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Although strain engineering and soft-clamping techniques for attaining high Q-factors in
nanoresonators have received much attention, their impact on nonlinear dynamics is not fully
understood. In this study,we show that nonlinearity of high-QSi3N4 nanomechanical string resonators
can be substantially tuned by support design. Through careful engineering of support geometries, we
control both stress andmechanical nonlinearities, effectively tuning nonlinear stiffnessof twoorders of
magnitude. Our approach also allows control over the sign of the Duffing constant resulting in
nonlinear softening of the mechanical mode that conventionally exhibits hardening behavior. We
elucidate the influence of support design on the magnitude and trend of the nonlinearity using both
analytical and finite element-based reduced-ordermodels that validate our experimental findings. Our
work provides evidence of the role of soft-clamping on the nonlinear dynamic response of
nanoresonators, offering an alternative pathway for nullifying or enhancing nonlinearity in a
reproducible and passive manner.

High-Q nanomechanical resonators play a central role in sensing and enable
ultrasmall mass, acceleration, and force detection. Nonetheless, due to their
nanoscale size and exceptional isolation from the surrounding environment,
even minute forces, as small as a few piconewtons, can induce large-
amplitude oscillations in them and result in a plethora of nonlinear phe-
nomena that include bi-stability1–4, parametric resonance5–7, self-
oscillations8–10, and mode-coupling11–14. Many of these nonlinear phenom-
ena can provide new information that is absent in the linear regime of
operation. For instance, nonlinear resonances can be used to characterize
nanomaterial properties15,16, enhance frequency stability12,17, or generate
mechanical frequency combs18,19. Some of these nonlinear phenomena have
been engineered by leveraging the interplay between geometric and elec-
trostatic nonlinearities6,20. However, the introduction of external competing
nonlinear forces may give rise to a series of unwanted side-effects, including
noise21,22 or back-action effects23 that can further complicate the nonlinear
dynamic behavior, device fabrication, and operation. Therefore, methodol-
ogies that can tailor the dynamic characteristics of nanomechanical devices
solely through geometric design in the fabrication stage are highly desirable.

Although numerous studies have already demonstrated the design
optimization of resonance frequencies and Q-factor of nanomechanical

resonators24–29, the influence of geometric design on nonlinear dynamics
has rarely been investigated11,30,31. Here, we show that soft-clamping
techniques that are utilized to realize high-Q nanomechanical resonators
can also be engineered to tune nonlinear dynamics. By manipulating
the support boundary in high-stress Si3N4 string resonators, we can
tune the stress field and induce strong in-plane to out-of-plane coupling
to simultaneously increase the Q-factor and the onset of nonlinearity
over three times that of a doubly clamped string. Furthermore, by
changing the support angle, we show that it is possible to engineer
compressive forces in the soft-clamped resonators and achieve buckled
configurations in a controllable manner. These buckled states allow us
to maximize geometric nonlinearity and change the response from hard-
ening to softening. To understand the conditions required for strain
engineering and buckling, we develop reduced-order models from finite
element (FE) simulations, which highlight the role of the support angle
in tuning the nonlinear dynamic response. Our results thus provide
experimental evidence of controllable nonlinear dynamic engineering of
nanomechanical resonators solely by geometric design and pave the way
for integrating arrays of highly tunable nonlinear nanodevices on a single
chip32–36.
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Results
Nonlinear dynamic characterization
Figure 1a shows a scanning electron microscope (SEM) image of a
nanomechanical resonator we fabricated with high-stress Si3N4 (see
“Methods” for more details). The central string resonator of all studied
devices had the same length (L = 200 μm) and width (w = 2 μm). How-
ever, the geometric parameters of the support beams, namely the support
length Ls, the width ws, and the angle θ (see Fig. 1b), are varied to inves-
tigate their effect on the nonlinear response. To characterize the nonlinear
dynamics of the string resonators, wefix a chipwithnanodevices to a piezo
actuator that provides harmonic drive in the out-of-plane direction. We
use a Zurich Instruments HF2LI lock-in amplifier connected to an
MSA400 Polytec LaserDoppler Vibrometer that is focused at the center of
the string resonator to carry out frequency sweeps (see Fig. 1c). We per-
form all the measurements at room temperature and in vacuum chamber
with pressure below 2 × 10−6 mbar to improve the signal-to-noise ratio
and minimize air damping.

To probe the geometric nonlinearity of our devices, we conduct fre-
quency sweeps at different drive levels and measure the vibrations of the
central string. Fig. 1d shows the frequency response at variousdrive levels for
adevicewithθ = 0.Wenote thepresence of ahardening-typenonlinearity at
large amplitudes that arises from the elongation of the string during
vibrations. To quantify the observed nonlinearity, we use the Duffing
equation:

€qþ μ _qþ αqþ βq3 ¼ Fexc sinð2πftÞ: ð1Þ

where q is the displacement of the center of the string, Fexc sinð2πftÞ is the
mass normalized harmonic drive force, α ¼ ð2πf 0Þ2, μ = 2πf0/Q are the
mass-normalized linear stiffness damping coefficient, respectively. Further-
more, β is the Duffing constant that we extract by fitting the backbone
of the experimental frequency response curves using the expression:
f 2max ¼ f 20 þ 3

16π2 βA
2
max, where fmax is the drive frequency corresponding to

themaximumamplitudeAmax
37,38 (see SupplementaryNote 1). InFig. 1e,we

quantify the change in the Duffing constant β when varying the support
length Ls with θ = 0. We observe a factor 13 reduction in the extracted β

when increasing the support length Ls from 30 μm to 150 μm. This is
because long supports offer less rigidity to the in-plane motion, thus
allowing the central string to relax when vibrating at large amplitudes and
consequently reducing the overall geometric nonlinearity.

Theoretical model showing the influence of soft-clamping
The reduction in theDuffing constant observed in Fig. 1e highlights the role
of the in-plane stiffness on the geometric nonlinearity. Hence, to better
understand the influence of support stiffness, we perform additional
experiments on a large number of string resonators with different support
length Ls and width ws and extract their Duffing constant β. Moreover, we
develop a simplified model consisting of a string connected to in-plane
springs at both ends, denoted as kin (see Fig. 2a), to quantitatively capture the
influence of Ls and ws on kin and thus on β when θ = 0. We particularly
model the boundary springs as doubly clamped beams with pre-tension
σ0 = 1.06 GPa and use their central deflection to analytically estimate kin
as follows29:

kin ¼ k�1
Ei þ k�1

si

� ��1 þ kσi

¼ 16Ehw3
s

L3s

� ��1

þ 2Ehws

ð1þ νÞηLs

� ��1
" #�1

þ 4σ0hws

Ls
;

ð2Þ

where kEi is the bending stiffness, ksi is the shear stiffness, kσi is the additional
contribution fromthepre-tension.Moreover,η is a geometric factor that, for
a rectangular cross-section, is η = 1.239. In contrast to the central part, which
is assumed to be a vibrating string, the support beam is modeled as a
moderately thick beam (ws/h ≥ 2.94), for estimating kin. To validate our
analytical estimation of the in-plane stiffness kin, we also obtained it
numerically using FE simulations. The analytical (lines) and the FE (circles)
results in Fig. 2b closely match one another and confirm our earlier
prediction that wider and shorter support beams offer more rigidity against
the deflection, particularly in the in-plane direction. Next, to capture the
effect of in-plane springs on the in-plane to out-of-place coupling and thus
nonlinear dynamics, we obtain the LagrangianL ¼ T � U s � Uk, whereT
is the kinetic energy of the string, Us and Uk are the potential energy of the

Fig. 1 | Nonlinear dynamic characterization of
string nanoresonators. a Scanning electron
microscope (SEM) image, colored in blue, of a string
resonator with Ls = 110 μm, θ = 0.2 rad.
b Illustration of design parameters. c Schematic of
themeasurement set-up comprising aMicro System
Analyzer (MSA) Laser Doppler Vibrometer (LDV)
for reading out the motion and a piezo-actuator for
generating the excitation force. d Duffing nonlinear
response of the string resonator with ws = 1 μm,
Ls = 130 μm, and θ = 0 as a function of the drive
level. e Sensitivity of the Duffing response to the
support length Ls for string resonators with
ws = 1 μm and θ = 0. The measurements are con-
ducted on four string resonators with different Ls
marked with different colors. The fitted backbone
curves are shown in red, and the fitted β values for
Ls = (30, 70, 110, 150) μm are β = (8.28, 2.12, 0.96,
0.62) × 1022 m−2 s−2, respectively. The mass nor-
malized excitation levels Fexc in (c) and (d) are
indicated by the color scale.
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string and the two springs kin, respectively, and use Lagrange equations
to obtain the updated α and β as follows (see Supplementary Note 2 for
details):

α ¼ k1
meff

¼ π2ð1� νÞσ0
ρL2

1þ 2EA
kinL

� ��1

; ð3Þ

β ¼ k3
meff

¼ π4E
4ρL4

1þ 2EA
kinL

� ��1

; ð4Þ

where k1 and k3 are the linear stiffness and theDuffing constant beforemass
normalization, respectively, meff = ρAL/2 is the effective mass, and A = hw
is the area of the string’s cross-section. It is worth noting that
ð1þ 2EA=kinLÞ�1 serves as a tuning factor introduced by the finite in-
plane stiffness kin, which changes both α and β of a doubly clamped string
with stress at the same rate. The effect of kin on the nonlinear stiffness can
intuitively be understood by realizing that the geometric nonlinear stiffness
of a string resonator is due to the increase of average string length and the
resulting tension proportional to q2. If the clamping at the ends of the string
is weakened by reducing the value of springs kin, then the tension increase
for the same length increase will be less, such that the nonlinear stiffness β
will reduce, as shown by Eq. (4).

In Fig. 2c, we show the extracted Duffing constant β from experiments
via fitting the backbone curves of the frequency responses and compare
those to the analytical model predictions from Eq. (4). From Fig. 2b and
Fig. 2c, it is apparent that the variation inβmatches themodel quitewell.We
shall note that for the testeddevicewith the slenderest support (Ls = 150 μm,
ws = 1 μm) and the central string stress of 5.08MPa, the analytically derived
f0 = 94 kHz and β = 7.21 × 1021 m−2 s−2 compare well with the measured
counterparts f0 = 103 kHz and β = 6.20 × 1021 m−2 s−2. Therefore, the
assumptions of having high-stress strings with sinusoidal eigenmode are
valid for obtaining the analytical expressions in the case of θ = 0. By com-
paring the dashed line to the experimental values in Fig. 2c, it can be seen
that the geometric nonlinearity β can be reduced by up to two orders of
magnitude using the presented support design. This substantial reduction
in geometric nonlinearity highlights the role of support design in tailoring
nonlinear dynamic behaviors in nanomechanical resonators with
soft-clamping. It is also noteworthy that the β calculated by using the
simplified model converges to the value of a doubly clamped string
(1.33 × 1024 m−2 s−2) when the support length Ls tends to zero (kin approa-
ches infinity in Eq. (4)), thus further confirming ourmodel. However, in the
case of wider and shorter supports, we notice that the simplified model
deviates from the measurements. We attribute this to the fact that the
dimensions of the supports becomecomparable to theunderetchdistance of
the Si3N4 (~5 μm) such that the assumptions used for the derivation of Eq.
(2) might not be valid anymore.

Engineering the nonlinearity fromhardening tobuckling-induced
softening
To gain a deeper understanding of the full potential of support design on
nonlinear dynamics, we also look into the influence of the support angle θ
on the nonlinear frequency response curves. By changing θ from positive
to negative, we are able to tune the tilting direction of the backbone curves
around the resonance, from the common hardening nonlinearity to
softening (see Fig. 3a). To understand the physicalmechanismbehind this
observation;weuseKeyenceDigitalMicroscopeVHX-6000 to focus at the
middle of central string and the unreleased Si3N4 layer to measure
the difference H of their focal heights, as shown in Fig. 3b. We note a
maximumdeviation ofH = 22.17 μmfor the devicewithLs = 150 μmand
θ =−0.1 rad, which suggests the presence of broken-symmetry in nano-
mechanical resonators with θ < 0.We attribute this to a change of built-in
stress in the Si3N4 resonator from tension to compression, which, upon
surpassing the buckling bifurcation point, breaks the out-of-plane sym-
metry and yields a buckled configuration (see SEM image in Fig. 3b). To
verify these observations, we simulate the buckled resonator response by
nonlinear reduced-order modeling of full FE models40 and numerical
continuation41 (see Supplementary Note 3), which had been successfully
applied tomodel the nonlinear dynamics of graphene drums40. It is worth
mentioning that for a buckled string, the maximum amplitude does not
always occur at the center of its first out-of-plane symmetric mode.
Accordingly, we use FE simulations to obtain the amplitude ratio between
the center of the mode and where it has the maximum amplitude, thus
scaling the measured amplitudes at the center. The simulated results are
shown as solid curves in Fig. 3a and demonstrate that the buckled
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configurations can account for the experimentally observed softening
response (see Supplementary Note 3)42.

To further investigate the role of the support angle θ on the tunability of
the dynamical properties, we perform additional measurements on string
resonators with values of θ ranging from -0.5 rad to 0.5 rad while keeping
Ls = 150 μm and ws = 1 μm constant. In Fig. 4, we show the variation of the
resonance frequency f0, Q-factor, and Duffing constant β of the first sym-
metric out-of-plane mode as a function of θ. We note that supports with
positiveθ significantly increase the valuesof thedynamical parameters shown
in Fig. 4. This is attributed to higher kin that results in higher tension and thus
translates into higher values of f0, Q-factor, and the Duffing constant β (see
Eq. (4)). The most intriguing observation, however, lies in the region where

the devices transition near θ = 0 fromaflat configuration to the buckled state.
Here, we notice a sudden increase in the resonance frequency and the
maximum ∣β∣ of our devices, which is due to the large offset from theflat state
(See Fig. 4a, c). By reducing θ towards -0.5 rad, however, the post-buckling
offset is found to decrease again, and subsequently, both f0 and ∣β∣ decrease
monotonically.We noticed that near θ = 0, theQ-factor of our devices drops
to a similar level to that of stress-free string resonators43, whose dissipation
dilution disappears with the relaxation of high tension (see Fig. 4b)27,29.
However, we note that the FE-simulatedQ-factor of devices close to the onset
of buckling is lower than the intrinsic Q-factor Q0 = 9864. This could be
attributed to the anti-spring behavior of the buckled strings that can result in
Utotal/Ubending < 1 and thus Q <Q0

29,44. Included in Fig. 4c, we compare
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fitted β values for θ = (−0.3, −0.5)rad are β = (−0.56, −0.27) × 1022 m−2 s−2. For

θ = (0.3, 0.5)rad, the Duffing constant β = (7.00, 9.01) × 1022 m−2 s−2. b Finite ele-
ment (FE) based results (dots) and measurements (diamonds) of the buckling
induced static displacement height H of the string at its center with ws = 1 μm for
different support angles θ and lengths Ls. The inset shows the SEM image, colored in
blue, of an array of buckled string resonators with ws = 1 μm, θ =−0.2 rad, and
different Ls from 150 μm to 50 μm.
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experimental data to numerical results from reduced-order modeling of FE
simulations that offer a higher θ resolution than experiments. The simula-
tions (dots) are in good agreement with our experiments, except around
θ=−0.1 rad, where we faced numerical instability. We shall note that the
simulations were conducted after a careful convergence study of the corre-
sponding multi-mode reduced-order model, which also accounted for the
broken symmetry inducedbybuckling. Furthermore, all the simulated results
in Fig. 4were obtainedusing the samematerial and geometric properties, and
θ is the only parameter that is changed. The agreement between experiments
and simulations is evident in the reliability of the modeling approach.

Discussion
The large tunabilityof thedynamical propertiesprovidedbygeometric design
offers new possibilities for engineering devices that are linear over a large
range. For instance, as shown in Fig. 4, for devices with θ > 0, it is possible
to substantially decrease the geometric nonlinearity whilemaintaining a high
Q-factor and thus expand the linear dynamic range of the resonator by
increasing the onset of nonlinearity a1dB / Q�1

2α
1
2β�

1
245,46. As an example,

in devices with support angle θ around 0.1 rad, we note that both a1dB and
Q-factor are three times higher than in conventional doubly clamped strings
(see SupplementaryNote 4). Themethodology also provides thepossibility to
minimize β, such that it is infinitely small. We expect this condition to occur
around θ=−0.0063 rad according toFE simulations,where a transition from
hardening to softening is observed.This condition is associatedwith the onset
of buckling bifurcationwhen θ is varied, which is unstable and challenging to
control, yet potentially possible to be stabilized by using external forces1.
On the other hand, it is desirable to operate devices in the nonlinear regime
by squeezing the dynamic range (DR) of nanomechanical resonators
(defined as the ratioDR= 20lg(a1dB/ath), where ath is the thermo-mechanical
noise floor). Notably, in our current designs, we observe a reduction of DR
from 64dB in a double-clamped string to 51dB in devices with slender sup-
ports. We foresee that by further reducing the thickness h = 340 nm of our
devices, DR can even be squeezed down to near zero (see Supplementary
Note 4), enabling the study of nonlinear dynamics in the Brownian limit47.
Moreover, recent studies have shown that by enhancing the ratio β/α, it is
possible to realize nonlinear nanomechanical resonators that approach the
quantum ground state in doubly clamped carbon nanotubes48. Our simula-
tions suggest that the absolute ratio of β/α in buckled resonators can be
increased to an order ofmagnitude higher than that of double-clamped ones,
suggesting that buckling can be used as an effective tool for increasing non-
linearities in modes that operate close to the quantum ground state49.

In conclusion, we introduce a strategy to engineer the nonlinear
dynamics of nanomechanical devices effectively by geometric design. We
discuss the role of in-plane to out-of-plane coupling induced by the soft-
clamping support, which we used to tune the geometric nonlinearity of
high-Q string resonators down by two orders of magnitude compared to
double-clamped strings. We also show that by carefully tuning the support
angle, we can tune the stress in Si3N4 strings over the whole range from
highly tensile to compressive, thus inducing a buckling bifurcation. We
found that the post-buckled configurations show a softening nonlinearity
with an absolute Duffing constant that increases with the buckling ampli-
tude.The advantage of the presented nonlinear tuningmethod is that it does
not require electrical or opto-thermal forces, providing a purelymechanical
method for controlling nonlinear dynamics by design. This design is
facilitated by the presented and validated analytic and finite element
modeling techniques. Thus, the methodology allows for optimizing the
dynamic range for each mechanical string resonator in the design phase,
paving a robust way to realize large arrays of nanomechanical resonators
with increased linearity or varying nonlinear functionalities for applications
such as sensor arrays and quantum processing.

Methods
Sample fabrication
Devices are fabricated by electron beam lithography and reactive
ion etching from high-stress Si3N4 layers. The layers are grown by

low-pressure chemical vapor deposition (LPCVD) with a thickness of
h = 340 nm on a silicon substrate. The devices are then suspended by a
fluorine-based (SF6) deep reactive ion underetching step27. All nano-
mechanical resonators studied in this work are made of Si3N4 deposited
on the same wafer, which guarantees almost identical mechanical prop-
erties, with an initial isotropic stress σ0 = 1.06 GPa, Young’s modulus
E = 271 GPa, Poisson’s ratio ν = 0.23, mass density ρ = 3100 kg/m3 and
the intrinsic quality factor Q0 = 9864. The resonance frequency f0 and
Q-factor characterization of these devices are detailed out in our previous
work29.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
Relevant codes are available from the corresponding authors upon rea-
sonable request.

Received: 6 October 2023; Accepted: 25 January 2024;

References
1. Erbil, S. O. et al. Full electrostatic control of nanomechanical buckling.

Phys. Rev. Lett. 124, 046101 (2020).
2. Yuksel, M. et al. Nonlinear nanomechanical mass spectrometry at the

single-nanoparticle level. Nano Lett. 19, 3583–3589 (2019).
3. Okamoto, H., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Rapid

switching in high-Qmechanical resonators. Appl. Phys. Lett. 105,
083114 (2014).

4. Bayram, F., Gajula, D., Khan, D. & Koley, G. Mechanical memory
operations in piezotransistive GaN microcantilevers using au
nanoparticle-enhanced photoacoustic excitation.Microsyst.
Nanoeng. 8, 1–14 (2022).

5. Okamoto, H., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Rapid
switching in high-q mechanical resonators. Appl. Phys. Lett. 105,
083114 (2014).

6. Keşkekler, A. et al. Tuning nonlinear damping in graphene
nanoresonators by parametric–direct internal resonance. Nat.
Commun. 12, 1–7 (2021).

7. Huber, J. S. et al. Spectral evidence of squeezing of a weakly damped
driven nanomechanical mode. Phys. Rev. X 10, 021066 (2020).

8. Villanueva, L. et al. Surpassing fundamental limits of oscillators using
nonlinear resonators. Phys. Rev. Lett. 110, 177208 (2013).

9. Chen, C., Zanette, D. H., Guest, J. R., Czaplewski, D. A. & López, D.
Self-sustainedmicromechanical oscillator with linear feedback.Phys.
Rev. Lett. 117, 017203 (2016).

10. Miller, J. M., Gomez-Franco, A., Shin, D. D., Kwon, H.-K. & Kenny, T.
W. Amplitude stabilization of micromechanical oscillators using
engineered nonlinearity. Phys. Rev. Res. 3, 033268 (2021).

11. Dou, S., Strachan, B. S., Shaw, S. W. & Jensen, J. S. Structural
optimization for nonlinear dynamic response. Philos. Trans. R. Soc. A
373, 20140408 (2015).

12. Antonio, D., Zanette, D. H. & López, D. Frequency stabilization in
nonlinear micromechanical oscillators. Nat. Commun. 3, 1–6 (2012).

13. Chen, C., Zanette, D. H., Czaplewski, D. A., Shaw, S. & López, D.
Direct observation of coherent energy transfer in nonlinear
micromechanical oscillators. Nat. Commun. 8, 1–7 (2017).

14. Güttinger, J. et al. Energy-dependent path of dissipation in
nanomechanical resonators. Nat. Nanotechnol. 12, 631–636 (2017).

15. Davidovikj, D. et al. Nonlinear dynamic characterization of two-
dimensional materials. Nat. Commun. 8, 1253 (2017).

16. Steeneken, P. G., Dolleman, R. J., Davidovikj, D., Alijani, F. & Van der
Zant, H. S. Dynamics of 2dmaterial membranes. 2DMater. 8, 042001
(2021).

https://doi.org/10.1038/s42005-024-01543-7 Article

Communications Physics |            (2024) 7:53 5



17. Huang, L. et al. Frequency stabilization and noise-induced spectral
narrowing in resonators with zero dispersion. Nat. Commun. 10,
1–10 (2019).

18. Keskekler, A., Arjmandi-Tash, H., Steeneken, P. G. & Alijani, F.
Symmetry-breaking-induced frequency combs in graphene
resonators. Nano Lett. 22, 6048–6054 (2022).

19. Czaplewski, D. A. et al. Bifurcation generated mechanical frequency
comb. Phys. Rev. Lett. 121, 244302 (2018).

20. Samanta, C., Arora, N. & Naik, A. Tuning of geometric nonlinearity in
ultrathin nanoelectromechanical systems. Appl. Phys. Lett. 113,
113101 (2018).

21. Sansa,M. et al. Frequency fluctuations in silicon nanoresonators.Nat.
Nanotechnol. 11, 552–558 (2016).

22. Villanueva, L. G. et al. A nanoscale parametric feedback oscillator.
Nano Lett. 11, 5054–5059 (2011).

23. Urgell, C. et al. Cooling and self-oscillation in a nanotube
electromechanical resonator. Nat. Phys. 16, 32–37 (2020).

24. Seis, Y. et al. Ground state cooling of an ultracoherent
electromechanical system. Nat. Commun. 13, 1507 (2022).

25. Sadeghi, P., Tanzer, M., Christensen, S. L. & Schmid, S. Influence of
clamp-wideningon thequality factorof nanomechanical siliconnitride
resonators. J. Appl. Phys. 126, 165108 (2019).

26. Fedorov, S. A., Beccari, A., Engelsen,N. J. &Kippenberg, T. J. Fractal-
like mechanical resonators with a soft-clamped fundamental mode.
Phys. Rev. Lett. 124, 025502 (2020).

27. Shin, D. et al. Spiderweb nanomechanical resonators via bayesian
optimization: inspired by nature and guidedbymachine learning.Adv.
Mater. https://doi.org/10.1002/adma.202106248 (2021).

28. Hoch, D., Yao, X. & Poot, M. Geometric tuning of stress in predisplaced
silicon nitride resonators. Nano Lett. 22, 4013–4019 (2022).

29. Li, Z. et al. Tuning theQ-factor of nanomechanical string resonatorsby
torsion support design. Appl. Phys. Lett. 122, 013501 (2023).

30. Li, L. L. et al. Tailoring the nonlinear response of mems resonators
using shape optimization. Appl. Phys. Lett. 110, 081902 (2017).

31. Cho, H. et al. Nonlinear hardening and softening resonances in
micromechanicalcantilever-nanotubesystemsoriginated fromnanoscale
geometric nonlinearities. Int. J. Solids Struct. 49, 2059–2065 (2012).

32. Doster, J. et al. Observing polarization patterns in the collective
motion of nanomechanical arrays. Nat. Commun. 13, 2478 (2022).

33. Hatanaka, D., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon
waveguides for electromechanical circuits. Nat. Nanotechnol. 9,
520–524 (2014).

34. Bagheri, M., Poot, M., Fan, L., Marquardt, F. & Tang, H. X. Photonic
cavity synchronization of nanomechanical oscillators.Phys. Rev. Lett.
111, 213902 (2013).

35. Matheny, M. H. et al. Phase synchronization of two anharmonic
nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014).

36. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss,
dispersion-engineered silicon nitridephotonic circuits.Nat. Commun.
12, 2236 (2021).

37. Nayfeh, A. H. & Mook, D. T. Nonlinear Oscillations (John Wiley &
Sons, 2008).

38. Schmid, S., Villanueva, L. G. & Roukes, M. L. Fundamentals of
Nanomechanical Resonators, vol. 49 (Springer, 2016).

39. Young, W. C., Budynas, R. G., Sadegh, A. M. et al. Roark’s Formulas
for Stress and Strain, vol. 7 (McGraw-Hill New York, 2002).

40. Keşkekler, A., Bos, V., Aragón, A. M., Steeneken, P. G. & Alijani F.
Multimode nonlinear dynamics of graphene resonators. Phys. Rev.
Applied. 20, 064020 (2023).

41. Dhooge, A., Govaerts,W., Kuznetsov, Y. A.,Meijer, H. G. E. & Sautois,
B. New features of the software matcont for bifurcation analysis of
dynamical systems.Math. Comput. Model. Dyn. Syst. 14, 147–175
(2008).

42. Lacarbonara, W., Nayfeh, A. H. & Kreider, W. Experimental validation
of reduction methods for nonlinear vibrations of distributed-
parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17,
95–117 (1998).

43. Villanueva, L. G. & Schmid, S. Evidence of surface loss as ubiquitous
limiting damping mechanism in sin micro-and nanomechanical
resonators. Phys. Rev. Lett. 113, 227201 (2014).

44. Dykstra, D. M., Lenting, C., Masurier, A. & Coulais, C. Buckling
metamaterials for extreme vibration damping. Adv. Mater.
https://doi.org/10.1002/adma.202301747 (2023).

45. Postma,H. C., Kozinsky, I., Husain, A. &Roukes,M. Dynamic range of
nanotube-and nanowire-based electromechanical systems. Appl.
Phys. Lett. 86, 223105 (2005).

46. Molina, J. et al. High dynamic range nanowire resonators. Nano Lett.
21, 6617–6624 (2021).

47. Barnard, A.W., Zhang,M.,Wiederhecker, G. S., Lipson,M.&McEuen,
P. L. Real-time vibrations of a carbon nanotube. Nature 566,
89–93 (2019).

48. Samanta,C. et al. Nonlinear nanomechanical resonators approaching
the quantum ground state. Nat. Phys. 19, 1340–1344 (2023).

49. Geilhufe, R. M. Quantum buckling in metal–organic framework
materials. Nano Lett. 21, 10341–10345 (2021).

Acknowledgements
The research leading to these results received funding from the European
Union’s Horizon 2020 research and innovation program under Grant
Agreement 802093 (ERC starting grant ENIGMA). Z.L. acknowledges
financial support from the China Scholarship Council and the early
assistance on the FE reduced-order modeling from Vincent Bos. This work
is also part of the project, Probing the physics of exotic superconductors
withmicrochip Casimir experiments (740.018.020) of the research program
NWO Start-up, which is partly financed by the Dutch Research Council
(NWO). M.X. and R.A.N. acknowledge valuable support from the Kavli
Nanolab Delft.

Author contributions
Z.L., F.A., P.G.S., and A.M.A. conceived the experiments; M.X. and R.A.N.
fabricated the Si3N4 samples; Z.L. conducted the measurements and
analyzed theexperimental data;Z.L. andF.A.built the theoreticalmodel; Z.L.
performed the reduced-ordermodeling of the finite elementmodel; F.A. and
P.G.S. supervised the project; and the paper was written by Z.L. and F.A.
with inputs from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01543-7.

Correspondence and requests for materials should be addressed to
Zichao Li or Farbod Alijani.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work. A peer
review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42005-024-01543-7 Article

Communications Physics |            (2024) 7:53 6

https://doi.org/10.1002/adma.202106248
https://doi.org/10.1002/adma.202301747
https://doi.org/10.1038/s42005-024-01543-7
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s CreativeCommons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01543-7 Article

Communications Physics |            (2024) 7:53 7

http://creativecommons.org/licenses/by/4.0/

	Strain engineering of nonlinear nanoresonators from hardening to�softening
	Results
	Nonlinear dynamic characterization
	Theoretical model showing the influence of soft-clamping
	Engineering the nonlinearity from hardening to buckling-induced softening

	Discussion
	Methods
	Sample fabrication

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




