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Dynamical localization transition in the
non-Hermitian lattice gauge theory
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Local constraint in the lattice gauge theory provides an exoticmechanism that facilitates the disorder-
free localization. However, the understanding of nonequilibrium dynamics in the non-Hermitian lattice
gauge model remains limited. Here, we investigate the quench dynamics in a system of spinless
fermions with nonreciprocal hopping in the Z2 gauge field. By employing a duality mapping, we
systematically explore the non-Hermitian skin effect, localization-delocalization transition, and real-
complex transition. Through the identification of diverse scaling behaviors of quantum mutual
information for fermions and spins, we propose that the non-Hermitian quantum disentangled liquids
exist both in the localizedanddelocalizedphases, the former originates from theZ2 gaugefield and the
latter arises from the non-Hermitian skin effect. Furthermore, we demonstrate that the nonreciprocal
dissipation causes the flow of quantum information. Our results provide valuable insights into the
nonequilibrium dynamics in the gauge field, and may be experimentally validated using quantum
simulators.

Gauge theories play a pivotal role in providing a unified description of
standard model in particle physics. In recent decades, gauge theories have
also found applicability in condensed matter physics1,2, particularly in the
context of themany-body systems, leading to the emergence of lattice gauge
theories3. Prominent examples include the lattice gauge descriptions of
quantummagnets4, high-Tc superconductors5 and quantum simulation6–17.
The local gauge symmetry inherent in these theories gives rise to amultitude
of conserved quantities, making them a valuable platform for investigating
the localization phenomena in the absence of disorder18–24. The lattice gauge
theory framework holds great promise for the development of specialized
digital and analogue quantum simulators, with the ultimate goal of realizing
universal quantum computers. Consequently, this field has garnered sig-
nificant attention in experimental research. Currently, the realization ofZ2
lattice gauge theory has been successfully achieved using diverse quantum
resources such as ultracold atoms8,14, superconducting circuits15, and Ryd-
berg atomic arrays16. These experiments hold profound significance in
guiding the study of disorder-free localization.

Recently, the non-Hermitian physics has attached widespread atten-
tion due to the discovery of numerous physical properties that transcend
those exhibited by the Hermitian systems25–27. For instance, the non-
Hermitian skin effect has unveiled the sensitivity to the spatial boundary
conditions28–30, the non-Hermiticity has expanded the realm of topological
phases beyond the Hermitian framework29–31, the interplay of non-

Hermiticity and disorder has given rise to the emergence of the
localization-delocalization transitions32–35. Non-Hermitian physics finds
wide-ranging applicability across various physical systems, including
optics36, acoustics37, cold atoms38,39, etc. Therefore, conducting in-depth
investigations and achieving precise control over non-Hermitian properties
can provide a solid foundation for the practical implementation of non-
Hermitian physics in diverse systems.

Localization behaviors have been extensively investigated in the non-
Hermitian systems with nonreciprocal hopping32,33,40–42, gain or loss32,43 and
quasiperiodic lattices33,44,45. However, much less is known about the inter-
play of the non-Hermiticity and lattice gauge field. Motivated by recent
developments, the present study focus on the non-Hermitian extension of
1D lattice model of spinless fermions coupled through spins 1/2, as illu-
strated in Fig. 1. The spin subsystem in thismodel act as aZ2 gauge field for
the fermions. The nonreciprocal hopping introduces non-Hermiticity,
thereby prompting us to investigate the nonequilibrium dynamics of sys-
tems subjected to the influence of aZ2 gauge field and non-Hermiticity.

Through dualitymapping19,46,47, we investigate the quench dynamics of
fermions in an effective binary disorder potential. We show that the
disorder-free localization-delocalization transition arises from the interplay
between the non-Hermitian skin effects and theZ2 gauge field. This phase
transition is closely associated with the real-complex transition of eigen-
energies. Moreover, in the dynamics of quantum mutual information of
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fermions and spins, two distinct scaling laws are observed in both the
localized and delocalized phases, which are the fingerprints of the non-
Hermitian quantum disentangled liquids. In the localized phase, the Z2
gauge field dominates the area law scaling, while the non-Hermitian skin
effect results in the area law scaling in the delocalized phase. Furthermore,
we demonstrate that the non-Hermiticity induces the flow of quantum
information from the fermions to the spins. Our result not only opens away
for preparing and controlling the quantum correlated states in the none-
quilibrium systems, but also provides insights into the quantum simulation
of lattice gauge theory.

Results
Model
We consider the 1D lattice model of spinless fermions with the non-
reciprocal hopping, where the fermions are coupled through the bond spins
characterized by S = 1/2, see Fig. 1. The Hamiltonian governing this system
is given by

Ĥ ¼� J
X

j

σ̂zj;jþ1 eg f̂
y
j f̂ jþ1 þ e�gH:c:

� �

� h
X

j

σ̂xj�1;jσ̂
x
j;jþ1

ð1Þ

where J and h are the fermion tunneling strength and Ising coupling,
respectively. Jeg (Je−g) is the left (right)-hopping amplitude introducing the
non-Hermiticity which could be realized in synthetic matter using, for
example, photonic systems48,49, topolectrical circuits50, or ultracold atom
systems38,51. In the following, we will set J = 1 as the units of energy and
choose afixed fermionnumberNf = L/2 (half-filling), whereL is thenumber
of sites. This system is invariant under the Z2 gauge transformation

f̂ i! γi f̂ i; f̂
y
i ! γi f̂

y
i ; σ̂zj;jþ1 ! γiσ̂

z
j;jþ1γiþ1; ð2Þ

where γi = ± 1 is a local gauge function. The generator of the Z2 gauge
transformation is given by the unitary operator

G ¼
Y

i

Gð1�γiÞ=2i ; ð3Þ

where Gi ¼ ð�1Þn̂i σ̂zi�1;iσ̂zi;iþ1, and n̂i ¼ f̂
y
i f̂ i is the local number operator

of fermions. It is note thatG2
i ¼ 1 and ½Gi;Gj� ¼ 0 for all i, j. Therefore, the

Hamiltonian is gauge invariant, i.e., ½G;H� ¼ 0 for all choices of gauge
function γi.

In order to explore the dynamics of fermions, an extensive number of
conserved charges can be identified by a duality mapping (see Methods).
Then an effectiveHamiltonianwith fermion operator Ĉj ¼ τ̂j f̂ j iswritten as

Ĥ qif g ¼ � J
X

i

ðeg Ĉyi Ĉiþ1 þ e�g Ĉ
y
iþ1ĈiÞ

þ 2h
X

i

q̂iðĈ
y
i Ĉi � 1=2Þ;

ð4Þ

which describes a nonreciprocal hopping tight-binding model with the
binary disorder potential dominated by the charge sectors fqjg.

We choose the tensor products of fermion and spin states ∣Ψ0

� ¼
∣Siσ � ∣ψ

�
f as the initial state that can be transformed to the one in the

Hilbert space of the Ĉ degrees of freedom,

∣Ψ0

� ¼∣ """ � � ��
σ
� ∣ψ

�
C

¼ 1ffiffiffiffiffiffiffiffiffiffi
2N�1
p

X

fqig¼± 1

∣q1; q2; � � � ; qN
�� ∣ψ

�
C;

ð5Þ

where the spin states are restricted to the z-polarized state
∣Siσ ¼ ∣ """ � � � �, and the sum is over all possible charge configurations
qi

� � ¼ ± 1. The quench dynamics of whole system is governed by

∣ΨðtÞ� ¼ e�iĤt ∣Ψ0

�

k e�iĤt ∣Ψ0

� k ;
ð6Þ

where the normalization takes into account the fact that the norm is not
conserved due to the lack of unitary for the non-Hermitian systems. Here,
the non-Hermitian dynamics is characterized by the individual quantum
trajectories without quantum jumps, which describes physics differently
from the Lindblad master equation approach where the quantum jumps
occur and the outcomes are averaged out32.

Non-Hermitian skin effect
We first consider the initial state of fermions to be of a charge density wave
(CDW) state, and monitor the dynamics of the fermion density
nrðtÞ
� � ¼ ΨðtÞ�

∣n̂r ∣ΨðtÞ
�
. In the Hermitian case, fermions propagate

reciprocally throughout the system after the global quench. However, when
the hopping is nonreciprocal, fermions can be amplified toward one
direction and attenuated in the other direction. For the open boundary
condition (OBC), see Fig. 2a–c, when h = 0.2, the memory of initial CDW
state is lost after the global quench. The fermions propagate to one side
leading to the non-Hermitian skin effect, and a approximate domain wall
state is formeddue to the Pauli exclusion principle. As h is increased to 1.0, a
little memory of initial state is preserved because of the effective binary
disorder potential, and the localization phenomenon is consistencewith the
non-Hermitian skin effect. Even when h is as large as 4.0, the trail of non-
Hermitian skin effect is still observed.Meanwhile, large fluctuations are also
observed on account of the binary nature of the disorder. In the periodic
boundary condition (PBC) case, see Fig. 2d–f, the non-Hermitian skin effect
disappears, and the localization behavior and fluctuations become more
pronounced with the increase of the effective disorder strength h. We also
consider the quench dynamics from the initial domain wall (DW) state, the
results about non-Hermitian skin effects are shown in Supplementary
Note 1. In addition, we also present the dynamics of spin subsystem arising
from the CDW and DW initial states in Supplementary Note 2.

Disorder-free localization-delocalization transition
The Anderson model with the nonreciprocal hopping, which has been
investigated by Hatano and Nelson40, exhibits the localization-
delocalization phase transition in one-dimensional system. We show that
the interplay between the Z2 gauge field and non-Hermitian skin effect
leads to the localization-delocalization phase transition without disorder.

The light-cone behavior exhibited by the connected density correlator
is an important signal for diagnosing the localization phenomenon. The
connected density correlator for fermions is defined by

ΨðtÞ∣n̂jn̂jþd∣ΨðtÞ
D E

c
¼ ΨðtÞ∣n̂jn̂jþd ∣ΨðtÞ

D E
�

ΨðtÞ∣n̂j∣ΨðtÞ
D E

ΨðtÞ∣n̂jþd ∣ΨðtÞ
D E

;
ð7Þ

where d is the separation between two sites. In Fig. 3a, b, we observe the
asymmetric light-cone behavior in the evolution but for the strong effective

Fig. 1 | Schematic representation of the non-Hermitian system. Spinless fermions
(blue circles) with nonreciprocal hopping (left-hopping amplitude Jeg and right-
hopping amplitude Je−g) are coupled via the spins S = 1/2 living on the bonds (orange
bonds). Dual spins τ̂ (red arrows) are shown in the configuration corresponding to
the σ̂ spins (orange arrows).
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disorder the spreading eventually halts. Particularly, the spreading of
correlations is well described by the Lieb-Robinson velocity v = 4J,
indicating that the quantum information propagates with a finite
velocity52,53. Next, we probe the localization behavior by measuring the
average of nearest-neighbor density imbalance,

ΔρðtÞ ¼ 1
L

X

j

∣ ΨðtÞ∣n̂j � n̂jþ1∣ΨðtÞ
D E

∣; ð8Þ

which quantifies the average difference in fermion density between nearest-
neighbor sites. For a translationally invariant state, this quantity is zero,
while in the localized phase, it takes a non-zero value. FromFig. 3c, d,we can
see that theΔρ(t) decays to a finite asymptotic value with some fluctuations.
The asymptotic value ofΔρ(t) and oscillation amplitude both growwith the
increase of h and decreases as g increases. In the finite-size scaling displayed
in Fig. 3e, f, the asymptotic value of Δρ(t) approaches the thermodynamic
value as L becomes larger. The strong disorder strength prevents the
delocalization, while the strong non-Hermiticity results in the delocaliza-
tion, indicating the weak memory effects.

Von Neumann entanglement entropy has been widely used to study
the proprieties of many-body systems. Its definition is given by

S ¼ �Tr ϱA ln ϱA
	 


; ð9Þ

where the reduced densitymatrix ϱA is the partial trace of the densitymatrix
ϱ of whole system ϱA ¼ TrB ϱ½ �. If A and B are entangled, then the reduced
density matrix must be a mixed state and the von Neumann entanglement
entropy measures this mixing. In Fig. 4c, the entanglement entropy of
nonequilibrium steady state reaches the maximum at the critical point, and
as the length increases the critical point hc≃ 0.8 is approached, separating
the delocalized and localized phases. More results about the dynamics of
entanglement entropy of fermion can be found in Supplementary Note 3.

The aforementioned results provide insight into the impact of the
interplay between non-Hermiticity andZ2 gauge field on the phenomenon
of localization-delocalization transition. The dynamical phase paragram is
shown inFig. 4dwhere thefinitefinal timevalues ofΔρ(t) corresponds to the
localized phase. The delocalization line is determined by the localization
length that characterizes the localization features. Since the effective
Hamiltonian Eq. (4) describes the noninteracting fermions with a binary
disorder potential, the localization length of single-particle model also
reveals the localization feature. In the non-Hermitian case, gplays the role of
an imaginary vector potential that appears in the wave functions of a
localized state such that54

ψL;RðrÞ∼ exp � ∣r�rc ∣
λ ∓g r � rc

� �� �
; ð10Þ

whereψL,R(r) are left and right eigenvectors, respectively. rc is its localization
center and λ represents the corresponding localization length. If g > λ−1,
either ψL(r) or ψR(r) diverges, the wave functions ψL,R(r) no longer represent
an exponentially localized state. Therefore, thedelocalized transitionpoint is
determined by the condition g = λ−1 54–57. For g < λ−1, the energy spectrum is
real and all wave functions are exponentially localized with the same loca-
lization length, so that the spectral localization also implies dynamical
localization42,58. In Fig. 4a, the single particle localization length, obtained by
the transfer matrix method (see Supplementary Note 4)35,59,60, decreases
exponentially with the increase of h. The localization length diverges at a
critical pointhc and the larger g induces the largerhc.As shown inFig. 4d, the
transition line gc ¼ λ�1sp clearly distinguishes the localized and delocalized
phases.

Real-complex transition
It has been discovered that the localization-delocalization transition is
accompanied by a real-complex transition of the eigenenergies in the non-
Hermitian system32. In order to verify this phenomenon in a disorder-free
system, we will examine it utilizing the ratio

PIm ¼ DIm=D; ð11Þ

whereDIm is thenumberof eigenvalueswithnonzero imaginaryparts andD
is the total number of eigenvalues. The overline notation indicates the dis-
order average.We have employed a cutoff ofC = 10−13 in the calculation. In
Fig. 4b, the spectrum is symmetric around the real axis due to the time-
reversal symmetry. In the delocalized phase, the imaginary parts of
eigenvalues are nonzero, whereas in the localized phase, they are zero.
Figure 4e depicts the phase diagram of real-complex transition which is
approximately coincide with the localization-delocalization transition. In
the localized phase, almost all the eigenenergies are real due to the strong
disorder, while in the delocalized phase they are complex due to the
nonreciprocal hopping. The non-Hermiticity leads to the dynamical
instability in the delocalized phase. In contrast, the system is stable in the
localized phase where the energy is conserved. Consequently, the dynamics
are distinct in the two phases, the dynamical localization-delocalization
transition closely corresponding to the real-complex transition of
eigenenergies.

In Fig. 4f, g, it can be observed that the strong disorder not only
suppresses the generation of imaginary parts in almost all eigenenergies, but
also enlarges the absolute value of real parts of eigenenergies and leads to the
formation of eigenenergy clusters, attributable to the binary nature of the

OBC PBC

Fig. 2 | Dynamics of fermion density. Dynamics of fermion density nrðtÞ
� �

for the
system with length L = 16 under (a–c) open boundary condition (OBC) and (d–f)
periodic boundary condition (PBC) at different effective disorder strength h. The
initial state of fermionic subsystem is charge density wave (CDW) state and the non-
Hermiticity is chosen as g = 0.2. The color bar indicates the values of fermion density.
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Fig. 3 | Dynamics of connected density correlator and density imbalance.
a, bAbsolute value of connected density correlator hψðtÞ∣n̂jn̂jþd ∣ψðtÞic of fermions as
a function of the separation d and time t for g = 0.2. The dashed line indicates the
Lieb-Robinson velocity vLR = 4J describing the spreading of correlations. The color
bars quantify the absolute values of hψðtÞ∣n̂jn̂jþd ∣ψðtÞic . Time evolution of density
imbalance Δρ(t) after a quench for (c) a range of values h at g = 0.2 and (d) a range of

values g at h = 1.0. e, f Final time values of ΔρðtÞ averaged from t = 60 to t = 100 for
different systems sizes up toL = 16. Thermodynamic values for (e) different h atfixed
g and (f) different g atfixed h are labeled near the y-axis. The bars denote the standard
error of the mean. All dynamics are measured after a global quench from a charge
density wave (CDW) initial state under periodic boundary condition (PBC).

Fig. 4 | Phase transitions. a The single particle localization lengths are obtained
from the transfer matrix method as a function of h for the system with L = 200. The
bars indicate the statistical errors on the mean of random selection of 2000 charge
sectors. b The eigenenergies of the single-particle model with L = 200 for the loca-
lized phase g = 0.1, h = 0.6 and delocalized phase g = 0.8, h = 0.6. c Final time value of
entanglement entropy of fermions is averaged from t = 500 to t = 1000 for different
L, and the entanglement entropy is obtained by averaging over 1000 charge sectors.
d Phase diagram of localization-delocalization transition obtained by mapping the
averaged values of Δρ(t) (from t = 120 to t = 160) to the parameter space (g, h) for

L = 12 with all charge sectors. The delocalization transition lines are displayed from
the relation gc ¼ λ�1sp , where λsp is the single-particle localization length. The color
bar quantifies the the averaged values of Δρ(t). eDependence of PIm on (h, g) for the
single-particle model with L = 200, the color bar quantifies the values of PIm.
Eigenenergies of the non-Hermitian Hamiltonian Eq. (4) with L = 12 for a fixed
sector 1;�1; 1;�1; . . . ; 1;�1f g in the (f) delocalized phase h = 0.2, g = 0.2 and (g)
localized phase h = 3.0, g = 0.2. The color of each circle represent the intensity of
entanglement entropy of right eigenstate corresponding to the eigenenergy.
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disorder.More intriguingly, the right eigenstates corresponding to the small
absolute real or imaginary parts of eigenenergies tend to have larger
entanglement entropy regardless of whether they belong to the delocalized
or localized phases.

Non-Hermitian quantum disentangled liquids
The interactingmixture of heavy and light particles has been recognized as a
factor that can induce a dynamical form of localization, where the heavy
particles act as a source of disorder for the light ones. Fromtheperspective of
entanglement, the multiple subsystems consisting of the heavy and light
particles may behave diverse dynamics, with some undergoing thermali-
zation,while others donot,which is describedby aphase ofmatter knownas
quantum disentangled liquid19,61,62. It is natural to inquire whether the
quantum disentangled liquid can persist in the non-Hermitian system. In
order to explore this problem further, we will reveal the long-time quench
dynamics of quantum mutual information of the original degrees of free-
dom, namely the f-fermions and S-spins. For the OBC case, we divide the
system into three partitions, as depicted in Fig. 5a, to ensure equal sizes for
the two subsystems A and B. The quantum mutual information between
subsystems A and B is defined as

IðA : BÞ ¼ SA þ SB � SAB ð12Þ

where SA and SB are the von Neumann entanglement entropy for A and B,
respectively. The SAB denotes the von Neumann entanglement entropy of
composite system A⋃ B. The presence of non-zero quantum mutual
information indicates a correlation between the subsystems A and B.

In the localized phase (see Fig. 5b–d), it is observed that the quantum
mutual information of nonequilibrium steady states of fermions remains
independent of the system size, reaching a saturation point governed by the
area law, If ðt!1Þ∼ Ldim�1AB . This behavior can be attributed to the strong
Z2 gauge field, which causes the fermion wave function to resemble a
product state with low entanglement, indicating that the fermions are dis-
entangled. In contrast, the long-time dynamics of quantum mutual infor-
mationof spinsdepends on the systemsize and follows a volume law scaling,
ISðt!1Þ∼ LdimAB , as shown in Fig. 5c. This distinct behavior, where the
light particles (fermions) fail to thermalize and reside in a disentangled area
law phase due to the presence of the heavy particles (spins), serves as a
prominent characteristic of quantum disentangled liquid.

In the delocalized phase, as illustrated in Fig. 5e–g, the fermions and
spins respectively exhibit the area law scaling and volume law scaling, which
implies that the quantumdisentangled liquid retains despite the strongnon-
Hermiticity. This result challenges the conventional understanding that the
delocalized phase is characterized by the volume law scaling of quantum
correlation. In the closed quantum systems, the particles diffuse throughout
the system during evolution, resulting in the thermalization and extensive
quantum correlation. However, the non-Hermitian skin effect drives the
fermions to propagate to one side and preventing the diffusion of quantum
correlation throughout the system. As a result, the fermions are delocalized
but not thermalized, and cannot generate the global quantum correlation63.
Therefore, the quantummutual information of fermions obeys the area law
rather than the volume law, indicating the presence of quantum disen-
tangled liquid in this delocalized phase.

Although the quantum disentangled liquids exist in both the localized
and delocalized phases, their physical essences are completely different. The
area law scaling for fermions in localizedphase originates from theZ2 gauge
field, while in the delocalized phase, it is the consequence of non-Hermitian
skin effect. In general, the quantumdisentangled liquid shows its robustness
to the non-Hermiticity. It is worth emphasizing that this phenomenon is
independent of the segmentationmethod used for thewhole system. Even if
the sizes of segments A and B are not equal, it is still observable (see
Supplementary Note 5). Especially, the area law of quantum mutual
information has recently been experimentally verified in an ultracold atom
simulator64. Therefore, the non-Hermitian quantum disentangled liquid

may be observed in the ultracold atom simulator through the diverse scaling
behaviors of quantum mutual information.

Flow of quantum information
We further study the dynamics of entanglement entropy of fermion and
spin subsystems to explore the effect of non-Hermiticity on the quantum
mutual information. In the presence of non-Hermiticity, as shown in
Fig. 6a, b, the growth of the entanglement entropy SAf ðtÞ, SBf ðtÞ and SABf ðtÞ
of fermion is greatly suppressed. The entanglement entropy for the
nonequilibrium steady state is smaller than that for the Hermitian case
and monotonically decreases with respect to g. Consequently, the
quantum mutual information of fermion (see Fig. 6c) initially increases
and then decreases as a function of g. Figure 6d shows that the non-
Hermiticity has minimal effects on the dynamics of entanglement
entropy of spin subsystems SAS ðtÞ and SBS ðtÞ, however, the presence of
non-Hermiticity significantly diminishes the entanglement entropy of
nonequilibrium steady state (see Fig. 6e), which are the mainly reason for
the growth of quantum mutual information with the non-Hermiticity,
see Fig. 6f. The non-Hermiticity induces the nonreciprocal dissipation of
fermion system, causing the quantum information to flow from fermions
to spins. Consequently, the quantum mutual information of spin sub-
system increases obviously. This result paves the way for the preparation
and control of the quantum correlated states in the non-Hermitian
systems operating far from thermal equilibrium.

Discussion
In summary,wehave investigated the nonequilibriumdynamics in the non-
Hermitian lattice gauge model where the spinless fermion coupled to aZ2
gauge field formed by the spins on the bonds. We show that the interplay
between the non-Hermitian skin effect and the Z2 gauge field leads to the
disorder-free localization-delocalization transition. We have also explored
the real-complex transition of eigenenergies which closely corresponds to
the localization-delocalization transition. Additionally, by identifying the
diverse scaling behaviors of quantum mutual information where the fer-
mions obey the area law and the spins follow the volume law, we have
proposed a phase of matter known as the non-Hermitian quantum disen-
tangled liquids, anddemonstrated the existenceof thesedisentangled liquids
in both the localized and delocalized phases. The area law scaling of fer-
mions in the localized phase is due to the Z2 gauge field, whereas in delo-
calized phases it originates from the non-Hermitian skin effect. Moreover,
the nonreciprocal dissipation of fermions results in the flow of the quantum
information from the fermions to the spins, and induces the growth of
quantum mutual information of spin subsystem.

It is worth noting that previous discussions have focused on the
localization behavior and quantum disentangled liquid in the Hermitian
case (g = 0)18,19,62. However, we want to emphasize that the introduction of
non-Hermiticity leads to several intriguing phenomena that are absent in
theHermitian case, such as the non-Hermitian skin effect, the disorder-free
localization-delocalization transition and the real-complex transition of
eigenenergies. In particular, the non-Hermitian skin effect gives rise to the
non-Hermitian quantum disentangled liquid in the delocalized phase,
which is completely different from the Hermitian case where theZ2 gauge
field dominates the generation of quantum disentangled liquid. Further-
more, the flow of quantum information from the fermions to the spins,
induced by non-Hermiticity, has not been previously discussed.

Experimentally, the implementation ofZ2 lattice gauge fields has been
achieved using current technological capabilities6,8,9,14–16, including the
coupling of bosons and fermions to the gauge field. These experiments offer
the high controllability and precise readout, providing a toolbox to realize
lots of quantum simulation experiments. In our study, the non-Hermitian
system may be experimentally realized using the ultracold atoms in optical
lattices,where the couplingof fermions to aZ2 lattice gaugefield is touse the
Floquet scheme8,9, and the non-Hermiticity is introduced by the cold atoms
with engineered dissipation38,51. Recently, the superconducting circuit has
been applied to investigate the emergent Z2 gauge invariance15 and the
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quantum evolution under the non-Hermitian Hamiltonians65, which may
provide another platform to simulate the non-Hermitian lattice gauge
theory. In addition, it is also noteworthy that the electric circuits possess the
capability to simulate theU(1) lattice gauge theory66 andnonreciprocal non-
Hermitian system67,68, thereby offering a potential alternative for realizing
the simulation of fermionic matter coupled to the Z2 lattice gauge field
within a non-Hermitian system. Collectively, these experimental platforms
such as cold atoms, superconducting circuits, and electric circuits separately
offer distinctive avenues for exploring the lattice gauge fields and non-

Hermitian systems. However, a crucial challenge remains in fully imple-
menting the non-Hermitian lattice gauge theories on these experimental
platforms. The main obstacle lies in the fact that the lattice gauge theories,
which describes the coupling of matter fields to gauge fields, primarily arise
in interacting systems, while the non-HermitianHamiltonians have thus far
been implemented in the context of few-body or noninteracting
systems38,51,65. Consequently, the experimental introduction of non-
Hermiticity into the lattice gauge theories is still an unresolved challenge
in terms of the current experimental techniques. Nevertheless, given the

Fig. 5 | Features of non-Hermitian quantum disentangled liquid. a The parti-
tioningmethods of the whole system. Dynamics of quantummutual information for
the fermion and spin subsystems with different sizes at the localized phase (b–d)
h = 1.0, g = 0.1 and delocalized phase (e–g) h = 0.5, g = 0.6. The initial state is the

charge density wave state for fermion and the z-polarized state for spins. Saturation
values of quantum mutual information of fermion If ðtÞ and spin ISðtÞ are averaged
from t = 103 to t = 106 for different systems sizes. Here the open boundary condition
is considered.

Fig. 6 | Dynamics of entanglement entropy and quantum mutual information.
Dynamics of entanglement entropy (a) SAf ðtÞ, SBf ðtÞ, (b) SABf ðtÞ and (c) quantum
mutual information If(t) of fermion subsystems after a quench from a charge density
wave initial state under open boundary condition. Dynamics of entanglement
entropy (d) SAS ðtÞ, SBS ðtÞ, (e) SABS ðtÞ and (f) quantum mutual information of spin

subsystems after a quench from a charge density wave initial state under open
boundary condition. Insets are the variation ofmean values from t = 103 to t = 106 for
the nonreciprocal hopping strength g. All results are obtained under the same
conditions L = 10 and h = 1.
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rapid advancement in quantum simulation technologies and the increasing
adoption of diverse platforms, it might happen that the non-Hermitian
lattice gauge theory can be effectively realized in forthcoming experiments.
Recently, the many-body non-Hermitian skin effect has been theoretically
investigated in an atom-cavity hybrid system where fermionic atoms in the
one-dimensional lattice are subject to a cavity-induced dynamic gauge
potential69, which provides another possible scheme to test and verify our
results in the interacting system. Furthermore, the advancements in mea-
surement technologiesmake it possible to experientially access the quantum
entanglement and quantum mutual information64,70,71. Once experimental
systems closely matching our model can be synthesized, our results will
provide valuable insights for interpreting the quantum simulation experi-
ments that probe the disorder-free localization properties and non-
Hermitian quantum disentangled liquid.

Methods
In this section, we outline the procedure of duality mapping. Through
duality mapping from bond spin σ̂ to site spins τ̂,

τ̂zj ¼ σ̂xj�1;jσ̂
x
j;jþ1; σ̂zj;jþ1 ¼ τ̂xj τ̂

x
jþ1 ð13Þ

the Hamiltonian Eq. (1) becomes

Ĥ
0 ¼ � J

X

i

eg τ̂xi τ̂
x
iþ1 f̂

y
i f̂ iþ1 þ e�g τ̂xi τ̂

x
iþ1 f̂

y
iþ1 f̂ i

� �

� h
X

i

τ̂zi ;
ð14Þ

which is equivalent to the original one only on a restricted Hilbert space. It

can be identified that the charges q̂j ¼ τ̂zj ð�1Þn̂j with n̂j ¼ f̂
y
j f̂ j are local

conserved and generate theZ2 gauge symmetry. By introducing a spinless

fermion operators Ĉj ¼ τ̂j f̂ j, the effective Hamiltonian Eq. (4) can be

obtained.
We choose the tensor products of fermion and spin states ∣Ψ0

� ¼
∣Siσ � ∣ψ

�
f as the initial state. In order to investigate the dynamics of

fermions on the dual language, the initial state is transformed to the one in
theHilbert space of the Ĉ degrees of freedom. Ifwe choose the fermion states

as the Fock states, i.e., ∣ψ
�
f ¼ f̂

y
i � � � f̂

y
j ∣vacuumi, then the states have the

same form for Ĉ fermions ∣ψ
�
C ¼ Ĉ

y
i � � � Ĉ

y
j ∣vacuumi. In this article, the

spin states are restricted to the z-polarized state ∣Siσ ¼ ∣ """ � � � �. From
the duality transformation, we can obtain that

τ̂xi τ̂
x
j ∣ """ � � �

�
σ
¼

Y

i

τ̂zi ∣ """ � � �
�
σ
¼ ∣ """ � � ��

σ
; ð15Þ

where the relation ∣ """ � � ��
σ
¼ 1ffiffi

2
p ð∣!! � � �iτ þ ∣  � � �iτÞ has

been used. Then the initial state form ∣Siσ � ∣ψ
�
f / ∣Siτ � ∣ψ

�
C can be

identified. Next, the τ spins can be replaced by the conserved charges,

∣ """ � � ��
σ
� ∣ψ

� ¼ 1ffiffiffiffiffiffiffiffiffiffi
2N�1
p

X

τih i¼"#
∣τ1; τ2; � � �

�� ∣ψ
�
C; ð16Þ

where ∣!iτ ¼ ð∣ "iτ þ ∣ #iτÞ for each τ spin and the sum is over all charge
configurations. Taking a single state ∣τ1; τ2; � � � i � ∣ψiC as an example, the
fermion state is the tensor product of site occupation, this single state is
rewritten as

∣ð�1Þn1τ1; ð�1Þn2τ2; � � �
�
q � ∣ψ

�
C: ð17Þ

At the initial state, since the occupation numbers are fixed, only a
common sign structure is contributed. Therefore, the initial state is trans-
formed into a dual representation, see Eq. (5). In this work, we usedQuSpin
for simulating the dynamics of the systems72,73.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code used for the analysis is available from the authors upon reasonable
request.

Received: 20 November 2023; Accepted: 2 February 2024;

References
1. Wen, X.-G. Quantum Field Theory of Many-Body Systems (Oxford

University Press, 2004).
2. Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge

University Press, 2013).
3. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10,

2445–2459 (1974).
4. Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states

of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62,
1694–1697 (1989).

5. Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature
superconductors andstrongly correlatedFermi systems.Phys.Rev.B
37, 580–583 (1988).

6. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with
a few-qubit quantum computer. Nature 534, 516–519 (2016).

7. Zohar, E., Farace, A., Reznik, B. & Cirac, J. I. Digital quantum
simulation of Z2 lattice gauge theories with dynamical fermionic
matter. Phys. Rev. Lett. 118, 070501 (2017).

8. Schweizer, C. et al. Floquet approach toZ2 lattice gauge theorieswith
ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

9. Görg, F. et al. Realization of density-dependent Peierls phases to
engineer quantized gauge fields coupled to ultracold matter. Nat.
Phys. 15, 1161–1167 (2019).

10. Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a
quantum simulator. Science 377, 311–314 (2022).

11. Yang, B. et al. Observation of gauge invariance in a 71-site Bose-
Hubbard quantum simulator. Nature 587, 392–396 (2020).

12. Bañuls, M. et al. Simulating lattice gauge theories within quantum
technologies. Eur. Phys. J. D 74, 1–42 (2020).

13. Mil, A. et al. A scalable realization of localU(1) gauge invariance in cold
atomic mixtures. Science 367, 1128–1130 (2020).

14. Barbiero, L. et al. Coupling ultracold matter to dynamical gauge fields
in optical lattices: From flux attachment to Z2 lattice gauge theories.
Sci. Adv. 5, eaav7444 (2019).

15. Wang, Z. et al. Observation of emergent Z2 gauge invariance in a
superconducting circuit. Phys. Rev. Res. 4, L022060 (2022).

16. Surace, F. M. et al. Lattice gauge theories and string dynamics in
Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).

17. Halimeh, J. C. et al. Stabilizing lattice gauge theories through
simplified local pseudogenerators. Phys. Rev. Res. 4, 033120 (2022).

18. Smith, A., Knolle, J., Kovrizhin, D. L. & Moessner, R. Disorder-free
localization. Phys. Rev. Lett. 118, 266601 (2017).

19. Smith, A. Disorder-Free Localization (Springer International
Publishing, 2019).

20. Brenes, M., Dalmonte, M., Heyl, M. & Scardicchio, A. Many-body
localization dynamics from gauge invariance. Phys. Rev. Lett. 120,
030601 (2018).

21. Yao, Z., Liu, C., Zhang, P. & Zhai, H. Many-body localization from
dynamical gauge fields. Phys. Rev. B 102, 104302 (2020).

22. Danacı, B. et al. Disorder-free localization in quantum walks. Phys.
Rev. A 103, 022416 (2021).

23. Halimeh, J. C. et al. Enhancing disorder-free localization through
dynamically emergent local symmetries. PRX Quantum 3,
020345 (2022).

https://doi.org/10.1038/s42005-024-01544-6 Article

Communications Physics |            (2024) 7:58 7



24. Halimeh, J. C., Hauke, P., Knolle, J. & Grusdt, F. Temperature-induced
disorder-free localization. Preprint at https://arxiv.org/abs/2206.11273
(2022).

25. Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in
PT -symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).

26. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat.
Phys. 14, 11–19 (2018).

27. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics.
Science 363, eaar7709 (2019).

28. Lee, T. E. Anomalous edge state in a non-Hermitian lattice.Phys. Rev.
Lett. 116, 133903 (2016).

29. Yao, S. & Wang, Z. Edge states and topological invariants of non-
Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

30. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J.
Biorthogonal bulk-boundary correspondence in non-Hermitian
systems. Phys. Rev. Lett. 121, 026808 (2018).

31. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and
topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

32. Hamazaki, R., Kawabata, K. & Ueda, M. Non-Hermitian many-body
localization. Phys. Rev. Lett. 123, 090603 (2019).

33. Jiang, H., Lang, L.-J., Yang, C., Zhu, S.-L. & Chen, S. Interplay of non-
Hermitian skin effects and Anderson localization in nonreciprocal
quasiperiodic lattices. Phys. Rev. B 100, 054301 (2019).

34. Zhai, L.-J., Yin, S. & Huang, G.-Y. Many-body localization in a non-
Hermitian quasiperiodic system. Phys. Rev. B 102, 064206 (2020).

35. Kawabata, K. & Ryu, S. Nonunitary scaling theory of non-Hermitian
localization. Phys. Rev. Lett. 126, 166801 (2021).

36. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat.
Phys. 6, 192–195 (2010).

37. Ma, G. & Sheng, P. Acousticmetamaterials: From local resonances to
broad horizons. Sci. Adv. 2, e1501595 (2016).

38. Li, J. et al. Observation of parity-time symmetry breaking transitions in
a dissipative floquet system of ultracold atoms. Nat. Commun. 10,
855 (2019).

39. Aidelsburger,M. et al. Cold atomsmeet latticegauge theory.Philos. T.
R. Soc. A 380, 20210064 (2022).

40. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian
quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

41. Goldsheid, I. Y. & Khoruzhenko, B. A. Distribution of eigenvalues in
non-Hermitian Anderson models. Phys. Rev. Lett. 80,
2897–2900 (1998).

42. Longhi, S. Phase transitions in a non-Hermitian Aubry-André-Harper
model. Phys. Rev. B 103, 054203 (2021).

43. Zeng, Q.-B., Chen, S. & Lü, R. Anderson localization in the non-
Hermitian Aubry-André-Harper model with physical gain and loss.
Phys. Rev. A 95, 062118 (2017).

44. Liu, Y., Jiang, X.-P., Cao, J. & Chen, S. Non-Hermitian mobility edges
in one-dimensional quasicrystals with parity-time symmetry. Phys.
Rev. B 101, 174205 (2020).

45. Zhai, L.-J., Huang, G.-Y. & Yin, S. Nonequilibrium dynamics of the
localization-delocalization transition in the non-Hermitian Aubry-
André model. Phys. Rev. B 106, 014204 (2022).

46. Fradkin, E. & Susskind, L. Order and disorder in gauge systems and
magnets. Phys. Rev. D 17, 2637–2658 (1978).

47. Prosko,C., Lee,S.-P.&Maciejko, J. Simplez2 latticegauge theoriesat
finite fermion density. Phys. Rev. B 96, 205104 (2017).

48. Weidemann, S. et al. Topological funneling of light. Science 368,
311–314 (2020).

49. Wang, K. et al. Generating arbitrary topological windings of a non-
Hermitian band. Science 371, 1240–1245 (2021).

50. Helbig, T. et al. Generalized bulk–boundary correspondence in non-
Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

51. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys.
Rev. X 8, 031079 (2018).

52. Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb-robinson bounds and
the generation of correlations and topological quantum order. Phys.
Rev. Lett. 97, 050401 (2006).

53. Essler, F. H. L. & Fagotti, M. Quench dynamics and relaxation in
isolated integrable quantum spin chains. J. Stat. Mech.-Theory E.
2016, 064002 (2016).

54. Orito, T. & Imura, K.-I. Unusual wave-packet spreading and
entanglement dynamics in non-Hermitian disordered many-body
systems. Phys. Rev. B 105, 024303 (2022).

55. Brouwer, P. W., Silvestrov, P. G. & Beenakker, C. W. J. Theory of
directed localization in one dimension. Phys. Rev. B 56,
R4333–R4335 (1997).

56. Hatano,N. &Nelson,D.R. Vortexpinningandnon-Hermitianquantum
mechanics. Phys. Rev. B 56, 8651–8673 (1997).

57. Heußen, S., White, C. D. & Refael, G. Extracting many-body
localization lengths with an imaginary vector potential. Phys. Rev. B
103, 064201 (2021).

58. del Rio, R., Jitomirskaya, S., Last, Y. & Simon, B.What is localization?
Phys. Rev. Lett. 75, 117–119 (1995).

59. Kramer,B. &MacKinnon,A. Localization: theoryandexperiment.Rep.
Prog. Phys. 56, 1469 (1993).

60. Luo, X., Ohtsuki, T. & Shindou, R. Transfer matrix study of the
anderson transition in non-Hermitian systems. Phys. Rev. B 104,
104203 (2021).

61. Grover, T. & Fisher, M. P. A. Quantum disentangled liquids. J. Stat.
Mech.-Theory E. 2014, P10010 (2014).

62. Smith, A., Knolle, J., Moessner, R. & Kovrizhin, D. L. Absence of
ergodicity without quenched disorder: From quantum disentangled
liquids to many-body localization. Phys. Rev. Lett. 119,
176601 (2017).

63. Kawabata, K., Numasawa, T. &Ryu, S. Entanglement phase transition
induced by the non-Hermitian skin effect. Phys. Rev. X 13,
021007 (2023).

64. Tajik, M. et al. Verification of the area law of mutual information
in a quantum field simulator. Nat. Phys. 19, 1022–1026
(2023).

65. Dogra, S., Melnikov, A. A. & Paraoanu, G. S. Quantum simulation of
parity-time symmetry breaking with a superconducting quantum
processor. Commun. Phys. 4, 26 (2021).

66. Riechert, H. et al. Engineering a U(1) lattice gauge theory in classical
electric circuits. Phys. Rev. B 105, 205141 (2022).

67. Ezawa, M. Non-Hermitian higher-order topological states in
nonreciprocal and reciprocal systems with their electric-circuit
realization. Phys. Rev. B 99, 201411 (2019).

68. Liu, S. et al. Non-Hermitian skin effect in a non-Hermitian electrical
circuit. Research 2021, 5608038 (2021).

69. Li, H., Wu, H., Zheng, W. & Yi, W. Many-body non-Hermitian skin
effect under dynamic gauge coupling. Phys. Rev. Research 5,
033173 (2023).

70. Islam, R. et al. Measuring entanglement entropy in a quantum many-
body system. Nature 528, 77–83 (2015).

71. Lukin, A. et al. Probing entanglement in a many-body-localized
system. Science 364, 256–260 (2019).

72. Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics
and exact diagonalisation of quantummany body systems part I: spin
chains. SciPost Phys. 2, 003 (2017).

73. Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics
and exact diagonalisation of quantum many body systems. Part II:
bosons, fermions and higher spins. SciPost Phys. 7, 020
(2019).

Acknowledgements
This project is supported by the National Key R&D Program of China,
Grants No. 2022YFA1402802, No. 2018YFA0306001, NSFC-92165204,

https://doi.org/10.1038/s42005-024-01544-6 Article

Communications Physics |            (2024) 7:58 8

https://arxiv.org/abs/2206.11273


NSFC-11974432, and Shenzhen Institute for Quantum Science and
Engineering (Grant No. SIQSE202102). J.Q.C. is supported by the
Special Fund of Theoretical Physics of National Nature Science
Foundation of China through Grants No.12047562. S.Y. is supported by
the National Natural Science Foundation of China (Grants No. 12222515
and No. 12075324) and the Science and Technology Projects in
Guangdong Province (Grants No. 2021QN02X561).

Author contributions
S.Y., D.X.Y., and J.Q.C. conceived and designed the project. J.Q.C.
performed the numerical simulations. J.Q.C., S.Y., and D.X.Y. provided the
explanation of the numerical results. All authors contributed to the
discussion of the results and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01544-6.

Correspondence and requests for materials should be addressed to Shuai
Yin or Dao-Xin Yao.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work. A peer review
file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01544-6 Article

Communications Physics |            (2024) 7:58 9

https://doi.org/10.1038/s42005-024-01544-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Dynamical localization transition in the non-Hermitian lattice gauge�theory
	Results
	Model
	Non-Hermitian skin�effect
	Disorder-free localization-delocalization transition
	Real-complex transition
	Non-Hermitian quantum disentangled liquids
	Flow of quantum information

	Discussion
	Methods
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




