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Criticality in FitzHugh-Nagumo oscillator
ensembles: Design, robustness, and spatial
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Reservoir computing is an efficient and flexible framework for decision-making, control, and

signal processing. It uses a network of interacting components varying from abstract non-

linear dynamical systems to physical substrates. Despite recent progress, the hardware

implementation with inherent parameter variability and uncertainties, such as those

mimicking the properties of living organisms’ nervous systems, remains an active research

area. To address these challenges, we propose a constructive approach using a network of

FitzHugh-Nagumo oscillators, exhibiting criticality across a broad range of resistive coupling

strengths and robustness without specific parameter tuning. Additionally, the network’s

activity demonstrates spatial invariance, offering freedom in choosing readout nodes. We

introduce an alternative characterization of criticality by analyzing power dissipation, and

demonstrate that criticality supports the robustness of the classification accuracy with

respect to the readout shrinkage. Our results indicate criticality as a valuable property for

classification problems, and provides design concepts for bio-inspired computational

paradigms.
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Reservoir computing1,2 is a computation framework that has
shown great potential for solving complex problems in
various fields ranging from speech recognition3 to robotics.

The core element of this setup is a network of interacting com-
ponents, called the reservoir, whose realizations vary from
abstract nonlinear dynamical systems4 (in theoretical works) to
various physical substrates5,6 (in experimental approaches). The
main advantage of reservoir computing lies in the fact that the
input signal is processed in a nonlinear way by the reservoir,
which is a recurrent neural network, and only the output layer
needs to be trained to obtain the desired output. This makes the
training process much simpler and faster compared to conven-
tional artificial neural networks.

One concept, tightly-related to networked systems, which can
impact the performance of reservoir computers, is that of
criticality7. This denotes the property of a dynamical system
marking the transition between ordered and disordered states. It
has been shown that criticality is essential for efficient informa-
tion processing in real neural systems, where it provides a balance
between stability and flexibility8,9, a rapid and accurate response
to external inputs10, and it is believed to be crucial for many
cognitive functions such as perception, attention, and decision-
making11. It is therefore not surprising that oscillators are a
natural choice for neuromorphic architectures, as they mimic the
behavior of neurons in the brain and can be implemented using
electronic circuits. Moreover, oscillator networks have been
shown to exhibit critical behavior, which makes them suitable for
reservoir computing applications. In particular, a number of
studies have demonstrated that reservoirs that operate at or near
criticality exhibit superior performance on a range of tasks
compared to those that operate away from criticality, see, e.g.,
networks based on leaky-integrate-and-fire oscillators12 and spin-
torque nano-oscillators13, Kuramoto networks14, nanowire
networks15, and atomic switch networks16,17. Nevertheless,
designing reservoir computers that are both critical and robust to
parameter variations remains a goal with many obstacles. In
particular, one of the drawbacks of many reservoirs is a relatively
narrow range of admissible parameters enabling critical behavior.
This particularly means that the hardware implementation might
be complicated and requires the precise parameter matching that
is not always possible18. Moreover, such networks do not possess
enough robustness with respect to the external disturbances and
noise.

In this work we study ensembles of resistively coupled
FitzHugh-Nagumo oscillators (FNOs)19,20 in the framework of
criticality and reservoir computing. The FNO belongs to the class
of relaxation-type oscillators and is a simplified version of the
Hodgkin-Huxley model21. It is considered as a prototype of an
excitable system to describes basal functionalities of a neuron22. If
an external stimulus exceeds a threshold, an FNO starts to exhibit
a sequence of action potentials (spikes) and relaxes after some
time, if the input stimuli vanishes. The FNO model has been
widely applied in order to study the dynamics of oscillator net-
works including but not limited to, diffusive coupling, the impact
of noise, as well as memristively coupled FNO ensembles23–25. In
dependency of the particular coupling mechanism and the FNO
parameter-set, a plethora of dynamic states have been observed
such as, synchrony, symmetric patterns and chaos26–28. Research
of FNOs in the context of criticality has been less intensively
studied29, although an FNO represent a prototype of an excitable
system. Indeed, ensembles of coupled FNOs may allow an in-
depth exploration of complex brain states, as for example, has
been recently shown in epileptic-seizure-related synchronization
phenomena and quasi-critical brain states30. While these results
hint towards the existence of criticality in FitzHugh-Nagumo
oscillator ensembles, there is a lack of evidence regarding its

existence up to this point. In this work, we show how a robust
critical state can be achieved in a network of resistively coupled
FNOs. Besides this, we provide design concepts that lead to a
network, whose activity is both spatially- and scale-invariant.
Here, spatial invariance means that the average activity of nodes
over certain time interval does not depend on the number of
nodes or on their spatial location, which allows for a free choice
of readout nodes. Moreover, we provide an alternative char-
acterization of criticality in terms of the power dissipation in the
network and demonstrate that criticality supports the robustness
of the classification accuracy with respect to the readout shrink-
age. All our investigations are performed under the restriction
that all components are available in analog hardware, as we aim
to support the development of analog bio-inspired reservoir
computers.

Results
In this section, we present our bio-inspired reservoir computer.
We derive conditions on the baseline coupling strength enabling
the reservoir to operate in a critical regime. Furthermore, we
establish a link between criticality and power flow, which allows
for characterizing criticality from an electrical perspective. As a
benchmark for the classification accuracy of our reservoir com-
puter, we consider a drybean classification problem31. We have
picked this task for three specific reasons. (i) Simulations in this
work are performed on a circuit-level. Such simulations are
slower than simulations of classical artificial neurons. Therefore,
it is reasonable to pick a dataset with a moderate number of data
samples. Datasets such as MNIST or CIFAR10 have many data
samples, which require large computational effort. (ii) Each data
sample in the drybean dataset has 16 attributes. To enhance our
criticality analysis, we only supply an input to 20% of our net-
work. Our reservoir is composed of 100 FitzHugh-Nagumo
oscillators (FNOs). Thus, we can directly translate the 16 attri-
butes of a data sample from the drybean dataset into analog
signals for 16 oscillators within our network. (iii) The drybean
dataset has been widely utilized in the literature as a benchmark
for classical artificial neural networks. This enables us to compare
the performance of our reservoir computer to existing works that
have employed this dataset31–35.

Biological Scenario. Our electrical setup aims to mimic the basic
topology of neural networks in animals36, see Fig. 1a. Here, we
implicitly assume the existence of sensory neurons generating
action potentials corresponding to a set of perceived features. The
information is mainly encoded into the spiking rate of these
action potentials. Specifically, the intensity of the perceived fea-
tures is directly proportional to the spiking rate of the sensory
neurons, hence we speak of spike-rate encoded signals in Fig. 1a,
which is inspired by discoveries on neural coding in the visual
and motor cortex37. These signals are forwarded to a subset of
information processing neurons, which are responsible for fil-
tering the input. From a hierarchical perspective, the information
processing neurons are found in an intermediate stage between
the sensory neurons and the brain, hence they can be understood
as local information processors. Furthermore, the (local) neural
network is assumed to operate at a critical state, as supported by
many studies in literature38–44. Similar to the sensory neurons,
the information processing neurons produce action potentials of
which a subset is forwarded to a specialized neural network (e.g.
in the brain) that classifies the perceived features.

Electrical Setup
1) Spike-Rate-Coding for Input Generation. Moving on to the
electrical setup as sketched in Fig. 1b, the sensory inputs are
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modeled by spike trains. Here, we generate a pulse train for every
attribute of a data sample within the considered dataset. The
amplitude J0 and pulse width Tp of every pulse is fixed and is
chosen, so it leads to exactly one (voltage) spike at the receiving
neuron. Every input attribute is normalized to the interval [0, 1];
the μ-th normalized input attribute of the ν-th data sample will
subsequently be called aμ,ν. To linearly map the input attribute
onto a spike train, we have defined a minimal and maximal
spiking rate rmin and rmax, such that the μ-th neuron receives a
spike train rate of rν ¼ rmin þ aμ;ν ½rmax � rmin�. A detailed
explanation regarding the input preparation is presented in the
Methods section.

2) FitzHugh-Nagumo Oscillators as Reservoir Nodes. Every
information processing neuron is modeled by a biologically
plausible neural oscillator, the so-called FitzHugh-Nagumo
oscillator (FNO)20, see Fig. 1c. Although we only present emu-
lation results, we have deliberately picked the FNO for one spe-
cific reasons: The oscillator retains the main features of a
biological neuron, while also being realizable in practice45,46. In
this context, biological plausibility means that the resulting spike

form is quite similar to that of a real action potential, i.e. the
oscillator closely mimics all the polarization phases of a real
neuron. Furthermore, the oscillator can be parametrized, so a
voltage spike is only produced when it is perturbed by an external
input. Here, the input pulse trains described in 1) are supplied as
using a current source j0, see Fig. 1 and refer to the Methods
section for more details.

3) Resistive Coupling Network. The axonal connections depicted
in Fig. 1a are modeled by a network of resistors, see the red
dashed box in 1b. In biology, axonal connections are usually
unidirectional (due to unidirectional terminal synapses), e.g. in
mammals47, and induce a small delay. However, one can also find
bidirectional axonal connections in other organisms such as the
Hydra48. Bidirectional connections can be advantageous as they
presumably provide the network with functional robustness, that
is, the loss/death of neurons does not greatly influence the net-
work’s connectivity and hence its overall functionality49. To
reduce the number of optimization parameters in our criticality
analysis later on, the resistances are modeled by a Gaussian dis-
tribution. The mean value of the Gaussian distribution serves as

Fig. 1 Overview of the reservoir computer setup drawing a comparison between the biological scenario and the electrical setup. a A network of sensory
neurons forwards the perceived information as action potentials to a network of information processing neurons. The latter filters the received input and a
subset of the generated action potentials is forwarded to another neural network (in the brain) that classifies the input. b Sensory information is encoded
into the spike train distances (rate coding) with a fixed pulse width and then forwarded to a network of artificial neurons. The axonal connection from a are
modeled by a network of resistors, see the red dashed box. The output voltages of a subset of oscillators is used as an input for a simple machine learning
algorithm to perform the classification. c Circuit of a FitzHugh-Nagumo oscillator N μ. The current source j0,μ is used to supply the pulse trains encoding
data sample attributes. dWatt-Strogatz graph used in this work. Every node corresponds to an oscillator, as depicted in c, while every edge corresponds to
a resistor. The green nodes represent oscillators receiving pulse trains, as depicted on the left side of b. The pink nodes represent readout oscillators; their
voltages uμ are used to train the classification network depicted on the right side of b.
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the control parameter of our criticality analysis, while a standard
deviation of 10% is used to mimic the parameter spread observed
under practical conditions. The delays of biological axons are not
considered for two reasons. First, considering such delays would
in another parameter that must be optimized to observe critical
behavior. This would require a more sophisticated analysis and
characterization of criticality. Furthermore, implementing
distortion-free delays with analog hardware is not a trivial task.

4) Network Topology. In this work, the network’s topology is kept
fixed. A reasonable way of modeling the topology of biological
network is by making use of small-world network models, since
biological networks are known to have the small-world
property50. In this work, we make use of a Watt-Strogatz
model51, which is a small-world network with n nodes, a mean
node degree of 2k, and nk edges. Here, we have chosen
n= 100, k= 5, and a rewiring parameter of β= 0.15; a graphical
illustration of the network is given in Fig. 1d. Here, only 20% of
the network receives an external (sensory) input (green nodes in
Fig. 1d, while the outputs of another 20% serves training/classi-
fication purposes (pink nodes in Fig. 1d. By letting only a minor
part of the network receive external inputs, we are able to
quantify how much information is propagated throughout the
network, when the mean coupling resistance is varied. Note that
the input and output sets are strictly disjoint. Also, we have
evenly distributed both the input and output nodes throughout
the network, as this ensures that (1) no part of the network is
silent when an input is supplied to all nodes at the same time; and
that (2) information is evenly extracted from the entirety of the
network.

5) Emulation Technique. To emulate a large number of resistively
coupled FNOs, we make use of the wave digital concept52, which
is an appropriate and powerful tool for emulating structurally-
similar circuits in a highly parallel fashion53. A thorough
description and derivation is presented in the Methods section.
However, we would like to briefly mention that a wave digital
model is essentially a signal flow diagram, whose iterative eva-
luation allows emulating the corresponding electrical circuit. In
this work, we use the emulated voltages of every output oscillator
to train a learning algorithm. Note that all parameters used within
our emulations can be found in Table 1.

Avalanche criticality in coupled FitzHugh-Nagumo oscillators.
The existence of avalanche criticality in a system of coupled FNOs
is a natural implication of the network’s dynamical behavior. To
clarify this statement, take the example of two coupled FNOs. If
the coupling resistance is chosen so high such that only a negli-
gible amount of power is exchanged through the coupling resis-
tor, then they would have a low mutual influence and would
generally exhibit different oscillatory outputs. The same effect can
be observed in the other extreme case, that is, if the coupling
resistance is chosen so low that the oscillators synchronize, then
there would be no power exchange once the synchronous state is
reached54. Now, in the first case, we may speak of a disordered or
subcritical system, while in the second case, we may speak of an
ordered or supercritical system. Somewhere in between these two
states, i.e. for a certain range of coupling resistances, we assume a

phase transition to take place during which the network is in a
critical regime. In the sequel, we show this to indeed be the case.
However, it should be noted that a critical state can only be
reached if (1) the network contains autonomous oscillators or (2)
is stimulated by a set of sufficiently strong external signals (pulse
trains), as the oscillators would otherwise stop firing and inter-
acting, once all the potential energy has been dissipated. In this
work, we externally excite the network to maintain its interaction.
Here, we say that the strength of a signal is proportional to its
repetition rate and not amplitude.

To test our hypothesis, we defined two types of input signals.
The first one is called the nominal input, which describes the case
where aμ,ν= 1 for all μ, i.e. the case where all input oscillators
(simultaneously) receive a pulse train with the rate rmax. This type
of input induces a maximal amount of activity in the network and
corresponds to the maximal possible perturbation. However, it
does not reflect the average amount of activity that can be
observed, when dealing with real data samples. Thus, we make
use of a second input, termed bean input, stemming from the
dataset of the considered drybean classification problem. Here, we
picked 7 random sets of attributes from the drybean dataset and
supplied the corresponding pulse trains as inputs. This allows us
to gain a more realistic estimation of the network’s activity when
dealing with real data.

Figure 2 a demonstrates the average network activity as a
function of the baseline coupling strength Gμ= 1/Rμ in case the
nominal input is supplied. The average network activity is defined
as the overall number of spikes produced by the reservoir divided
by the number of sample points, i.e. it is the average number of
spikes per discrete time instant. Since we are working with analog
oscillators, we make use of a moving time window with the width
Δt= 0.2 μs in order to identify spikes events. An oscillator N μ is
said to have spiked if the corresponding output voltage uμ has a
local maximum with a positive voltage value within the moving
time window; thus Δt is chosen so it is slightly wider than the
length of one spike event. In Fig. 2a, we have also plotted the
average network activity in the case the bean input used, as
indicated by the red dots. Since, we have used 7 different
attributes sets from the drybean dataset, we experienced a
deviation in the average network activity, which is indicated by
the error bars. In general, we observe a second-order phase
transition in the interval Gμ∈ [20, 60] μS. The left and right sides
of this phase transition correspond to the coupling strength
regimes, where the system is said to be subcritical and
supercritical, respectively. On average, it can be seen that the
network activity is slightly lower if we use the same coupling
strength but the bean input instead of the nominal input. This
outcome is natural, as many of the normalized attributes aμ,ν are
usually smaller than 1 when the bean input is used. Hence, the
network experiences a smaller perturbation leading to less activity
on average. As well as many spiking networks, the constructed
FNO-network features cascades of spikes that are being spread
over the network both spatially and temporally. These cascades
are called avalanches. The remainder of Fig. 2(b-g) provides an
overview of the relative frequency of occurrence of avalanches
depending on their size and duration for different values of
baseline coupling strengths. For some coupling strengths, the
relative frequency follows the power law distribution. This power

Table 1 Circuit parameters.

G0= 990mS R0= 808Ω C= 0.1 nF L= 1 mH rmax ¼ 333:3 kHz
U0= 0.87 V e0= 0.615 V J0= 2mA Tp= 1.5 μs rmin ¼ 16:6 kHz

These parameters have been used to parametrize the circuit depicted in Fig. 10a.
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law property, combining with the evidence of different dynamical
regimes on either sides of phase transition, serves as a criticality
signature55 of our network. Overall, our analysis indicates that a
coupling resistance of Rμ= 14 kΩ leads to critical network
behavior. However, in terms of task performance, it is known
that slightly subcritical behavior can lead to even better
results56,57, which makes the resistance Rμ= 18 kΩ also an
interesting value for benchmarking against particular tasks. The
details on the power law fitting and the resulting power law
exponents are summarized in Supplementary Note 1.

To understand the network behavior from a dynamical
perspective, we present the output oscillation time series in
Fig. 3e–h. Here, we excite the network with input signals relating
to a random data sample from the drybean data in order to
visualize its behavior during task performance, see Fig. 3e.
Figure 3f–h depict the reactions of a subcritical, critical, and
supercritical network, respectively. In Fig. 3f, we observe many
inactive oscillators due to our choice of a weak coupling strength.
Here, oscillators receiving an input are not able to excite their
neighbors, such that a large part of the network remains inactive.
The weak interaction corresponds to a disordered state, hence we
refer to the network behavior as being subcritical. In Fig. 3g, we
see the opposite case, a very active and synchronous network.
Here, the coupling is strong, and the input oscillators are able to

excite a large part of the network. This type of network behavior
is ordered, hence, it is supercritical. Lastly, in Fig. 3h, we
encounter a network with baseline coupling strength within the
phase transition zone. In this case, we observe diverse oscillation
patterns and alternating spiking behavior, where parts of the
network are active at times and inactive at others. This intricate
behavior is labeled as “critical" due to the network’s complexity.

As plan to use our network as a reservoir computer, we have
visualized the network behavior using raster plots in Fig. 3a–d.
The raster plots can be used to visualize the quality of the
nonlinear projection that is performed by our reservoir. In the
case of a subcritical network, we see that the input-output
behavior is 1-to-1, that is, the readout network perceives a scaled
version of the input signals, see Fig. 3b. Therefore, the reservoir is
effectively useless, since it does not process the input at all. In
Fig. 3d, the input leads to synchronous outputs and hence to a
predictable network behavior, since the network will behave this
way for nearly any data sample. Thus, we conclude that both
cases b and d represent bad nonlinear projections of the input in
Fig. 3a. The spiking pattern in Fig. 3c, on the other hand, shows a
rich variety of collective activity. In other words, we see that the
reservoir projects the input signals Fig. 3a in a very nonlinear
manner, which is suitable for classification purposes, as we show
later on.

Fig. 2 Average network activity and power law fitting statistics for the avalanche size and avalanche duration under the bean-input for different
baseline coupling strengths. a Blue dots indicate the average network activity for a given coupling strength under the nominal input. Red dots indicate the
average network activity for six selected coupling strengths (5 kΩ, 11.5 kΩ, 14 kΩ, 18 kΩ, 23.5 kΩ, and 60 kΩ) under the bean-input. Error bars indicate the
standard deviation of the average activity over seven different bean classes served for the bean-input. The standard deviation for the case of 60 kΩ is only
0.00977, and, therefore, not visible. Relative frequencies of the occurence of avalanches depending on their size and duration for six different coupling
strengths (from strong/supercritical to weak/subcritical): 5 kΩ (b), 11.5 kΩ (c), 14 kΩ (d), 18 kΩ (e), 23.5 kΩ (f), and 60 kΩ (g). The avalanche duration
corresponds to a number of subsequent Δt-long time bins during which spikes have been observed, and the avalanche size corresponds to the total
number of spikes occured within a single avalanche. Dashed lines correspond to the best power law fitting of the data (see the detailed information in
Supplementary Figure 1 and Supplementary Table 1. For the case of 60 kΩ (g), all avalanches are of duration 1, i.e., every spike is isolated due to the weak
coupling between the oscillators, and, therefore, no power law fitting is possible.
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Scale and spatial Invariance. Scale invariance is an important
property of critical networks, which states that the behavior of a
complex network is invariant w.r.t. its scales. Here, the terms
behavior and scales are specific to the network at hand. Thus, in
order to identify scale invariance, we must first clearly define
these terms. In the case of our network, its behavior can be
characterized by the average network activity discussed in the
previous section. If we can measure a phase transition in the
average network activity irrespective of the network’s scales, we
say that the network is scale-invariant. The scale of our network
can be defined in different ways. For example, it can refer to the
number of oscillators, the number of resistive connections, the
average number of resistive connections per oscillator, etc. In this
work, we limit our analysis to the number of oscillators. In other
words, we analyze scale invariance by measuring the average
network activity as a function of the number of oscillators. In
terms of the Watt-Strogatz model, this means that n is changed,
while k and β are kept fixed. Figure 4a depicts the results of our
analysis. Here, we have measured the average network activity as
a function of Gμ, while varying the number of oscillators, such
that n. In order to compare the average network activity for
different network sizes, we have normalized the network activity
to the interval [0; 1]. Our results in Fig. 4a show the average
network activity to retain its phase transition, even when the
number of oscillators is varied. Moreover, we also observe the
phase transition regime is nearly invariant w.r.t. the number of
oscillators.

In addition to scale invariance, another compelling feature of
our network is one that we refer to as spatial invariance. We
define a spatial invariant network as a network, where signatures
of criticality can be observed in a sufficiently large subnetwork
consisting of randomly chosen nodes and all their incident edges.
This property is quite useful, as it implies that the output nodes
can be chosen freely without greatly effecting the task
performance. Furthermore, it also allows reducing the number
of output nodes without greatly influencing the task perfor-
mance, as we discuss later on. A good way of inducing this
property in oscillator networks is to evenly distribute the
oscillators receiving an input throughout the network. Achieving
this type of distribution can also be seen as an optimization task,

specifically, a vertex cover problem, where the goal is to find a
predefined number of input oscillators (nodes) that can cover all
the resistive connections (edges) in the network. This ensures
that the input signals propagate throughout the entire network
yielding a maximal information spread. Note, if the number of
input nodes is much smaller than the network size then there are
two ways to achieve spatial invariance. The first option is to
increase the network connectivity by increasing the average node
degree. In our scenario, the Watt-Strogatz model can be
parametrized with a predefined average node degree, which
makes it a good choice for dealing with this specific problem. The
second option is to find the largest possible vertex cover with a
predefined number of nodes, which is only sensible if the number
of input nodes is close to the cardinality of the minimal vertex
cover set.

To verify the presence of spatial invariance, we let a set of 20
oscillators undergo the same type of analysis depicted in Fig. 2,
see Fig. 4b. At first, these oscillators were chosen to be the same
ones as our output oscillators. Then we chose 5 sets of 20 random
oscillators among those that do not receive any external input.
Here, we see that the same phase transition as depicted in Fig. 2
can be observed, when evaluating the average network activity of
only 20 oscillators within the network. The same picture holds
quantitatively when we probe different number of oscillators (see
Fig. 4c with 10, 20, and 40 randomly chosen nodes). Note that the
phase transition takes place in the same interval Gμ∈ [20, 60]μΩ,
which indicates a form of scale-invariance that is typical to critical
networks38,39.

Relationship between criticality and power flow. In this section,
we discuss a possibly new measure for criticality that can be
applied in the context of resistively coupled neural oscillators.
While power law and phase transition analysis are popular and
well established methods for analyzing criticality in complex
networks, these measures are based on statistics and require a
great amount of data for their calculations. An instructive way of
finding a simpler measure with a similar interpretation is to think
about how information spreads throughout the network. In our
setting, input information generates a spike at the receiving

Fig. 3 Illustration of the network activity in the subcritical, critical, and supercritical state in terms of raster plots (top) and time series plots (bottom).
a Input pulse trains supplied to the ν-th oscillator over time. Raster plot representation of the oscillators' output voltages uν in the case of a subcritical
network (b, Rc= 60 kΩ), a critical network (c, Rc= 18 kΩ), and a supercritical network (d, Rc= 5 kΩ). The time series plots corresponding to raster plots
a–d are given in subfigures f–h.
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oscillator, which induces a current flow directed towards adjacent
oscillators. Such a flow of current can also be understood in terms
of a power flow, because any oscillator receiving an input is
exciting its inactive neighboring oscillators, which in turn leads to
more spikes within the network.

Avalanche criticality corresponds to a state of high network
activity with diverse spiking behavior58. Hence, it is justified to
think that a critical state is correlated to one with a high power
transmission59. To test this hypothesis, we analyzed the average
dissipated power (see Methods section) within the coupling
network for different coupling strengths Gμ and different network
sizes n, while using the nominal and bean input. Figure 5 presents
the results of our analysis. The left and right plot depict the
average dissipated power when the nominal and bean input are
used, respectively. To relate the results in Fig. 5 to the phase
transition in Fig. 2, we have shaded the phase transition regime in
light blue in both plots. Let us first consider the left plot in Fig. 5.
This plot illustrates that a maximal power transmission takes
place for Rμ ≈ 18 kΩ, while both low and high values of Rμ lead to
less power transmission. This result is very natural as high values
of Rμ lead to weaker interactions and hence less power
transmission. On the other hand, low values of Rμ lead to strong
interactions and therefore synchrony, and the latter leads to less
power exchange. Interestingly, the value of Rμ leading to maximal
power transmission lies within the phase regime. In fact, power
transmission quickly deteriorates outside the phase transition
regime. Hence, we see a strong correlation between power
transmission and the average network activity. In general, the
same trends are seen in the right plot of Fig. 5. However, when
the bean input is used, we can observe two major differences: (1)
the maximal power transmission value is obtained for Rμ ≈ 11.5
kΩ and the value does not lie in the phase transition regime for
the nominal input; and (2) the average network activity does not
deteriorate as quick as when the nominal input is used. The first
aspect is to be expected, because input signals representing a data
sample from the drybean dataset, will always supply less energy
(on average) to the network due to their lower pulse repetition

rate. Thus, the network perceives a weaker excitation such that
higher values of Gμ are required in order to obtain maximal
power transmission. Moreover, the fact that the phase transition
in Fig. 2 is measured using the bean input justifies why the
optimal value Rμ= 11.5 kΩ does not lie in the phase transition
regime when the bean input is used. Measuring the phase
transition using the bean input would shift the phase transition,
as indicated by the red dots in Fig. 2. The second aspect can be
interpreted as follows: power transmission within the network is
less sensitive to changes in the coupling strength, when the bean
input supplied. This implies a sort of parametric robustness,
which greatly supports the technical implementation of our
network in practice. We will show that this parametric robustness
also translates to robustness in task performance in the next
section.

Overall our analysis reveals two key aspects. First, to induce
critical behavior, we can analyze the average dissipated power for
different coupling strengths and pick the value that maximizes
power dissipation. In fact, contrary to typical analysis methods
(phase transition, power law, etc.), a power flow analysis specifies
the optimal coupling strength for the application at hand, is
simpler to perform, and requires less simulation effort. Second,
there is a wide range of coupling strengths that can be chosen,
while still inducing a critical state. In other words, the phase
transition regime is rather wide, which, to our utmost knowledge,
is quite rare for complex networks.

Classification accuracy and its robustness with respect to the
readout shrinkage. We test the quality of the constructed FNO-
oscillator-based reservoir using classification task for the drybeans
dataset31. The readout consists of two fully connected feed-
forward layers of artificial neurons: the input layer that receives
the signal from the reservoir, and the output layer, with the
softmax activation function, containing 7 nodes which represent
probabilities of a bean to belong to a particular bean class. The
100 equidistantly sampled voltage values from every of 20 output
oscillators form the readout’s input layer, we refer the reader to

Fig. 4 Spatial and scale invariance of network’s activity. a Average network activity as a function of the baseline coupling strength Gμ and the number of
oscillators n. For comparison purposes, the average activity of every network has been normalized to its maximum. b Average activity per node depending
on baseline coupling strength for 20 output nodes (blue points) and five 20-node-large random sets (semi-transparent gray points). The random nodes are
picked among all nodes which do not receive external input. c Average activity per node depending on baseline coupling strength for different random sets
of nodes which do not receive external input: all 80 nodes (blue points), five random 40-node-large sets (semi-transparent green points), five random 20-
node-large sets (semi-transparent gray points), and five random 10-node-large sets (semi-transparent red points). The average number of spikes occurred
in a randomly selected subset of network’s nodes does not depend on the number of nodes in this subset or on their spatial location.
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the Methods section for more details. The total of 13611 samples
are generated which are split into the training and validation sets
following the 10-fold cross-validation procedure (i.e., we split all
samples into 10 subsets and use 9 of them for the training and 1
for the validation. Then we repeat the training procedure 10 times
taking different validation sets). The supervised learning proce-
dure is performed in Python using the Keras API60 for 1000
epochs. The categorical cross-entropy loss is backpropagated
using the stochastic gradient descent method Adam. The highest
average classification accuracy of 90.75% over all 10 folds was
achieved for the slightly sub-critical reservoir with the baseline
coupling resistance of Rμ= 18 kΩ. A summary of the training
process for this case is depicted in Fig. 6a and b. It is important to
note that the relatively high classification accuracy is consistent
throughout the wide range of near-critical resistances Rμ= 23.5
kΩ, 18 kΩ, 14 kΩ, and 11.5 kΩ (red markers in Fig. 6d). The case
of Rμ= 11.5 kΩ, which corresponds to the maximum power
transmission and the most critical behavior of the network (see
Fig. 5 and Supplementary Fig. 1, respectively), provides a bit
worse classification accuracy compared to Rμ= 18 kΩ. Also, the
classification accuracy obtained using the FitzHugh-Nagumo
reservoir is comparable to other approaches reported in the lit-
erature for this dataset, namely, Multilayer perceptron (MLP),
Support Vector Machine (SVM), k-Nearest Neighbors (kNN),
Decision Tree (DT) classification models from31 and Bayesian
network (BNC) and Decision Tree (DT) from34 (see Fig. 6c).

Next, we compare the average classification accuracy for
reservoirs with different mean coupling resistances and different
sizes of the readout input layer. The latter has been made by
either reducing the number of samples from every output
oscillator (50 and 20 equidistantly sampled voltages instead of the
original 100 samples), or reducing the number of output
oscillators (10 and 4 oscillators instead of the original 20 output
oscillators). The results are summarized in Fig. 6d. It is clearly
seen that the highest classification accuracy is achieved for
resistances that correspond to criticality of the reservoir. Also, the
non-critical regimes (60 kΩ and 5 kΩ) significantly suffer from
the shrinkage of the readout: The classification accuracy drops
dramatically, whereas the critically initialized reservoirs maintain
relatively high classification accuracy despite the readout
shrinkage.

Finally, we would like to highlight another favourable property
of the critical networks, namely that the reservoir computer
setups based on critical networks possess better training
capabilities compared to the ones based on the non-critical
networks not only in terms of accuracy, but also in terms of
training time/effort and convergence (see Fig. 7 that summarizes
the training of the readout for reservoirs with different baseline

coupling strengths). In particular, from Fig. 7a, it is visible that for
networks close to criticality (i.e., Rμ= 11.5 kΩ, 14 kΩ, 18 kΩ, and
23.5 kΩ), the classification accuracy climbs rather fast during the
first dozens of training epochs, and then the improvement is
marginal. In contrast, the training is considerably slower for the
data obtained from the supercritical network (Rμ= 5 kΩ) and
dramatically slower for the non-critical network (Rμ= 60 kΩ).
Qualitatively the same picture holds for the shrunk readouts. To
quantify the steepness of the training curve in the case when every
output node is sampled 20 times, we calculate the number of
epochs needed for every network to reach a threshold of 90% of
their maximal accuracy over the course of a 1000-epoch-long
training process (Fig. 7b). These numbers, ranging from few
hundreds epochs (for Rμ= 11.5 kΩ, 14 kΩ, 18 kΩ) to three, four
and even eight hundreds epochs for (Rμ= 23.5 kΩ, 5 kΩ, and
60 kΩ, respectively), are in a good correlation with the distance to
criticality (see Supplementary Figure 1) for these networks.

Discussion
In this work, we have presented an analog bio-inspired reservoir
computer. Our key findings can be summarized as follows: (i) A
wide phase transition can be observed in an oscillator network
consisting of coupled FitzHugh-Nagumo oscillators when varying
the baseline coupling strength; (ii) operating the network in the
critical regime leads to the highest classification accuracy and the
shortest training time; (iii) spatial invariance can be induced by a
small world network topology and a suitable connectivity; (iv)
coupled FitzHugh-Nagumo oscillators are robust w.r.t. parameter
variations due to the wide phase transition, which (v) carries over
to the classification accuracy; and (vi) criticality can be char-
acterized from an electrical perspective and is tightly related to
information/power flow between oscillators.

Many works in literature explore the computational capabilities
of reservoirs operating at the edge of chaos. While the results of
such works may seem similar to ours, we would like to stress that
we are dealing with a different type of network. Usually, a dis-
ordered state is associated with chaos61–65. In our work, a dis-
ordered state is associated with a very weak coupling, such that
the network is effectively disconnected. Research, dealing with
networks at the edge of chaos, attempts to find the control
parameter value, which brings the network close to a chaotic
state. The aim is to enhance the nonlinear projection performed
by the network by making it behave in a deterministic but
complicated way. A network is said to have a high computational
capability if small changes in the input leads to noticeable changes
in the output that are not random/chaotic64,65. Such analysis is
not directly applicable to our network, because there is no control
parameter value that can make our network behave in a chaotic

Fig. 5 Average dissipated power as a function of the baseline coupling strength and the network size. a The nominal input is used to excite the network.
b The bean input is used to excite the network. In both plots, the blue shaded area denotes the phase transition regime, which can be seen in Fig. 2. For
comparison purposes, the average dissipated power has been normalized to its maximum.
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Fig. 6 A comparison of the classification accuracy. a Summary of the 10-fold cross-validation for the critical network with 18 kΩ baseline resistance. The
classification accuracy is consistent over all 10 folds with the average accuracy of 90.75%. b Confusion matrix for the case of Rμ= 18 kΩ. c A benchmark of
the proposed FitzHugh-Nagumo reservoir (FHN RC) against other classification methods available in the literature for the same dataset. Red point
corresponds to the average classification accuracy over 10 folds for Rμ= 18 kΩ (see a and b). Green points correpond to the classification using Bayesian
network (BNC) and Decision Tree (DT) models from34. Blue points correspond to the classification accuracies using Multilayer perceptron (MLP), Support
Vector Machine (SVM), k-Nearest Neighbours (kNN), Decision Tree (DT) classification models from31. d A summary of the drop of the classification
accuracy due to the shrinkage of the readout. It is seen that the critical networks are less sensitive to the reduction of the readout layer compared to those
that are initialized far away from criticality. Different colors corrrespond to different sizes and configurations of the readout layer (see the legend). In all
figures, the error bars indicate the standard deviation over 10 folds.

Fig. 7 The course of the readout training shows a good correlation with the distance to criticality. a Classification accuracy during the first 400 epochs
(out of 1000) for different baseline coupling strengths. The semitransparent lines correspond to partilcular folds 1--10, whilst the solid lines indicate mean
classification accuracies over all 10 folds. A visualization of the classification accuracies and loss function values for the entire training can be found in
Supplementary Figures 2–7. b A comparison of the number of epochs needed for different networks to reach 90% of their maximal classification accuracy
over the course of a 1000-epoch-long training for the case of the shrunk readout (20 output nodes sampled 20 times). Error bars depict standard deviation
over 10 folds.
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manner. Furthermore, we would like to point out that most of the
aforementioned works deal with discrete systems, which are more
accessible from a mathematical point of view. Thus, many ana-
lysis methods from preexisting works on criticality in discrete
networks are difficult to transfer to an analog network such as
ours. The methods introduced in this work, on the other hand,
are applicable to analog networks and may be helpful for ana-
lyzing aspiring analog technologies.

While the results of this work hint towards the statement that
criticality enhances task performance in analog reservoirs, it is
also important to stress that we have only measured the com-
putational compatibility using classification tasks. As pointed out
by some researchers12,66, criticality is only beneficial in certain
tasks. In a different setting with different tasks, criticality may
impede the performance of the reservoir computer. This is
something that we plan to explore in future research. One of the
main goals of this work was to show that criticality enhances the
performance of reservoir computers on the specific example of
classification tasks, with few works drawing a direct correlation
between criticality and classification accuracy13.

In a future work, we aim to replace the resistive inter-oscillator
coupling with memristive coupling, similar to what has been
recently done67,68. The goal is to introduce a sort of (synaptic)
plasticity into the network, to autonomously drive the reservoir
into a critical state. In this case, one may speak of self-organized
criticality69. This will, however, require finding local update rules,
both in space and time. Up to this point, most update rules are
difficult to implement in analog hardware, as they require global
information regarding the network activity and/or a way of
storing information, e.g., via digital circuitry12,70. This work can
be understood as a pre-investigation towards deriving such rules
for analog neural networks, since one must first understand how
criticality emerges and how it can be characterized.

Methods
Input Preparation. This subsection explains the mapping of
dataset attributes onto analog pulse trains. Consider a data matrix
M 2 Rp ´ k, where each row corresponds to an attribute, such as
color or size, while each column corresponds to a data sample.
Evidently, p denotes the number of attributes of our dataset, while
k denotes the number of samples. Our goal is to map the attri-
butes of every data sample onto a set of pulse trains. Thus, every
column of M should be represented by a set of pulse trains and
supplied to a subset of oscillators within the reservoir. Assuming
the entries mμ,ν of M are already given as real numbers, we start
out by normalizingM, so every attribute is described by a number
in the interval [0, 1]. This can be achieved by dividing ever row of
M by the maximal entry of the corresponding row. The result is a
normalized matrix A= [a1, a2,…, ak] with the column vectors aν
comprising the entries aμ,ν. Every entry can be mapped onto a
corresponding pulse train by using the mapping relation depicted
in Fig. 8. Given some column aν representing the different
attributes of the ν-th data sample, the first step is to map the
entries of aν onto spike rates rμ,ν, where the mapping relation is

given by

rðaμ;νÞ ¼ rmin þ aμ;ν½rmax � rmin�; ð1Þ
where rmin and rmax denote the minimal and maximal pulse train
rates; their values are given in Table 1. Next, the spike rate rμ,ν is
forwarded to a signal generator producing the current signal
j0,μ(t) with the function

jðrμ;νÞ ¼J0 ∑
1

ν¼0
rect

t � νTμ;ν

Tp

 !
; with rμ;νTμ;ν ¼ 1 and

rectðxÞ ¼ 1; 0< x < 1

0; otherwise

�
;

ð2Þ
where Tp denotes the width of every pulse within the pulse train.
Thus, the magnitude of the μ-th attribute is encoded onto the
pulse repetition rate of the μ-th pulse train current signal j0,μ(t).

Readout layer and classification. To perform the drybeans
classification task, the spike-coded signal generated from the
entries of the drybeans dataset31 is fed into the 20 input nodes of
the FHN-network. The instanteneous voltages ui(t), i= 1,…,r,
r= 20 at times t= T− jΔt, j= 1,…, q, q= 100, T= 60 μs, Δt=
0.2 μs are read out from the reservoir’s output nodes. These
voltages form vectors xi 2 Rq; i ¼ 1; ¼ ; r (see Fig. 9). The time
window of 20 μs corresponds to approximately 10 oscillation
periods of the considered FHN oscillators. In total N= 13611 sets
of vectors xi 2 Rq; i ¼ 1; ¼ ; r and the respective labels yGT∈ {0,
1}7 are generated. All components of 7-dimensional vectors yGT
are zeros except for a single component. The position of the non-
zero component defines the corresponding bean-class of the
dataset entry (i.e., Seker, Barbunya, Bombay, Cali, Horoz, Sira, or
Dermason).

The readout is the ANN consisting of two fully connected feed-
forward layers of artificial neurons: the input layer which receives
the signal x ¼ ½xT1 ; ¼ ; xr

T�T; r ¼ 20 from the reservoir, and the
output layer y∈ [0, 1]7, with the softmax activation function,
containing 7 nodes which represent probabilities of a bean to
belong to a particular bean class. Collecting the weights of the
ANN into matrix W, we get

y ¼softmax Wxð Þ with softmaxðyÞ

¼ ey1

∑7
j¼1 e

yj
; ¼ ;

ey7

∑7
j¼1 e

yj

 !
:

The categorical cross entropy loss between the ground truth
yGT and y for all training samples is used to optimize the weight
matrix W. The stochastic gradient descent optimization is
implemented in Python using the Keras API60 for 1000 epochs
using the whole training set as a single batch (with all other Keras
parameters kept default). Smaller batch sizes (1000 and 256
training samples) were also probed, however, the resulting
classification accuracy appeared to be slightly worse compared
to the single-batch approach. All generated samples were split
into the training and validation sets following the 10-fold cross-

Fig. 8 Signal flow diagram depicting the preparation of input signals. Attributes aμν of the ν-th data sample are mapped to a spike rate rμ,ν via a function
r(aμ,ν). The resulting spike rate rμ,ν serves as the input to a signal generator j(rμ,ν) producing a pulse train with the corresponding pulse repetition rate.
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validation procedure: out of 10 fixed subsets of generated
samples, 9 subsets were used for the training and 1 subset is
used for the validation. Then we repeat the training procedure 10
times taking different validation sets and average the resulting
classification accuracy over all 10 folds. Such an approach allows
us to be ensured about the consistency of the classification
accuracy over the entire dataset, and for a comparison with other
classification approaches which use 10-fold cross validation for
the same dataset31,34 (see Fig. 6a and c, respectively).

The generation of vectors x for the study of the classification
accuracy under the readout shrinkage is performed in a similar
way. We test 4 different scenarios: 2 times less samples per node,
5 times less samples per node, 2 times less number of output
nodes in the reservoir, and 5 times less number of output nodes in
the reservoir compared to the original readout. In the first two
cases, we use the same 20 μs-long time interval as in the initial
training, however, the number of samples is q= 50 and q= 20,
respectively. These correspond to the sampling intervals of
Δt= 0.4 μs and Δt= 1 μs. In case of the reduction of the number
of output nodes, 10 and 4 random oscillators were chosen, and
q= 100 equidistant instantaneous voltages were sampled from
the 20 μs-long time interval (as described at the beginning of this
subsection).

Electrical Network Model. The FitzHugh-Nagumo oscillator is
both a technologically realizable and biologically plausible oscil-
lator. Originally, the oscillator has been described by a unitless set
of differential equations19. Later on, Fitzhugh, Arimoto, and
Yoshizawa provided an equivalent circuit20, which inspired the
circuit depicted in Fig. 1c. Its dynamic behavior can be captured
by the following set of differential equations:

C
du
dt

¼j0 � iGðuÞ þ iþ ic; L
di
dt

¼ e0 � R0i� u;

iGðuÞ ¼G0
u3

3U2
0

� u

� �
; uð0Þ ¼ u0; ið0Þ ¼ i0; R0;C; L > 0:

ð3Þ
Here, u (u0) and i (i0) denote the voltage across the capacitor

(initial) with C > 0 and the current flowing through the inductor
(initial) with L > 0, respectively. Furthermore, e0 and j0 denote an
external input voltage and current, respectively. The current iG(u)
represents the nonlinearity of the oscillator, which, in terms of
electrical components, is given by a nonlinear resistor with a
cubic (I, u)-curve. The nonlinearity has been formerly realized by
a tunnel diode20 and more recently by a combination of a

negative impedance converter (NIC) and a diode clipper45,46.
Finally, the current ic denotes the coupling current at the external
coupling port, see the open port in Fig. 1c.

A vector-valued electrical model presents a compact way of
representing coupled oscillator networks. To achieve this
representation, we start by considering of a network consisting
of n uncoupled FNOs, whose dynamic behavior can be described
by vector-valued differential equations based on (3):

C du
dt ¼ j0 � iGðuÞ þ iþ ic; L di

dt ¼ e0 � R0i� u;

uð0Þ ¼ u0; ið0Þ ¼ i0; R0 ≥ 0; C; L> 0:
ð4Þ

For the sake of simplicity, we chose C= C1, L= L1, and
R0= R01, where 1 denotes the unit matrix, which corresponds to
the unnecessary assumption of identical oscillators. The dynami-
cal variables of the ν-th oscillator are comprised into the vectors
u ¼ ½u1; u2; ¼ ; uν ; ¼ ; uN �T and i ¼ ½i1; i2; ¼ ; iν; ¼ ; iN �T,
respectively. As such, the function iG(u) can be understood as
an element-wise evaluated version of the function iG(u) in (3).
Lastly, we define the vector of input quantities
e0 ¼ e01; j0 ¼ ½j0;1; j0;2; ¼ ; j0;ν; ¼ ; j0;n�T, and

ic ¼ ½ic;1; ic;2; ¼ ; ic;ν ; ¼ ; ic;n�T, where 1 denotes a vector of ones.
Let Rμν be the coupling resistor interconnecting the μ-th and ν-

th oscillator (μ < ν) and Gμν= 1/Rμν be its inverse value, which we
term the coupling strength, then the voltage and current across
every coupling resistor are given by:

vμν ¼ uμ � uν and jμν ¼ Gμνvμν ; with ic;μ ¼ ∑
n

μ>ν
jνμ � ∑

n

μ<ν
jμν :

ð5Þ
To compactly write this relation, we define the incidence

matrix N 2 Rn´ nk of the underlying interconnection graph,
where n is the number of oscillators and nk is the number of
resistive connections. For every resistive connection Rμν, the
matrix contains a corresponding column, whose μ-th and ν-th
rows have the entries 1 and −1, respectively, otherwise all other
entries in the column are zero. With this definition, we are now
able to compactly rewrite (5) as

v ¼NTu; j ¼ Gdv; with ic ¼ �Nj ) ic ¼ �Wcu; with

Wc ¼WT
c ¼ NGdN

T;

ð6Þ
where v and i are vectors, whose entries are the conductances
voltages vμν and current jμν, respectively, sorted first according to
μ and then according to ν. The matrix Gd is a diagonal matrix

Fig. 9 Readout and classification. Equidistant samples of instantaneous voltages ui(t), i= 1,…r of the output oscillators (red dots) are fed into the two-
layered fully connected feedforward ANN, forming the input layer vector x ¼ ½xT1 ; ¼ ; xr

T�T, matrix of weights W, and the output layer vector y∈ [0, 1]7.
The red shaded area denotes the time window from which training samples are extracted for training purposes.
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with the diagonal entries Gμν with the same sorting as the two
aforementioned vectors. Moreover, the matrix Wc can be
understood as the coupling network’s weighted Laplacian, with
the unit of a conductance, where the weights are given by the
conductances Gμν. The relation relating ic with u constitutes that
of a so-called multi-port resistor71.

Combining the vector-valued differential equation with the
compact relation (6), we obtain the vector-valued circuit depicted
at the left of Fig. 10. In the following, we make use of this circuit
to derive a wave digital model with which we can emulate an
arbitrarily large network of resistively coupled FNOs.

Wave digital emulation. The wave digital concept is a powerful
tool for emulating electrical circuits. The idea is to map a given
reference circuit onto a signal flow diagram with wave quantities,
the so-called wave flow diagram. An iterative evaluation of the
signal flow diagram, which we refer to as the wave digital algo-
rithm, allows for a real-time emulation of the electrical circuit.
Furthermore, the compact representation of a wave flow diagram
is referred to as the wave digital model, whose ports have a 1-to-1
correspondence with those of the reference circuit, see, for
example, the right side of Fig. 10. To obtain this representation,
we start by decomposing the reference circuit into a set of one-
and multi-ports, see the left side of Fig. 10. The current and
voltage at every port are related by some constitutive relation that
is dependent on the electrical component at the same port. Every
one of these components can be translated into the wave digital
domain by applying the bijective mapping relation:

a ¼ uþ Ri; b ¼ u� Ri; R> 0; a 2 Rp ´ 1; b 2 Rp ´ 1;

R;G 2 Rp ´ p:

ð7Þ

Here, a and b denote the vector of incident waves and reflected
wave, respectively. Moreover, R is a diagonal positive-definite
matrix, the so-called port resistance matrix; certain choices of R
can greatly simplify the resulting wave flow diagram. Note that
differential constitutive relationships, for example those of
capacitors and inductors, must first be numerically integrated.
In this work, we make use of the trapezoidal rule. For an overview
of how different electrical components are translated to wave
digital structures, the interested reader is referred to52.

Now, we translate the circuit on the right side of Fig. 10 into
the wave digital domain. The capacitor (inductor) translates to a

delay element (with sign inversion) with the port resistance(s)

RC ¼ T
2
C�1 and RL ¼

2
T
L; ð8Þ

where T denotes the sampling period of the wave digital
algorithm. The voltage source with the internal resistance R0

translates to a wave source supplying the wave ae=−e0. The
multi-port resistor Wc representing the coupling network
translates to a scattering matrix with

Sc ¼½1þWcRc��1½1�WcRc� and

Rc ¼ R�1
j þ ½RL þ R0��1

h i�1
:

ð9Þ

The series connection (parallel connection) translates to a so-
called series adaptor (parallel adaptor), depicted as square boxes
on the right side of Fig. 10. Finally, the current source, with the
nonlinear internal resistance iG(u), is treated like an ideal voltage-
controlled current source, such that it translates to the reflective
wave source supplying the wave aj.

In a final note, we would like to discuss the topic of directed
delay-free loops in our wave flow diagram. The wave flow
diagram, being a directed signal flow diagram, can sometimes
contain directed delay-free loops. The latter correspond to
implicit relationships that must be resolved, as the wave flow
diagram can otherwise not be evaluated. Such loops can be
eliminated in two different ways, namely by using reflection-free
ports or iteration methods. The former means that the reflected
wave at the corresponding port is not dependent on its incident
wave52. The latter is a method, where a missing wave is
approximated by iteratively evaluating the part of the wave flow
diagram, where the wave appears72. Our wave digital algorithm
makes use of both of these techniques. In the right part of Fig. 10
the parallel adaptor port directed towards the scattering matrix Sc
and the series adaptor port directed towards the parallel adaptor
are both chosen to be reflection-free, denoted by the T-shaped
symbol, as this eliminates delay-free loops that emerge, when
interconnecting these wave digital structures. Furthermore, we
make use of a fixed-point iteration to resolve the implicit
relationship at the left port of the parallel adaptor, given by:

aj ¼ 2Rj½ j0 � iGðuÞ�; with u ¼ ajþbj
2 : ð10Þ

The implicitness of this relation is caused by the dependency of
aj on u.

Average dissipated power. The average dissipated power is a
measure of how much power is exchanged through the resistive

Fig. 10 Electrical and wave digital model of a FitzHugh-Nagumo oscillator network. a Vector-valued circuit representing a network of n coupled
FitzHugh-Nagumo oscillators. The coupling is represented by the multiport conductance Wc. The current source j0 is used as an excitation source in order
to supply pulse trains to the oscillators. b Wave digital model of the reference circuit in a. The wave digital model and the reference circuit have a 1-to-1
correspondence. The current source j0 translates to a reflective wave source. The ideal voltage source e0 translates to a non-reflective wave source. Both
the capacitor and inductor translate to delay elements. The multiport conductance translates to a scattering matrix. Lastly, the series and parallel
interconnection translate to a series and parallel adaptor, respectively.
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coupling network over all times. In other words, it is a measure of
how much communication is taking place between the oscillators
averaged over a large time frame. To calculate this quantity, we
start by calculating the instantaneous power pc(t) of resistive
coupling network:

pc ¼ vTj ¼ �uTic ¼ uTWcu: ð11Þ
Considering that we only have access to the discrete time

points tk= t0+ kT, where t0 is a reference time and T is the wave
digital algorithm’s sampling period, the average dissipated power
can be calculated by averaging the instantaneous power over all
discrete time instants:

�pc ¼
1
K

∑
K�1

k¼0
pcðtkÞ; ð12Þ

where K is the number of sampling points in the wave digital
emulation. However, it may also be beneficial to consider the
instantaneous power pc(t) over single resistive connections:

pc ¼ diagðvÞGdv ¼ diagðNTuÞGdN
Tu; with pc ¼ 1Tpc

ð13Þ
The entries of pc(t) describe the power that is dissipated by the

(μ, ν)-th resistive connection at the time instant t (the entries of pc
are sorted in the same manner as the diagonal entries of Gc).
Hence, they are a measure of how much communication takes
place between the μ-th and ν-th oscillator.

Since the FNOs communicate by exchanging voltage spikes,
which induce a current flow over the corresponding coupling
resistors, the dissipated power is tightly correlated to transfer
entropy73,74 and can serve as a simple measure of information
flow. However, while the latter requires a sophisticated statistical
analysis, the average dissipated power can easily be calculated
using knowledge about the network’s topology and the oscillator’s
voltage time series.

Data availability
The data that support the findings of this study are available on request from the
corresponding author Bakr Al Beattie.
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