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The concept of Maxwell’s demon, proposed in classical physics as a means to extract work from a
thermodynamics system beyond the constraints set by the second law of thermodynamics, has since
been extended to modern quantum physics. Realization of the quantumMaxwell’s demon remains of
actual interest given the potential of continuous-variable systems in quantum thermodynamics and
current experimental opportunities. We propose a quantum Maxwell’s demon method, based on a
Jaynes-Cummings two-level system, for subtracting bosonic energy inferred from successful
measurements of excited qubits after linear and nonlinear interactions. The effect of these
subtractions can suppress the tails of bosonic noise better than the linear interactions alone. The
system statistics reaches an out-of-equilibrium state, becoming much closer to Poissonian
distributions as indicated by the mean-to-noise ratio. The inclusion of a few additional optimal
nonlinear subtractions can improve the success rate to ten times higher than the linear scheme,
making the method significantly more efficient in exciting hundreds of qubits.

Maxwell’s demon, a thought experiment, demonstrates that if one could
access information about the state of a system through a classical mea-
surement, then one can exploit such information to gain mechanical work
or energy from the system through classical control over it. This thought
experiment leads to the generalization of the second lawof thermodynamics
by emphasizing the possibility of information-work conversion. It is one of
the vital principles that rectify thermal fluctuations, without using strong
nonlinearity, simply by measurement and classical control1. In classical
Maxwell’s demon, the measurement is ideally arbitrarily precise, and the
back action on the system does not need to be considered, as a measured
quantity of a system is treated as a hidden variable. It changes dramatically
when the measurement cannot give full information about the system’s
state. The outcome of the measurement thus implies the new state of the
system through the inference of the gained information. The different
couplings to a probe and its subsequentmeasurement formnew states of the
system. Such events often turn out to be destructive; however, they some-
times can conditionally distill the system into a more useful resource2,3, as
broadly explored in quantum information, especially in resource theories. If
the distillation fails, it can still be repeated continuously until obtaining the
resource. In this way, the chance of failure, in principle, can beminimized to
zero at the cost of the speed or protocol multiplexing. The initial thermal
fluctuations are used at the outputwith anegligible probability. Practically, it
does not significantly influence the generated resource. The quantum
transformation to a better resource, therefore, depends on the coupling and

measurement back action4–6. First, we need to define free states, free cou-
plings, and free measurements7,8. The free states are naturally thermal
equilibrium states diagonal in the energy eigenbasis. The essential free
unitary coupling of the system to the probe is then energy-conserving; the
free probe energy measurement commutes with the probe’s energy. Free-
controlled operations are also energy-conserving couplings with an ancilla
in thermal states thatmaximally have the energy of the input ones. It defines
the most basic but nontrivial playground to explore and compare Maxwell
demon methods mutually and also with other noise rectification strategies.

In the resource theory, the usefulness of a quantum state is char-
acterized operationally by some groups of physical and implementable
processes that cannot generate the given resource, such as local operation
and classical communication (LOCC), identifying the entanglement
resource7,9. Quantifiers that are monotonically non-increasing under such
physical processes are called resourcemonotones. In the case of continuous-
variable systems, one can consider state transformations under Gaussian
thermal operation to identify resource monotones such as temperature-like
quantities, generalizing the equilibrium temperature10. The work of Serafini
et al.11, on the other hand, provides a full characterization of possible single-
mode transformations throughGaussian thermal operation leading to a no-
go theorem, preventing lowering the entropy of a single-mode below the
background with algorithmic cooling.

The quantum Maxwell demon is more involved and diverse for a
bosonic system representing a single mode of photons, phonons, or other
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bosonic particles. Here, the simplest case of a free coupling is an energy-
conserving beam-splitter type of resonant coupling. After this beam-splitter
coupling, macroscopic measurement integrating energy already allows
conditional manipulation with continuous energy statistics, for example,
used in the work of Iskhakov et al.12,13. Microscopic single-quanta detection
opens space for subtracting individual energyquanta conditionally14–21, even
for macroscopic thermal states, and charging the macroscopic battery by
average energy22,23.

However, formicroscopic phononic stateswith few quanta on average,
the statistics after subtraction become crucial for charging a microscopic
battery. Such a battery is represented by a two-level system coupled to the
phonons, light, or microwave fields. Multiple subtractions increase mean
energy and reduce autocorrelation between quanta, causing them to be
more statistically independent17,24. They mainly increase the mean-to-
deviation ratio of the system’s energy, which is essential for information
theory and thermodynamics25. Moreover, as recently demonstrated, the
correlations between two thermal baths allow Maxwell’s demon-based
protocol to extractmorework26, andmeasurement strategies have beenused
in quantum memristors27.

In this work, we propose a nonlinear bosonic Maxwell’s demon
working at the quantum level through the simple and deterministic pro-
tocol, which is expected to be straightforwardly realized in various quantum
platforms. We first investigate this deterministic Maxwell demon method
for a broadly feasible energy-conserving coupling, a linear
Jaynes–Cummings (JC) coupling28, probing a bosonic system sequentially
by two-level systems to reach an out-of-equilibrium state. We then prove
that the output state can excite another two-level system better than any
thermal state. Differently from photonic Maxwell’s demon, we consider
phononic systems represented, for example, by the extensively used
mechanical modes of a single atom29 or, recently, a macroscopic oscillator30.
Alternatively, microwave superconducting experiments can also be con-
sidered for the experimental tests31. In these cases, usually, themean thermal

occupation per mode can bemuch higher than that of thermal light sources.
Despite the low dimension of the probes, the deterministic linear subtrac-
tion increases both the mean-to-deviation ratio of energy and the prob-
ability of exciting two-level systems higher than that from thermal states. It
proves the power of such operations beyond a conventional Fock state
lowering32. The remaining noise can be further suppressed by a sharper
measurement using still energy-conserving nonlinear JC coupling33–35

available at trapped-ion platforms36,37, cavity quantum electrodynamics38,
and superconducting circuits39 mentioned above to perform a nonlinear
subtraction of more quanta at once. Trilinear interactions, additionally, can
also considered as alternative options40–43.

We prove that optimally implementing nonlinear subtractions after
the linear ones increases both themean-to-deviation ratio of energy and the
probability of excitation of atoms. Such improvement after a few nonlinear
subtractions becomes distinctly significant, more than 10 times improved,
for successfully exciting hundreds of qubits. It is, to our knowledge, the first
example showing that two-quanta processes can bring the statistics of
phononic mode closer to a Poissonian, without any classical external drive
and intense nonlinear saturation, which is typical for such processes in
laser37. It proves thatMaxwell’s demon, basedonavailable nonlinear energy-
conserving couplings, can open a new territory for quantum statistical and
thermodynamical investigations.

Results
Overview
Tounderstand the overall picture andprocedure of thiswork,wedevote this
subsection to explain the overview of the proposed protocol employed to
gradually shape the probability distribution of a harmonic oscillator close to
a Poissonian for a better probability of exciting a two-level system, which is
regarded as a quantum battery, via JC interaction. Figure 1 displays the
overall processes of the scheme. A harmonic oscillator in thermal equili-
briumwith a thermal bath undergoes a linear excitation subtraction using a

Fig. 1 | The scheme of the overall protocol. The diagram represents the overview of
the deterministic nonlinear bosonic protocol for resonantly charging a quantum
battery, represented by a two-level system. The protocol is divided into two parts:
phonon subtractions and the two-level charging process. The excitation subtraction
also consists of two parts: linear (green) and nonlinear (blue) subtractions using
protocol II, illustrated in the bottom inset and described in detail in the latter part of
the subsection “Linear subtraction” in Results. Several linear subtractions are

performed to gradually shape the probability distribution of a harmonic oscillator,
initially in a thermal state ρth, into a nearly Gaussian distribution before nonlinear
subtractions take place to trim and squeeze the probability distribution further. Such
harmonic oscillators, hence, are used to charge the quantum batteries, initially being
set to be in the ground state ∣g

�
, through Jaynes-Cummings interaction. The exci-

tation probability pe,out is expected to exceed its corresponding thermal bound.
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linear JC coupling for several times before further extracting its excitations
through the nonlinear interaction so that its probability distribution
becomes even more squeezed from both sides at low and high quanta. The
outputharmonicoscillator is thenused to charge a two-level battery through
the linear JC coupling to demonstrate that it outperforms the thermal
bound, themaximumprobability of exciting a qubit with a thermal state ρth,
and the initial state it is associated with. This improvement originated from
the successive change in the population distribution of the harmonic
oscillators as a result of sequential subtractions of the oscillators’ excitation.
In the limit of a high initial mean excitation �n of the oscillators, only linear
subtraction cannot give the charging performance higher than the combi-
nation of both linear and nonlinear subtractions. For example, for �n ¼ 70,
using only a sequence of linear subtractions gives rise to the highest charging
performance of Pe = 0.9745 after 42 subtractions, while using a shorter
sequence of 15 linear and 5 nonlinear subtractions gives rise to the per-
formance higher at Pe = 0.9784. This difference is more visible once we
independently and completely excite a hundred atoms, as 42 linear sub-
tractions give the probability of 0.076 compared to 0.11 using 15 linear and5
nonlinear subtractions. The involvement of nonlinear subtractions allows a
sufficiently high charging performance to be achieved with a significantly
smaller number of required subtractions.

The lower inset depicts the excitation subtraction procedure of both
linear and nonlinear subtractions. A harmonic oscillator in amotional state
ρmo
N resonantly interacts with a two-level system through a JC interaction,
with the interactionHamiltonian linear inoscillator variables, or anonlinear
JC interaction34 having higher powers of the oscillator variables in the
interactionHamiltonian depending onwhich type of excitation subtraction
being performed at that stage. After they interact for a strategically chosen
period of time, the state of the qubit ismeasured. If themeasurement results
in the excitedstate, the subtraction is thusperformed successfully, otherwise,
it fails. The measured outcome then feeds forward to decide whether the
harmonic oscillator could be kept or replaced by its previous successful
version before repeating every step again in the next round of subtraction.

Linear subtraction
The linear subtraction is performed using a resonant JC interaction whose
Hamiltonian in the interaction picture can be written as

Ĥint ¼ _λ σ̂þâþ σ̂�â
y� �
; ð1Þ

where λ is the coupling strength, σ̂þ (σ̂�) is the rising (lowering) operator of
the qubit, and ây (â) is the creation (annihilation) operator of the oscillators.
We then can express the unitary operator associated with this coupling

running for an interval time t as

Û JCðtÞ ¼ ∣ei eh ∣ cosðλt
ffiffiffiffiffiffiffiffiffiffiffi
n̂þ 1

p
Þ þ ∣g

�
g
�
∣ cosðλt

ffiffiffî
n

p
Þ

� iσ̂�â
y sinðλt

ffiffiffiffiffiffiffiffiffiffiffi
n̂þ 1

p Þffiffiffiffiffiffiffiffiffiffiffi
n̂þ 1

p � iσ̂þâ
sinðλt

ffiffiffî
n

p
Þffiffiffî

n
p ;

ð2Þ

where ∣g
�
g
�
∣ and ∣ei eh ∣ denote the projections on the ground and excited

states of the qubits, respectively, and n̂ ¼ âyâ is the number operator of the
harmonic oscillators.

The first proposed protocol, denoted as protocol I, for linearly sub-
tracting themotional excitations is schematically illustrated in Fig. 2. At the
beginning, harmonic oscillators are in thermal equilibrium with a thermal
bath at temperature T, while the probes, two-level systems, are prepared in
the ground state ∣g

�
. The initial composite state of this can be expressed as

ρ0 ¼ ∣g
�
g
�
∣� ρth; ð3Þ

where ρth denotes the state of a harmonics oscillator in thermal equilibrium
with a mean number of excitations �n,

ρth ¼
X1
m¼0

�nm

ð�nþ 1Þmþ1 ∣mi mh ∣ � ρmo
0 ; ð4Þ

and is also regarded as the initial motional state of the oscillators.
The mean number of motional excitations �n is related to the tem-

peratureT by �n ¼ ðexpð_ω=kBTÞ � 1Þ�1, whereω is the angular frequency
of the oscillators. The interaction between the qubits and the oscillators is
run for the optimal time, top0 , chosen tomaximize the probability of exciting
the qubits, approximately related to �n as λtop0 ≈π=ð2 ffiffiffiffiffiffiffiffiffiffiffi

�nþ 1
p Þ (see the

Methods section more details). Subsequently, the measurement in the
eigenbasis f∣g�; ∣eig on these qubits is performed. We then postselect only
those oscillators with the probes in the excited state ∣ei to be used in the
further stepsof theprotocol. Themeasurement andpostselectionproject the
state of the qubits and the harmonic oscillators onto

ρ01ðtop0 Þ ¼ 1

Pð0Þ
e ðtop0 Þ σ̂þâ

sinðλtop0
ffiffiffî
n

p
Þffiffiffî

n
p ρ0

sinðλtop0
ffiffiffî
n

p
Þffiffiffî

n
p âyσ̂�

 !

¼ ∣ei eh ∣�
X1
m¼0

�nmþ1

ð�nþ 1Þmþ2

sin2ðλtop0
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p Þ
Pð0Þ
e ðtop0 Þ ∣mi mh ∣

¼ ∣ei eh ∣� ρmo;e
0 ;

ð5Þ

Fig. 2 | The scheme of protocol I. The diagram
illustrates the proposed phonon subtraction pro-
tocol. In the Nth round of subtraction, an oscilla-
tor in a state ρmo

N couples with a two-level system at
its ground state for the optimal interaction time
topN . Then ameasurement in the energy basis of the
qubit is performed. If the excited state ∣ei is
obtained, we keep the oscillator (blue), as its
energy is successfully subtracted, for the next
round, otherwise replacing it with a new oscillator
in the initial thermal state.
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where Pð0Þ
e ðtop0 Þ is the probability of observing the excited state ∣ei at the

optimal time, which acts as the normalization factor of the term in the
bracket and ρe0 is the state of the oscillators after the postselection.The qubits
of those postselected systems are then reset back to their ground state ∣g

�
by

the dissipation of their energy to the environment. We consider that the
qubit dissipation ismuch slower than the JC interaction and, therefore, does
not decohere the process. We mention here that the excited qubits are no
longer coupled to harmonics oscillators after themeasurement, but coupled
with the radiation modes instead to erase them. The qubit thus relaxes its
excitation to the cold optical environment by spontaneous photon emission.
It is essential for ground qubit state cooling of trapped atoms (and super-
conducting qubits), reaching nearly 100%.We also would like to emphasize
that, like others, Maxwell’s demons, this proposed protocol does not inva-
lidate the second lawof thermodynamics as it requires a resource to reset the
probe to its ground state44.

After that, we replace those failed systems with new systems in the
initial state ρ0. All mentioned processes are then repeated again, but this
time, the initial motional state of the ensemble for the new round has
changed from ρmo

0 due to the measurement back action of the first sub-
traction. For the Nth round of repeat-until-success subtraction by the JC
interaction, the state of the ensemble can be expressed as

ρmo
N ¼ â

sinðλtopN�1

ffiffiffî
n

p
Þffiffiffî

n
p ρmo

N�1
sinðλtopN�1

ffiffiffî
n

p
Þffiffiffî

n
p ây þ ð1� PðN�1Þ

e ðtopN�1ÞÞρmo
0 ;

ð6Þ
where ρmo

N�1 is the achieved motional state of the previous subtraction,
PðN�1Þ
e is the probability of getting the excited state ∣ei in the previous round,

and topN�1 is the interaction time that maximizes PðN�1Þ
e . Note that the

motional state in Eq. (6) when N = 1 differs from the state in Eq. (5) by
additional terms associated with the repeat-until-success subtractions as
studied by Marek et al.45. The probability PðNÞ

e of getting an excited state at
the optimal interaction time topN can be written as

PN
e ðtopN Þ ¼

X1
m¼0

pðNÞ
m sin2ðλtopN

ffiffiffiffi
m

p Þ: ð7Þ

where the probability distribution pðNÞ
m of the harmonic oscillators in the

state ρN can be expressed as

pðNÞ
m ¼ pðN�1Þ

mþ1 sin2ðλtopN�1

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p Þþ ð1� PðN�1Þ
e ðtopN�1ÞÞpð0Þm ; ð8Þ

Wedenote pðN�1Þ
m to be the achieved probability distribution in the previous

round with pð0Þm ¼ �nm=ð�nþ 1Þmþ1, the initial probability distribution at
thermal equilibrium. This equation describes how each subtraction gra-
dually shapes the probability distribution of the oscillators in each round.

Let us consider the semiclassical case when the average excitation is
very large, �n≫ 1. The square of the sine function, the first term in Eq. (8),
acts as a population filter. After the first subtraction,N = 1, with the optimal
time λtop0 ≈π=ð2 ffiffiffiffiffiffiffiffiffiffiffi

�nþ 1
p Þ, the probabilities pð1Þn with the value of n very

different from the initial average excitation �n are suppressed as the values of
sin2ðπ ffiffiffiffiffiffiffiffiffiffiffiffi

mþ 1
p

=ð2 ffiffiffiffiffiffiffiffiffiffiffi
�nþ 1

p ÞÞ is considerably smaller than unity, while those
probabilities pð1Þm with m close to �n dominate the new probability distribu-
tion. This filtering effect still holds true for the subsequent subtractions, and
it also makes the optimal interaction times of several further rounds are
approximately the same as the first one: λtopN ≈λtop0 ≈π=ð2 ffiffiffiffiffiffiffiffiffiffiffi

�nþ 1
p Þ for

N≪ �n. As the probability of having the qubit in the excited state grows
progressively with the number of performed subtractions, see the detailed
discussion in subsection “Charging performance” in Results, the last term in
Eq. (8) gradually becomes a smaller contribution. Each subtraction of the
motional excitation, with optimized coupling, thus gradually modifies the
probability distribution pðNÞ

m into aGaussian distribution centered around �n.
The center of the probability distribution becomes noticeably shifted toward
the motional ground state, when the number of subtractions becomes
comparable with the initial average excitation number �n, indicating that the
average excitation number decreases slightly each time we perform a
subtraction.

Protocol I can be further improved, if in the last step of each sub-
traction, instead of replacing the failed systems with systems in thermal
equilibrium, ρmo

0 , we replace themwith the successfully achieved systems of
the previous round. The diagramof the second protocol, namedprotocol II,
is depicted in Fig. 3. The achieved state of the ensemble after theNth round
of subtraction becomes

ρmo
N ¼ â

sinðλtopN�1

ffiffiffî
n

p
Þffiffiffî

n
p ρmo

N�1

sinðλtopN�1

ffiffiffî
n

p
Þffiffiffî

n
p ây þ ð1� PðN�1Þ

e ðtopN�1ÞÞρmo
N�1;

ð9Þ

where the population distribution of the harmonic oscillators is modified as

pðNÞ
m ¼ pðN�1Þ

mþ1 sin2ðλtopN�1

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p Þþ ð1� PðN�1Þ
e ðtopN�1ÞÞpðN�1Þ

m : ð10Þ

Thismodification can suppress both tails of theprobability distribution
faster and better than the protocol I at the cost of collecting and storing the
outcomes of the previous steps. The nearly Gaussian statistics of phonons
produced by protocols I and II are illustrated and compared in Fig. 4.

We note here that the required conditions to have the statistics of the
population close to a Gaussian distribution are both sufficiently high initial
excitation �n, i.e. high temperature and a sufficient number of subtractions by
linear Jaynes-Cummings model with protocol II. A few rounds of such
subtractions are insufficient to make the distribution symmetric. A low

Fig. 3 | The scheme of protocol II. The diagram
of the improved protocol is similar to that of
protocol I shown in Fig. 2, but in this case, the
failed systems are replaced by the successful sys-
tems obtained in the previous round instead of
using systems in the initial thermal state.
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value �n, on the other hand, cannot allow enough rounds of linear subtrac-
tion, as theywoulddeplete the excitationof the oscillator andbring it close to
the ground state instead.

We assume that the thermalization time of the motional state is very
long compared to the total time spent in all processes of protocols I and II so
that the heat transferred from the thermal bath to the considered oscillators
is very small and negligible. The thermalization effect, as a result, can be
ignored.

Charging performance
Apopulation inversion of qubits happenswhen the probabilityPe offinding
the qubits in the excited state ∣ei exceeds the probability Pg of finding them
in the ground state ∣g

�
, i.e., Pe− Pg > 0 or Pe > 1/2.We then devote this part

to demonstrate and explain the performance of sequential linear subtrac-
tions. Let us first discuss the relation between the population distribution of
a harmonic oscillator and themaximumexcitationprobability of a two-level
system. For a qubit initially being in the ground state ∣g

�
, the probability Pe

of getting the excited state ∣ei after it is coupled an oscillator via the JC
interaction for t is

PeðtÞ ¼
X1
m¼0

pmsin
2ðλt ffiffiffiffi

m
p Þ; ð11Þ

where pm is the population distribution of the oscillator. As an oscillator
being in its motional ground state ∣0i cannot be coupled with a qubit in the
ground state ∣g

�
, the probability Pe thusmust be smaller than 1− p0, where

p0 is the probability of finding the oscillator in its ground state. This means
the desired probability distribution should have a small probability p0. For a
weak coupling case inwhichλt≪ 1 so thatpmsin

2ðλt ffiffiffiffi
m

p Þ∼ pmðλtÞ2m≪ 1,
the probability approaches a linear rule ðλtÞ2hn̂i<1 and the statistics of the
oscillator do not matter in the classical excitation limit. For stronger cou-
pling, however, this simple approximation breaks. Each term in the sum-
mation oscillates in timedifferently depending on its indexmdue to the sine
function. Narrower probability distributions thus give a constructive sum-
mation of those terms in the summation, as they cause smaller mis-match
between the oscillating time dependence of the dominant probabilities pm
and provide a higher chance of getting the excited state ∣ei. For example, the
perfect scenario in which the excited state ∣ei is obtained via the JC
interaction for certain is when the oscillator is in an arbitrary Fock state ∣ni
aswe can just choose the interaction time t precisely tomatch λt

ffiffiffi
n

p ¼ π=2,
leading to Pe = 1. Another factor to be considered for a Gaussian-like
distribution, with probabilities pm falling shapely when being far from the
peak, is the mean excitation number, hn̂i. If two distributions have an

identical Gaussian-like shape but different mean excitation numbers, the
one with a larger mean excitation can give larger Pe. A larger hn̂i provides
smaller mis-match between the oscillating time dependence λt

ffiffiffiffi
m

p
of the

sine function in the summation. Whenm differs from the mean excitation
number hn̂i by Δm such that m ¼ hn̂i þ Δm and jΔmj≪ hn̂i, the
oscillating time dependence of the probability pm can be approximated as

λ
ffiffiffiffi
m

p ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn̂i þ Δm

p

≈ λ
ffiffiffiffiffiffiffihn̂ip þ λΔm

2
ffiffiffiffiffi
hn̂i

p :
ð12Þ

The difference in the time dependence of the dominant probabilities in
the summation of Eq. (11) is, therefore, inversely proportional to

ffiffiffiffiffiffiffihn̂ip
. Of

course, the mean excitation becomes irrelevant when it comes to the case of
an excited Fock state, as demonstrated earlier that, with a single oscillating
term in the summation, Pe = 1 can be obtained for certain regardless of the
mean excitation number. However, we need to bear in mind that the sta-
tistics will immediately play a crucial role once there exists a small deviation
from Fock states. From these discussed facts, among the parameters com-
monly used for analyzing the statistics of excitation, such as second-order
correlation function, g2ð0Þ ¼ hây2â2i=hâyâi2, and Fano factors
F ¼ hðΔn̂Þ2i=hn̂i, the appropriate parameter indicating the desirable pho-
non statistics, motivated by Eq. (12), should be the mean-to-deviation ratio
(MDR) of the population, denoted byR, which is defined as

R ¼ hn̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔn̂Þ2i

p ð13Þ

where hðΔn̂Þ2i ¼ hn̂2i � hn̂i2 represents the phonon fluctuation. It is more
likely that the atom is excited better by a phonon with a greater value ofR.

Figure 5 shows themaximumprobability of having the excited state ∣ei
increases after each linear subtraction. This increase originates from the fact
that the population distribution becomes narrower after each subtraction.
However, for a small initial mean excitation number, around �n∼ 1–2, the
subtractions do not always increase PðNÞ

e as the excitations of the oscillators
are almost exhausted, i.e., most oscillators are in theirmotional ground state
and no longer coupled with the two-level systems. As expected, since pro-
tocol II gives a smaller probability of being in the motional ground state, p0,
and a narrower probability distribution, it then gives higher probabilities
PðNÞ
e , for N ≥ 2. From the figure, we can clearly see that the increase of PðNÞ

e
gradually becomes saturated, as the value of ΔPðNÞ

e ¼ PðNÞ
e � PðN�1Þ

e
becomes smaller. Further subtractions barely increase the excitation prob-
ability. It is obvious from the figure that the saturated value of PðNÞ

e obtained

Fig. 4 | The phonon statistics after linear sub-
tractions. The change in the population dis-
tributions after five linear subtractions using
a protocol I and b protocol II is demonstrated. The
black solid lines represent the initial population
distribution of the oscillators being in thermal
equilibrium with the mean excitation number
�n ¼ 30. Sequential subtractions gradually form a
nearly Gaussian distribution probability distribu-
tions (orange), with its peak located slightly lower
than the initial mean excitation �n ¼ 30. The dis-
tribution obtained from protocol II, in (b), is
noticeably narrower than that obtained from
protocol I but has slightly lesser mean excitation,
hn̂i. These two distributions are then compared to
Poisson distributions (blue) with the same average
phonon numbers. Their relevant information is
also given, including their mean excitation hn̂i,
their second-order correlation functions g2(0),
their mean-to-deviation ratios of excitation R,
defined in Eq. (13), and their Fano factors F.
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from protocol II is slightly greater than that from protocol I. This is because
protocol II shapes the distribution in such a way that the probability p0 and
its neighborhood become very small, as shown in Fig. 4b, compared to the
distribution obtained from protocol I, depicted in Fig. 4a.

For a largenumber �n, the performanceof charging a two level system in
an Nth round of operation, for N ≤ 20, can be roughly approximated as
PðNÞ
e;I ≈ 0:84� 0:20e�0:5N þ 0:003N , for protocol I, and PðNÞ

e;II≈0:93�
0:29e�0:4N þ 0:002N for protocol II, where PðNÞ

e;I (PðNÞ
e;III) is the charging

performance in the Nth round using protocol I (protocol II). The charging
performance from both protocol in this case is displayed in Fig. 6. These
approximations explicitly quantify how the performance of the proposed
protocols improved with the number of operation roundsN, to portray the
improvement of the performance in each round compared to the cost of
resources using for running the protocols.

Nonlinear subtraction
As we pointed out in Fig. 4, the distribution still has a long decaying tail for
larger populations resembling the thermal statistics. To remove this lim-
itation and shape the population distribution even faster and better, linear
subtraction alone is no longer sufficient. FromFig. 6, the performance of the
linear subtractions eventually will reach its saturation, but there is still a way
to break through it by utilizing a nonlinear interaction whose interaction
Hamiltonian is of the form,

Ĥnon ¼ _λ0 σ̂þâ
2 þ σ̂� ây

� �2� �
; ð14Þ

where λ0 denotes the coupling strength of the interaction. This interaction
Hamiltonian would have the same form as theHamiltonian in Eq. (1) if the
annihilationandcreationoperators inEq. (1)were replacedby their squares,
â ! â2 and ây ! ây

� �2
. The unitary operator describing the time evo-

lution of this nonlinear coupling is given as

ÛnonðtÞ ¼ ∣ei eh ∣ cos λ0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂þ 1Þðn̂þ 2Þ

p� �
þ ∣g

�
g
�
∣ cos λ0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ðn̂� 1Þ

p� �

� iσ� ây
� �2 sin λ0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂þ 1Þðn̂þ 2Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂þ 1Þðn̂þ 2Þ

p
� iσþâ

2 sin λ0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ðn̂� 1Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ðn̂� 1Þ

p :

ð15Þ

As mentioned, nonlinear repeat-until-success subtractions are per-
formed in the same way as linear subtractions explained in subsection
“Linear subtraction” in Results, except this time, the employed interaction
becomes nonlinear. However, unlike the linear case, a nonlinear subtraction
cannot trim the tails of the population distribution desirably, see

Supplementary Note 1 for more details. Therefore, the prior population
distribution should be similar to a Gaussian to some extent, and the prob-
abilities pm associated with high-energy levels,m≫ �n, must be already very
small. Otherwise, the nonlinear subtraction will form a ripple in the prob-
ability distribution of the harmonic oscillators, which is an undesired effect.
Due to the normalization condition, the probability distribution with a
ripple ismore dispersed compared to thosewithout it. The probability Pe, as
a result, is not as large as it potentially should be.

Consequently, in order to use nonlinear subtractions properly, we have
to perform several linear subtractions using protocol II, displayed in Fig. 3,
so that the population distribution is modified close to a Gaussian with
sufficiently short tails.After that, nonlinear subtractionsusing theprocedure
of protocol II can then be performed. The achieved state after a nonlinear
subtraction can be expressed as

ρf ¼ â2Sðn̂ÞρiSðn̂Þ ây
� �2 þ 1� P0

eðτop;Þ
� �

ρi; ð16Þ

with

Sðn̂Þ ¼ sin λ0τop
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ðn̂� 1Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ðn̂� 1Þ

p ð17Þ

where ρi is the former state of the oscillators before the nonlinear subtrac-
tion, τop is the interaction time that gives the first locally optimal probability
of successful subtraction. The probability of successful subtraction, on the

Fig. 6 | The comparison of the chargingperformance using protocols I and II.The
charging performance using protocol I (blue) and protocol II (red) when the initial
mean excitations are �n ¼ 30 (empty circles) and �n ¼ 70 (filled circles) afterN linear
subtractions, with N ≤ 20, is displayed. The solid lines represent the asymptotic
approximations, when �n≫ 1. As these protocols are not yet different for N < 2, the
blue circles, in this case, are placed behind the red circles.

Fig. 5 | The relation of charging performance
and the initial phonon number

--
n of a thermal

oscillator after subtractions. The figure demon-
strates the increase of the maximum probability PðNÞ

e

of getting the excited state ∣ei through the JC cou-
pling after theNth subtraction, when using a protocol
I, depicted in Fig. 2, and b protocol II, shown in Fig. 3.
The probability PðNÞ

e increases sharply with the initial
mean excitation �n and reaches its plateau around
�n∼ 5. Protocol II apparently provides a better chance
of exciting a two level-system compared to protocol I.
The dotted lines are set to be at 0.5 to mark popu-
lation inversion PðNÞ

e > 0:5, while the dash-dotted
lines display the excitation probability if the oscillator
was in a coherent state. A thermal state with a very
large mean excitation, �n≫ 1, can excite a qubit with
probability of Pe≈ 0.6411.
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other hand, reads

P0
eðtÞ ¼

X1
m¼2

pimsin
2 λ0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm� 1Þ

p� �
; ð18Þ

wherepim is the prior probability distributionof theharmonic oscillators, the
diagonal elements of ρi. In contrast to linear subtractions, the suitably chosen
interaction time for nonlinear subtractions is not the time that optimizes the
probability P0

e. From the equation, it is easy to notice that the optimal
interaction time is approximately at λ0t ¼ π=2, resulting in
sin2 λ0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm� 1Þ

p� �
≈1 for m > 1. However, with this interaction time, a

nonlinear subtraction almost does notmodified the probability distribution
at all, as the sine function barely shows its influence. We instead need to
choose the interaction time τop that gives thefirst locally optimalP0

e such that
λ0τop<π=2. The interaction time τop for this case is approximately related to
the mean phonon number 2hn̂i as

λ0τop≈
π

2hn̂i : ð19Þ

Thismeanswe can run a nonlinear interaction even faster than a linear
one. A nonlinear subtraction using protocol II manipulates the probability
distribution as

pfm ¼ pimþ2sin
2 λ0τop

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p� �
þ ð1� P0

eðτopÞÞpim: ð20Þ

Figure 7 compares the probabilities of success and their change after
each subtraction of two different schemes: the scheme that employs only
linear subtractions (the upper bar chart) and the scheme that uses linear
subtractions followed by nonlinear subtractions (the lower bar chart) to
boost the performance before charging the quantum battery. From the
upper bar chart, whenonly linear subtractions are being used, the sequential
increase of the probability of success gradually reaches its saturation.

Therefore, additional linear subtractions just barely improve the probability
of success and the charging performance, denoted by the last green bar. The
lower bar chart, on the other hand, demonstrates that the saturated per-
formance can be further boosted with the help of nonlinear subtractions,
whose probabilities of success are represented by the two red bars. The
success probabilityof anonlinear subtraction isnoticeably lower than that of
the previous linear subtractions, but it is still sufficiently large to make the
nonlinear subtraction protocol practical. After six linear and two nonlinear
subtractions, the charging performance or the probability of getting the
excited state through the JC coupling, denoted by the green bar, becomes
even larger than its previous version when all eight subtractions are linear.
This increase lies in the change in the shape of the population distribution
after the nonlinear subtractions. As shown in the inset of Fig. 7, the dis-
tribution becomes more squeezed, which is more desirable for exciting a
two-level system.

We note here that a nonlinear subtraction cannot be used with the
procedure of protocol I, as at the end of the protocol, the failed systems are
replaced by systems in a thermal state, which makes high-energy popula-
tions not sufficiently small. As a result, nonlinear subtractions cause the
population distribution to be even more dispersed and a small ripple in the
distribution to form.

Discussion
We previously compared the charging performance obtained from the two
subtraction strategies: the linear-subtractions-only strategy and the com-
bination of linear and nonlinear subtractions. It emerged that the latter
provides a better charging performance compared to the first. The
remaining question is whether nonlinear subtractions should be performed
at an earlier stage at the very end of a subtraction sequence, or even
something in between, to get the optimal charging performance. To answer
this, we then examined different combinations of linear and nonlinear
subtractions, where the coupling is optimized for each subtraction
depending on the previous measurement outcomes. The result turns out to
be that the later the nonlinear subtractions take place, the greater the

Fig. 7 | The improved charging performance
after using nonlinear subtractions. a The bar
chart represents the probabilities of success to obtain
the excited state inNth subtractions using protocol II
with an initial average phonon number of �n ¼ 30.
bOn the other hand, the bar chart below also shows
such probabilities, but this time, the 7th and 8th
subtractions are performed by two consecutive
nonlinear subtractions, with their probabilities of
success denoted with the red bars. The actual prob-
abilities of success, Pe, are written in white on these
bars so that we can see their fractional differences.
Above each bar, a probability distribution of the
harmonic oscillator contributing to the probability of
success is displayed together with the valueR of the
mean-to-deviation ratio (MRD) of phonons. The last
green bars of both bar charts represent the prob-
abilities of getting the excited state through the JC
coupling after eight subtractions, which can be
regarded as the charging performance. To compare
theperformanceofboth schemes,wemark theheight
of the upper green bar on the lower one with the
white dashed line. In the inset, the probability dis-
tributions of the two schemes of subtraction are
compared. The solid black line represents the dis-
tribution obtained from eight linear subtractions,
while the orange histogram shows the distribution
obtained when the two nonlinear subtractions are
introduced. The latter is then compared with a
Poissonian distribution of the same mean excitation
hn̂i, displayed by the blue histogram.
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performance can be. The probabilities of successfully charging an individual
battery associated with these strategies of subtraction may, at first, look
insignificantly different, but at the scale of mass production the differences
become eventually magnified. This fact is demonstrated in Fig. 8 by com-
paring the probabilities of successfully charging a hundred out of a hundred
quantum batteries using different combinations of linear and nonlinear
subtractions. To relate it with the result in subsection “Nonlinear subtrac-
tion” in Results, we consider only the cases in which eight subtractions,
including six linear and two consecutive nonlinear subtractions, are per-
formed before the charging stage and compare their charging performances
to that of the linear-subtractions-only strategy. From the figure, the best
performance is obtained if the last two subtractions are nonlinear. Its
increase is even several times larger than the order of the excitation prob-
ability ðPeÞ100 obtained through the only-linear-subtraction case. The
underlying reason originates from the fact that nonlinear subtractions are
better at squeezing the phonon population but improper for trimming its
tails. Earlier use of nonlinear subtractions, as a result, reduces the mean
phonon number of the end-product motional state and leads to a lower
mean-to-deviation ratio R. Several linear subtractions thus prepare a
properly trimmed phonon distribution to be squeezed by the following
nonlinear subtractions.

We add here that as the third law of quantum thermodynamics forbids
us to prepare a perfectly pure state, an ideal projective measurement is thus
impossible to achieve with a finite amount of time and resource44. This
emphasizes the benefit of the nonlinear interaction as it helps us reduce the
required number of subtractions andmeasurements to achieve a sufficiently
high charging performance. For example, for �n ¼ 30, we need 14 linear
subtractionswith protocol II to achieve a charging performance ofPe = 0.94,
while this performance canbe accomplishedby8 subtractions: six linear and
two nonlinear subtractions, as depicted in Fig. 7. Moreover, in comparison
with the previously proposed Maxwell’s demons46,47, where the measure-
ment is made to ensure the energy transfer from cold to hot reservoirs, our
protocols use measurement to conditionally change the state so that the
population distributions are transformed into a less noisy out-of-
equilibrium distribution sufficient to excite qubits.

Conclusions
The idea of classical Maxwell’s demon initiates the reformation of classical
thermodynamics, generates a connection between information and

thermodynamicwork, and provides the fundamental idea of the conversion
between these two quantities. With the information of a system obtained
through measurements and precise control, the system can then be
manipulated into an out-of-equilibrium state, and, in return, its energy can
be extracted. The idea of such conversion is carried on to its quantum
version with some fundamental differences. In contrast to the classical case,
in which a measurement is treated to be arbitrarily sharp without any back
action on themeasured system, in the quantumdomain, bothmeasurement
outcomes and their back actions unavoidably affect the way we con-
ditionally control and manipulate the system in order to generate a useful
resource. Each performed measurement not only extracts the system’s
information but also transforms its state accordingly.

We have proposed a simple but deterministic protocol to realize a
bosonic Maxwell’s demon at a quantum level, exploiting the free coupling
between the mechanical modes of a single atom and its internal electronic
state. A measurement of the qubit with its outcome implying absorption of
phonons by the qubit is regarded as phonon subtraction. It is shown that
linear subtractions from both protocols I and II transform the phonon state
from an initial thermal state into an out-of-equilibrium state with a nearly
Gaussian phonon distribution. This transformed motional state can even-
tually be used to charge a microscopic battery, another qubit, by exciting it
through a linear JC coupling. The charging performance of such out-of-
equilibrium states is higher than that of its initial thermal state,which can be
indicated by its increased mean-to-deviation ratio, R. The performance is
enhanced each time a subtraction is performed but becomes saturated
eventually. Tobreak through this limitation, a nonlinear subtraction, using a
nonlinear JC coupling to absorb more phonons at once, must be exploited
using the procedure of subtraction protocol II. The nonlinear interaction
can boost the charging performance further, at the cost of its speed in the
repeat-until-success protocols. It can further squeeze the phonon distribu-
tion better than the linear version, which increases R as a result. None-
theless, it still has a drawback as it cannot trim the tails of the phonon
population properly, making it better used as a final performance booster.
The involvement of nonlinear subtractions helps us reduce the number of
required subtractions to achieve a sufficiently high charging performance.
Although we use a trapped ion as an example quantum platform, this
proposed protocol can also be realized easily in other platforms in which a
nonlinear JC coupling is available, such as superconducting circuits and
cavity quantum electrodynamics.

Using such states from nonlinear subtractions in parallel to fully and
independently excite a hundred two-level systems can give more than ten
times higher success rates than those from only linear ones. We, therefore,
believe that nonlinear-basedMaxwell’s demon can potentially pave the way
for a new area of theoretical and experimental research in quantumstatistics
and thermodynamics.

Methods
Optimal interaction times
In semi-classical treatment �n≫ 1, the probability of a qubit in its ground
state being excited by interacting with a thermal oscillator having a large
mean phonon number �n≫ 1 as can be approximated as48

PeðtÞ≈ λt
ffiffiffi
�n

p
Dðλt

ffiffiffi
�n

p
Þ ð21Þ

where λ is the coupling strength between the qubit andphonons, andD(x) is
Dawson’s integral, defined by

DðxÞ ¼ e�x2
Z x

0
ex

02
dx0: ð22Þ

Before reaching the quantum-revival region, this semi-classical
approximation agrees well with the calculation obtained from rigorous
quantum treatment. The probability Pe is, therefore, maximized
when λt

ffiffiffi
�n

p
≈1:502.

Fig. 8 | The performance of charging a hundred qubits. The figure compares the
probability ðPeÞ100 of successful charging a hundred qubits after eight sequential
phonon subtractions on a thermal state with the initial phonon number of �n ¼ 30,
using different combinations of linear and nonlinear subtractions. The blue bar
denotes the performance of charging after eight linear subtractions, while the others
demonstrate the performance after six linear and two consecutive nonlinear sub-
tractions in different arrangements of order. Under these bars, the labels nth
+(n+ 1)th are used to identify the appearance order of the two nonlinear sub-
tractions in the subtraction sequence. It is apparent that the performance of charging
is improved better if we assign the nonlinear subtractions to perform last. The
numbers above these bars are the actual values of such probabilities ðPeÞ100.
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On the other hand, a thermal oscillator with small mean phonon
number, �n≪ 1 dominantly occupies in its ground and the first excited
states, ∣0i and ∣1i. The population of all other motional states becomes
negligible compared to that of the two states. It is the phonon in the Fock
state ∣1i that mainly excites a qubit. The probability of successful excitation
of a qubit in this case then becomes

PeðtÞ ¼
X1
m¼0

pmsin
2ðλt ffiffiffiffi

m
p Þ≈�nsin2ðλt

ffiffiffi
1

p
ÞþOð�n2Þ: ð23Þ

This imply that the maximum Pe occurs when λt ≈ π/2. To compro-
mise between these two extreme limits, �n≫ 1 and �n≪1, we then approx-
imate the optimal interaction time as λtop0 ≈π=ð2 ffiffiffiffiffiffiffiffiffiffiffi

�nþ 1
p Þ, which

approaches π/2 for small �n and still well agrees with the semi-classical
treatment for large �n. We note here that this approximation still hold true
even in the intermediate limit of the average phonon number �n. For
example,when �n ¼ 2, the approximation of λtop0 ≈ π=ð2 ffiffiffiffiffiffiffiffiffiffiffi

�nþ 1
p Þ is differed

from its actual value only by ~1%.
For the semi-classical case, �n≫ 1, after several linear subtractions, the

populationdistributionof phonons ismodified intonearlyGaussianwith its
peak centered around its average phonon number hn̂i and can, therefore, be
qualitatively approximated as a Gaussian distribution as

pm ∼
1ffiffiffiffiffi
2π

p
σ
exp � ðm� hn̂iÞ2

2σ2

	 

; ð24Þ

where σ2 represents the variance of the distribution. The optimal interaction
times for linear subtractions for the approximated Gaussian distribution is
then of the form λtopN ≈π=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn̂i þ 1

p Þ, which is similar to the previous
result. On the other hand, for this nearly Gaussian distribution, the prob-
ability associated with a successful nonlinear subtraction becomes

P0
e≈

1� e�2λ02t2σ2 cosð2λ0tðhn̂iÞÞ
2

: ð25Þ

With a sufficiently small variance σ2, we, therefore, can qualitatively
approximate the optimal interaction time for a nonlinear subtraction as
λ0τop≈π=2hn̂i, as shown in Eq. (19).

Data availability
The data supporting the findings of this study are available from the first
author upon reasonable request.
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