required to record a
Rayleigh backscattering pattern withM outputs, τMVM ¼ M � τ. Thus, the
number ofMACs per second isN=τ orNf 0 and the energy perMACcan be
estimated asPtotal= Nf 0

� �
. Based on this analysis, we find that the energy per

MAC required to power the laser scales as f 0=N
2 whereas the energy per

MAC required to power the modulator, detector, DAC, and ADC scales as
1=N and is independent ofmodulation frequency. This difference in scaling
results from the dependence of rRBS onN and τ in Eq. 3. Finally, this analysis
ignored the use of a polarization diversity receiver for simplicity. However,
using polarization diversity does not change the energy per MAC. For
example, using polarization diversity would require twice the laser power to
achieve the same SNR, since the RBS light is split between two detectors, but
enables twice the MACs per second. Instead, using a polarization diversity
receiver doubles the data throughput (for the same modulation and
detection speeds) without affecting the power efficiency.

This model allowed us to quantitatively evaluate the energy/MAC
which could be achieved using the optical distributed feedback scheme.
Here, we assumed a required ENOB of b ¼ 6, which corresponds to a SNR
of 38 dB, considerably higher than the 23.6 dB SNR of the RBS patterns
measured experimentally in this work (see Methods). We setM ¼ 10×N ,
implying that the systemwas used to expand the dimensionality of the input
vector by a factor of 10. We then assumed typical values for the remaining
parameters: a laser with wall-plug efficiency of η ¼ 0:2, a modulator with
Cmod ¼ 1fF and Vπ ¼ 1V , and a detector with Vbias ¼ 3V and
R ¼ 1A=W52,53:Wefirst estimated the energy perMACas a function of the
input vector size N using a modulation frequency of 200MHz, matching
our experimental conditions. As shown in Fig. 6a, the energy/MAC is
dominated by the laser under these conditions. For comparison, Fig. 6 also
shows the power consumption typical of state-of-the-art GPUs (~1 pJ/
MAC), which is independent of vector size30. At a vector size of N ¼ 784,
corresponding to the size of the 28× 28 pixel images in the fashion database,
theRBS systemprovides a 30× reduction in power consumption compared
to a GPU. This improvement increases dramatically for larger vector sizes
due to the 1=N2 dependency of the laser energy. Reducing the required
ENOBwould also significantly reduce the power consumption by reducing
the required laser power.

For many applications, using higher modulation frequencies could
be attractive to enable low latency computing and higher data
throughput. For example, increasing the modulation rate to 10 GHz
would reduce the latency from 10 μs to 200 ns for the same size MVMs
presented in the ELM Section. In terms of computing power, operating at
10 GHz would enable this system to perform >1012 MACs/second
assuming an input vector size of N ¼ 103, approaching the throughput
of time-wavelength multiplexed schemes which have achieved 11× 1012

operations per second23. The expected energy/MAC at an encoding rate
of 10 GHz is shown in orange in Fig. 6(b) (the laser and ADC are still the
dominant sources of energy consumption). In this system, the energy/
MAC increases with encoding rate to compensate for the reduced
backscattering at higher encoding rates (since rRBS depends on τ).
Nonetheless, the RBS system still outperforms a GPU for input vectors
with N>103 at an encoding rate of 10 GHz. In order to reduce the energy
consumption, we could use enhanced backscattering fiber, which is
commercially available and provides ~15 dB higher backscattering than
standard single-mode fiber54. Figure 6(b) also shows the energy/MAC
required using enhanced backscattering fiber with a data encoding rate of
10 GHz, which approaches the energy/MAC achieved at 200MHz using
standard fiber. Combining enhanced scattering fiber with a 200MHz
encoding rate could enable even lower power consumption, out-
performing a GPU for vectors withN>25. Although this type of fiber was
initially developed for fiber optic sensing, it is ideally suited for this type
of optical computing platform and could enable a significant reduction in
power consumption. A distributed feedback fiber employing ultra-weak
fiber Bragg gratings55 or point reflectors56 could also be used to achieve
higher reflectance and thus lower power consumption. These technolo-
gies could also enable customized kernel transforms by tailoring the
position and strength of each reflector.

Discussion
One challenge not addressed in this initial work is the environmental
stability of the fiber. The PCA, SVM, and ELM algorithms investigated
here each assume that a given launch pattern will always produce the
same Rayleigh backscattering pattern (albeit with a finite SNR). However,
the Rayleigh backscattering pattern depends on temperature and strain in
addition to the launch pattern (Rayleigh backscattering in optical fiber is
often used for distributed temperature and strain sensing57). As an
example, for the N ¼ 400 pixel images in the digit database encoded at
200MHz, the Rayleigh backscattering pattern would decorrelate if the
temperature of the fiber drifted by 0.4 m�C (see Methods for details).
While this level of temperature stabilization is possible, single-mode fiber
is a very controlled platform with limited degrees of freedom and rela-
tively simple calibration techniques have been proposed in other appli-
cations leveraging Rayleigh backscattering which might be applicable
here58. Note that in the experiments reported in this work, the fiber was
enclosed in an aluminum box, but was not temperature stabilized.
Instead, the training and validation datasets were recorded during a short

Fig. 6 | Power consumption. a The energy/MAC
required by the laser, detector, modulator, DAC,
and ADC as a function of input vector size at an
encoding rate of 200 MHz and assuming an
ENOB of 6. bThe total energy/MAC assuming an
ENOB of 6 for varying encoding rates, f 0, using
either standard fiber (i.e. relying on Rayleigh
backscattering, RBS) or using enhanced Rayleigh
backscatteringfiberwith 15 dBhigher reflectance.
GPU graphics processing unit, ADC analog-to-
digital convert, DAC digital-to-analog converter,
RBS Rayleigh backscattering, MAC multiply-
accumulate, ENOB effective number of bits.
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measurement window while the fiber environment remained stable. For
example, the ELM experiments required 0.7 s to record the RBS pattern
from all 70,000 test images and we found that the RBS pattern did not
drift significantly on this time-scale. Similarly, laser frequency drift could
also impact the repeatability of the Rayleigh backscattering pattern. The
sensitivity to laser frequency depends on the inverse of the pulse-train
duration. For example, the digit database images were encoded using 2 μs
pulse trains, requiring frequency stability better than ~500 kHz. In this
work, we used a narrow-linewidth (~kHz) laser which was sufficiently
stable on the time-scale of these measurements. However, active fre-
quency stabilization may be required for longer term operation. Alter-
nately, faster encoding or smaller datasets would relax the frequency
stability requirement.

While this work introduced a basic architecture for performing optical
computing with distributed feedback, there are several areas for improve-
ment and further investigation. First, in this work, we relied entirely on the
photodetectionprocess to introduce the requirednon-linearity. Introducing
non-linearities induced by light-matter interaction in the optical domain
could enable more sophisticated, multi-layer networks capable of addres-
sing more challenging computing tasks59. There are a few promising
approaches which could be pursued to introduce intra-network non-line-
arities in this platform. For example, an analog optical-electrical-optical
conversion could be introduced, following the approach used in single-node
fiber-optic reservoir computers19 and recently explored in the context of
integrated photonic neural networks59,60. Alternately, the long interaction
lengths and high-power density in single mode fiber could be leveraged to
introduce all-optical non-linearities such as four-wave mixing, modulation
instability, or stimulated Brillouin scattering61. Second, the temporal mul-
tiplexing schemeproposedhere sacrifices computing speed for simplicity by
enabling the use of a single modulator to encode the entire input vector. In
the future, some degree of spatial multiplexing could also be included to
balance this trade-off. On the detection side, this is particularly straight-
forward and was already implemented in part using a polarization diversity
receiver. In the future, recording the backscatteredpattern froma few-mode
fiber ormultiple discrete fibers could increase the output vector sizewithout
compromising the computing speed. Some degree of parallelization could
also be explored on the data encoding side, e.g., by using multiple mod-
ulators and coupling light into a few-modefiber. Third, while we focused on
random projections in this work, the same basic combination of temporal
encoding and distributed feedback could be used to perform other opera-
tions. For example, instead of relying on Rayleigh backscattering, a series of
carefully positioned partial reflectors (such as weak fiber Bragg gratings55 or
point reflectors56) could be used to implement distinct kernel transforms at
different positions along thefiber (the reflectivity at eachposition in thefiber
could then be set to encode a desired kernel weight). Alternately, inverse
design principles could be used to optimize the reflector geometry for a
desired kernel response. These reflectors could potentially be reconfigurable
(e.g. by straining a weak fiber Bragg grating to adjust its reflectivity at the
seed laser wavelength), enabling reconfigurable kernels.

In summary, this work introduced an optical computing platform
based on temporal multiplexing and distributed feedback that performs
random convolutions using a passive optical fiber. We showed that
Rayleigh backscattering in single mode fiber can be used to perform non-
linear random kernel transforms on arbitrary input data to facilitate a
variety of computing tasks, including non-linear principal component
analysis, support vector machines, or extreme learning machines. This
approach enables large scale MVMs with O Nð Þ energy scaling using a
single modulator and photodetector. The entire system can be con-
structed using off-the-shelf fiber-coupled components, providing a
compact and accessible approach to analog optical computing. Finally,
since this approach operates on temporally encoded light in standard
single-mode fiber, it could potentially be applied directly to optical data
transmitted over fiber enabling applications in remote sensing and RF
photonics.

Methods
Experimental details
Anarrow-linewidth laser (<2 kHz,RIOOrion,Grade 4)wasused as the seed
laser. In the experiments reported in this work, an Erbium-doped fiber
amplifier (EDFA)was insertedafter theEOMinFig. 2 to increase the launch
power and compensate for the use of a relatively low power (10mW) seed
laser and relatively high insertion loss EOM (4.5 dB). In the future, a higher
power laser could be used to avoid needing the EDFA (depending on the
length of the pulse train and encoding rate, peak launch power in the range
of 10-100mWis sufficient to achieve an enob of 6 basedonEqs. 1–3). In this
work, we also used a second EDFA followed by a wavelength division
multiplexing filter after the circulator to amplify the Rayleigh backscattered
pattern before detection. This EDFA was used to minimize the effect of
photodetector noise. In the future, using a lower-noise detector would
preclude the need for the secondEDFA.Note that the EDFAoperated in the
small signal gain regime and did not introduce a non-linear response to the
RBS pattern. A polarization diversity receiver (a polarizing beam splitter
combined with two detectors) was used to record the RBS pattern in
orthogonal polarizations.

In the ELMexperiments, the 2-dimensional imageswere flattened into
1-dimensional vectors. As discussed in23, vector convolutions can be used to
perform a convolution on 2-dimensional image data, although there is an
overhead cost (not all output measurements are used) and the stride is
inherently asymmetric (a symmetric stride could be obtained through
sequentialmeasurements bymodifying the encoding strategy). In the image
recognition tasks described here, we used all of the output samples, which
included measurements representing standard 2D convolutions as well as
mixtures that convolved different combinations of input pixels and would
not be computed in a standard convolution. We also did not attempt to
correct for the asymmetric stride introduced by the vector convolution
process.

The digitized RBS speckle patterns were recorded at 1 GS/s. This is
slightly faster than the temporal correlation width, which is set by the data
encoding rate (i.e. 200MHz for the SVM or ELM test and 20MHz for the
PCA test)33. In this work, we processed slightly oversampled Rayleigh
backscattering patterns, but the dimensionality listed asM in each section
corresponded to the pattern length divided by the correlation width of 5 ns
or 50 ns.

We calculated the SNRof the RBS patterns recorded in this work as the
ratio of the average power of theRBSpattern to the standarddeviation in the
background (recorded with the EOM blocked). We found an SNR of
23.6 dB, which corresponds to an enob of 3.6. Fortunately, neural networks
are quite robust to low-precision computing62, enabling the excellent per-
formance achieved in the benchmark tasks explored in thisworkdespite this
modest precision.

Temperature Sensitivity
The temperature sensitivity of the Rayleigh backscattering pattern depends
on the length of the incident pulse train and can be estimated as
(f0⁄N)⁄[1.2 GHz⁄°C], where the f 0=N

� �
term represents the transform limit

of the input pulse train (which has a duration ofNτ ¼ N=f 0) and the term
in square brackets represents the shift in the Rayleigh spectrum with
temperature63. This expression calculates the temperature shift required for
the Rayleigh backscattering spectrum to shift by the transform limit of the
pulse train, which would result in a decorrelated speckle pattern.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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