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Multi-resolution partial differential equations
preserved learning framework for spatiotemporal
dynamics
Xin-Yang Liu 1, Min Zhu2, Lu Lu 2, Hao Sun 3,4 & Jian-Xun Wang 1,5,6✉

Traditional data-driven deep learning models often struggle with high training costs, error

accumulation, and poor generalizability in complex physical processes. Physics-informed

deep learning (PiDL) addresses these challenges by incorporating physical principles into the

model. Most PiDL approaches regularize training by embedding governing equations into the

loss function, yet this depends heavily on extensive hyperparameter tuning to weigh each loss

term. To this end, we propose to leverage physics prior knowledge by “baking” the discretized

governing equations into the neural network architecture via the connection between the

partial differential equations (PDE) operators and network structures, resulting in a PDE-

preserved neural network (PPNN). This method, embedding discretized PDEs through con-

volutional residual networks in a multi-resolution setting, largely improves the generalizability

and long-term prediction accuracy, outperforming conventional black-box models. The

effectiveness and merit of the proposed methods have been demonstrated across various

spatiotemporal dynamical systems governed by spatiotemporal PDEs, including reaction-

diffusion, Burgers’, and Navier-Stokes equations.
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Computational modeling and simulation capabilities play
an essential role in understanding, predicting, and con-
trolling various physical processes (e.g., turbulence, heat-

flow coupling, and fluid-structure interaction), which often
exhibit complex spatiotemporal dynamics. These physical phe-
nomena are usually governed by partial differential equations
(PDEs) and can be simulated by solving these PDEs numerically
based on, e.g., finite difference (FD), finite volume (FV), finite
element (FE), or spectral methods. However, predictive modeling
of complex spatiotemporal dynamics using traditional numerical
methods can be significantly challenging in many practical sce-
narios: (1) governing equations for complex systems might not be
fully known due to a lack of complete understanding of the
underlying physics, for which a first-principled numerical solver
cannot be built; (2) conventional numerical simulations are
usually time-consuming, making it infeasible for many applica-
tions that require many repeated model queries, e.g., optimization
design, inverse problems, and uncertainty quantification (UQ),
attracting increasing attention in scientific discovery and engi-
neering practice.

Recent advances in scientific machine learning (SciML) and
ever-growing data availability open up new possibilities to tackle
these challenges. In the past few years, various deep neural net-
works (DNNs) have been designed to learn the spatiotemporal
dynamics in latent spaces enabled by proper orthogonal decom-
position (POD)1–4 or convolutional encoding-decoding
operations5–8. In particular, fast neural simulators based on
graph neural networks (GNN) have been proposed and demon-
strated to predict spatiotemporal physics on irregular domains
with unstructured meshes9,10. Although showing good promise,
most of these works are purely data-driven and black-box in
nature, which rely on “big data” and may have poor general-
izability, particularly in out-of-sample regimes in the parameter
space. As a more promising strategy, baking physics prior
knowledge (e.g., conservation laws, governing equations, and
constraints) into deep learning is believed to be very effective to
improve its sample efficiency and generalizability11, here referred
to as physics-informed deep learning (PiDL). An impressive
contribution in this direction is physics-informed neural net-
works (PINNs)12, where well-posed PDE information is leveraged
to enable deep learning in data-sparse regimes. The general idea
of PINNs is to learn (or solve) the PDE solutions with DNNs,
where the loss functions are formulated as a combination of the
data mismatch and residuals of known PDEs, unifying forward
and inverse problems within the same DNN optimization fra-
mework. The merits of PINNs have been demonstrated over
various scientific applications, including fast surrogate/meta
modeling13–15, parameter/field inversion16–19, and solving high-
dimensional PDEs20,21, to name a few. Due to the scalability
challenges of the pointwise fully-connected PINN formulation to
learn continuous functions22–24 or operators25–28, many remedies
and improvements in terms of training and convergence have
been proposed29–31. In particular, there is a growing trend in
developing field-to-field discrete PINNs by leveraging convolu-
tion operations and numerical discretizations, which have been
demonstrated to be more efficient in spatiotemporal learning32,33.
For example, convolution neural networks (CNN) or graph
convolution networks (GCN) were built to approximate the dis-
crete PDE solutions, where the PDE residuals can be formulated
in either strong or weak forms by finite-difference34–36, finite
volume37, or finite element methods38–42. Moreover, recurrent
network formulation informed by discretized PDEs have been
developed for spatiotemporal dynamic control using model-based
reinforcement learning43.

In the realm of PINN framework, the term “physics-informed"
generally denotes the incorporation of PDE residuals into the loss

or likelihood functions to guide or constrain DNN training.
Despite this development, the question of how to effectively use
physics-inductive bias—i.e., (partially) known governing equa-
tions—to inform the learning architecture design remains an
intriguing, relatively unexplored area. The primary focus of this
paper is to address this issue. Recent studies have revealed the
deep-rooted relationship between neural network structures and
ordinal/partial differential equations (ODEs/PDEs)44–49. For
example, Lu et al.45 bridged deep convolutional network archi-
tectures and numerical differential equations. Chen et al.50

showed that the residual networks (ResNets)51 can be interpreted
as the explicit Euler discretization of an ODE, and ODEs can be
used to formulate the continuous residual connection with infi-
nite depths, known as the NeuralODE52. Motivated by differential
equations, novel deep learning architectures have been recently
developed in the computer science community, e.g., new con-
volutional ResNets guided by parabolic and hyperbolic PDEs47,
GRAND as a graph network motivated by diffusion equations48,
and PDE-GCN motivated by hyperbolic PDEs to improve over-
smooth issues in deep graph learning49. However, these studies
mainly aimed to develop generic DNN architectures with some
desired features by utilizing specific properties of certain PDEs
(e.g., diffusion, dispersion, etc.), and the designed neural networks
are not necessarily used to learn the physical processes governed
by those PDEs. An attempt was made by Shi et al.53 to learn PDE-
governed dynamics by limiting trainable parameters of CNN
using finite difference operators. Despite being a novel attempt,
the approach is still purely data-driven without effectively uti-
lizing governing PDEs.

Therefore, this work explores PiDL through learning archi-
tecture design, inspired by the broader concept of differentiable
programming (∂P) - extending DNNs to more general computer
programs that can be trained in a similar fashion to deep learning
models54. In general, a ∂P model is formulated by marrying
DNNs with a fully differentiable physics-based solver, and thus
the gradients can be back-propagated through the entire hybrid
neural solver based on automatic differentiation (AD) or discrete
adjoint methods. Relevant works include universal differential
equations (UDE)55, NeuralPDE56, and others, where DNNs are
formulated within a differentiable PDE solver for physics-based
modeling. In particular, this idea has been recently explored in
predictive modeling of rigid body dynamics57,58, epidemic
dynamics59, and fluid dynamics60–62. These studies imply great
promise of incorporating physics-induced prior (i.e., PDE) into
DNN architectures.

In this paper, we present a creative approach to designing
distinctive learning architectures for predicting spatiotemporal
dynamics, where the governing PDEs are preserved as convolu-
tion operations and residual connections within the network
architecture. This is in sharp contrast to prior PiDL work where
the physical laws were enforced as soft constraints within the loss
functions, supported by an comprehensive comparision between
the proposed method and physics-informed variants of multiple
state-of-the-art neural operators. Specifically, we develop an auto-
regressive neural solver based on a convolutional ResNet frame-
work, where the residual connections are constructed by preser-
ving the PDE operators in governing equations, which are
(partially) known a priori, discretized on low-resolution grids.
Meanwhile, encoding-decoding convolution operations with
trainable filters enable high-resolution state predictions on fine
grids. Compared to classic ResNets with black-box residual
connections, the proposed PPNN is expected to be superior in
terms of both training efficiency and out-of-sample general-
izability for, e.g., unseen boundary conditions and parameters,
and extrapolating in time. Conceptually, the proposed framework
is similar to using neural networks for closure modeling of classic
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numerical solvers, which has been explored previously. However,
several distinct features make our methodology more general that
extends substantially beyond prior studies on merging machine
learning with numerical solvers63–65. Our work is not focused on
simply coupling a neural network with a numerical solver or
training it to learn specific closures. Instead, the proposed fra-
mework integrates (partially or wholly known) physical laws,
expressed as PDE operators, directly into the neural networks.
This leads to a creative neural architecture design, reflecting a
unique design strategy that leverages the profound connection
between neural network architecture components and ODEs/
PDEs. The differentiability brought by representing numerical
operators with neural network components makes an end-to-end
time sequence training possible, which distincts the proposed
method from closure model learning. This strategy offers a fresh
perspective on incorporating physical knowledge into neural
network design, underscoring that such integration can enhance
the model’s performance in predicting complex spatiotemporal
dynamics. When compared with the other approach of leveraging
physics priors into neural network training: the “physics-
informed" methods, our proposed PPNN does show significant
merit in terms of cost, generalizability and long-term prediction
accuracy. The contributions of this work are summarized as
follows: (i) a framework for physics-inspired learning architecture
design is presented, where the PDE structures are preserved by
the convolution filters and residual connection; (ii) multi-
resolution information passing through network layers is pro-
posed to improve long-term model rollout predictions over large
time steps; (iii) the superiority of the proposed PPNN is
demonstrated for PDE operator learning in terms of training
complexity, extrapolability, and generalizability in comparison
with the baseline black-box models, using a series of compre-
hensive numerical experiments on spatiotemporal dynamics
governed by various parametric unsteady PDEs, including
reaction-diffusion equations, Burgers’ equations, and unsteady
Navier-Stokes equations.

Results and discussion
Learning spatiotemporal dynamics governed by PDEs. We
consider a multi-dimensional spatiotemporal system of u(x, t; λ)
governed by a set of nonlinear coupled PDEs parameterized by
λ 2 Rd , which is a d− dimensional parameter vector, while x and
t are spatial and temporal coordinates, respectively. Our goal is to
develop a data-driven neural solver for rapid predictions of spa-
tiotemporal dynamics given different parameters λ. The neural
solver is formulated as a next-step DNN model by learning the
dynamic transitions from the current step t to the next time step
t+ Δt (Δt is the time step).

This study focuses on the learning architecture design for
improving the robustness, stability, and generalizability of data-
driven next-step predicting models, which commonly suffer from
considerable error accumulations due to the auto-regressive
formulation and fails to operate in a long-span model rollout. In
contrast to existing models which are black-box, we propose a
PDE-preserved neural network (PPNN) architecture inspired by
the relationship between network structures and PDEs, by
hypothesizing that the predictive performance can be significantly
improved if the network is constructed by preserving (partially)
known governing PDEs of the spatiotemporal dynamics to be
learned. Specifically, the known portion of the governing PDEs in
discrete forms are preserved in residual connection blocks. As
shown in Fig. 1a, the PPNN architecture features a residual
connection which consists of two parts: a trainable network and a
PDE preserving network, where the right hand side (RHS) of the
governing PDE, discretized on finite difference grid, is

represented by a convolution neural network. The weights of
the PDE preserved convolutional residual component are
determined by the discretization scheme and remain constant
during training.

However, in practice, neural solvers are expected to roll out
much faster than numerical solvers, and the time step Δt would
be orders of magnitude larger than that used in conventional
numerical solvers, which may lead to catastrophic stability issues
if naively embedding the discretized PDE into the neural network.
To this end, we implement a multi-resolution PPNN based on the
convolutional (conv) ResNet backbone (shown in Fig. 1b), where
PDE-preserving blocks work on a coarse grid to enable stable
model rollout with large evolving steps. This is achieved by using
the bilinear down-sampling and bicubic up-sampling algorithms
to auto-encode the PDE-preserved hidden feature in a low-
resolution space, which is then fed into the main residual
connection in the original high-resolution space.

Together with the trainable block, which consists of decoding-
encoding convResNet blocks defined on the fine mesh, PPNN
enables predictions at a high resolution. Moreover, the network is
conditioned on physical parameters λ, enabling fast parametric
inference and generalizing over the high-dimensional parameter
space. (More details are discussed in the Methods section.)

In this section, we evaluate the proposed PDE structure-
preserved neural network (PPNN) on three nonlinear systems
with spatiotemporal dynamics, where the governing PDEs are
known or partially-known a priori. Specifically, the spatiotem-
poral dynamics governed by FitzHugh-Nagumo reaction diffu-
sion (RD) equations, Burgers’ equations, and incompressible
Navier-Stokes (NS) equations with varying parameters λ (e.g., IC,
diffusion coefficients, Reynolds number, etc.) in 2D domains are
studied. In particular, we will study the scenarios where either
fully-known or incomplete/inaccurate governing PDEs are
preserved. To demonstrate the merit of preserving the discrete
PDE structure in ConvResNet, the proposed PPNN is compared
with the corresponding black-box ConvResNet next-step model
as a baseline, which is a CNN variant of the MeshGraphNet9 (see
section Next-step prediction models based on convolutional
ResNets). For a fair comparison, the network architecture of the
trainable portion of the PPNN is the same as the black-box
baseline model. Moreover, all models are compared on the same
sets of training data in each test case. The generalizability,
robustness, training and testing efficiency of the PPNN are
investigated in comparison with its corresponding blackbox
baseline. It is noted that the novelty of this work lies not in
exploring varied methods for learning closures for traditional
PDE solvers but in the inventive integration of known physical
laws into the architecture of convolutional residual neural
networks. We, therefore, consider it critical to compare the
PPNN with its black-box counterpart, which learn from data
without explicit integration of the underlying physics. This
comparison enables us to highlight the unique benefits of
integrating known physics into deep learning models, an area
that has, to date, received limited attention. Given the prevalence
of black-box neural networks in data-driven surrogate modeling
where the governing PDEs are often known or partially known,
this comparison is both relevant and fair. We believe that this
provides a valuable perspective and a substantial contribution to
the field. Moreover, it is also worth noting that, PPNN is not
constrained to any specific DNN architectures. Rather, we
demonstrate that it serves as a versatile framework that can be
synergistically combined with a variety of DNN architectures
such as U-Net66 – widely recognized for its multi-scale structure,
and Vision Transformer (ViT)67, which has become the backbone
for most computer vision tasks. (see section PPNN as a general
framework for embedding known physics). Moreover, the
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relationship between the PDE-preserving portion of PPNN and
numerical solvers is discussed. Note that we use the same network
setting, i.e., same network structure, hyperparameters and
training epochs, for all the test cases (except for the NS system,
which has slight modifications adapting to three state variables).
More details about the neural network settings can be found in
Section Supplementary Note 3 in supplementary information.

All the DNN predictions are evaluated against the high-
resolution fully-converged numerical solutions as the reference
using a full-field error metric ϵt defined at time step t as,

ϵt ¼
1
N

∑
N

i¼1

f θðût�1; λijeθÞ þ ût�1 � utðλiÞ
��� ���

2

utðλiÞ
�� ��

2

; ð1Þ

where N indicates the number of the testing physical parameters
λi, ut(λi) is the reference solution at time step t corresponding to
the physical parameter λi, fθ represents the trained neural network
function with optimized weights eθ, and ût�1 represents the state
predicted by the model at previous time step t− 1,

ût ¼ f θðût�1; λijθÞ þ ût�1; t 2 ½2; n�
û1 ¼ f θðu0ðλiÞ; λijθÞ þ u0ðλiÞ

ð2Þ

where n is the number of testing steps, u0(λi) represents the initial
condition given λi. For brevity, numerical details for each case are
given in Section Supplementary Note 4 of the supplementary
information.

When the governing PDEs are fully known. We herein consider
three well-known spatiotemporal PDEs (e.g., the FitzHugh-
Nagumo reaction diffusion equations, the Viscous Burgers’
equation and the Naiver-Stokes equations) when the closed-form
equations are fully known.

FitzHugh-Nagumo reaction diffusion equations. We first consider
a spatiotemporal dynamic system governed by the FitzHugh-
Nagumo equations with periodic BCs, which is a generic model
for excitable media. The main part of the FitzHugh-Nagumo
model is reaction-diffusion (RD) equations,

∂u
∂t

¼ γ∇2uþ RðuÞ; t 2 ½0;T�; ð3Þ

where u ¼ uðx; y; tÞ; vðx; y; tÞ� �T 2 R2 are two interactive com-
ponents, γ is the diffusion coefficient, T= 0.2s is the time length

we simulated, and RðuÞ ¼ Ruðu; vÞ;Rvðu; vÞ
� �T

are source terms
for the reaction,

Ruðu; vÞ ¼ u� u3 � v þ α;

Rvðu; vÞ ¼ βðu� vÞ; ð4Þ

where α= 0.01 represents the external stimulus and β= 0.25 is
the reaction coefficient. The initial condition (IC) u0 is a random
field and generated by randomly sampling from a normal dis-
tribution,

uðx; y; 0Þ; vðx; y; 0Þ � N ð0; 1Þ; ð5Þ
which is then linearly scaled to [0.1, 1.1]. Given different ICs and
diffusion coefficients γ, varying dynamic spatial patterns of
neuron activities can be simulated. Here, the next-step neural
solvers are trained to learn and used to predict the spatiotemporal
dynamics of varying modeling parameters (i.e., ICs and diffusion
coefficients). Namely, we attempt to build a surrogate model in a
very high-dimensional parameter space λ 2 Rd , where
d= 65, 537, since the dimensions for IC and diffusion coefficient
are 2562 and 1, respectively. The reference solutions are obtained
on the simulation domain (x, y)∈ [0, 6.4] × [0, 6.4], discretized
with a fine mesh of 256 × 256 grids, based on the finite difference
method.
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Fig. 1 Schematic diagram of the proposed partial differential equation (PDE)-preserved neural network (PPNN). a A schematic representation
illustrating the concept of the PPNN framework. b A detailed schematic of the ConvResNet-based PPNN, which consists of the trainable part and the PDE-
preserving part. The two portions of PPNN are combined together in a multi-resolution setting. The discretized form of the governing PDEs are embedded
into the network structure via prescribed convolutions filters and the residual connection.
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Figure 2a shows the PPNN-predicted solution snapshots of the
RD equations at four randomly selected test parameters (i.e.,
randomly generated ICs and unseen diffusion coefficients). The
prediction results of baseline black-box ConvResNet (first row)
and the proposed PPNN (second row) are compared against the
ground truth reference (third row). It can be seen that both
models agree with the reference solutions for t < 0.6T, showing
good generalizability on testing ICs and γ for a short-term model
rollout. However, the error accumulation becomes noticeable for
the black-box baseline when t > T, and the spatial patterns of the
baseline predictions significantly differ from the reference at
t= 2T, which is an expected issue for the next-step predictors. In
contrast, the results of our PPNN have an good agreement with
the reference solutions over the entire time span [0, 2T] on all
testing parameters, showing great robustness, predictability, and
generalizability in both the spatiotemporal domain and parameter
space. Predicted solutions on more testing parameters are
presented in Fig. S12.

To further examine the error propagation in time for both
models, the relative testing errors ϵt averaged over 100 randomly

selected parameters in training and testing sets are computed and
plotted in Fig. 2, where Fig. 2c shows the averaged model-rollout
error evaluated on 100 training parameters and the Fig. 2d shows
the error averaged on 100 randomly generated testing para-
meters. (Zoom in views of Fig. 2c and d can be found in Fig. 2g
and h, respectively.) The model is only trained within the range
of 1T (100Δt), and it is clearly seen that the rollout error of the
black-box model significantly grows in the extrapolation range
[T, 2T] (from 100 Δt to 200 Δt), where Δt= 200δt is the learning
step size which is 200 numerical timesteps δt. The error
accumulation becomes more severe for the unseen testing
parameters. However, our PPNN predictions maintain an
impressively low error, even when extrapolating twice the length
of the training range. Besides, the scattering of the error
ensemble is significantly reduced compared to the black-box
baseline, indicating great robustness of the PPNN for various
testing parameters.

Viscous Burgers’ equation. For the second case, we study the
spatiotemporal dynamics governed by the viscous Burgers’
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Fig. 2 Prediction comparison in the reaction-diffusion (RD) case and viscous Burgers’ case. a, b Predicted solution snapshots of u for the RD equations
(a) and the velocity magnitude ∥u∥2 for the Burgers' equations (b) at different time steps and unseen parameters, obtained by black-box ConvResNet
(baseline model, first rows), and partial differential equation preserved neural network (PPNN, our method, second rows), compared against ground truth
(high-resolution numerical simulation, third rows). λ0, λ1 are randomly selected testing (unseen) parameters in each system. c–f Relative prediction error ϵt
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equations on a 2D domain with periodic boundary conditions,

∂u
∂t

þ u � ∇u ¼ ν∇2u; t 2 ½0;T�; ð6Þ

where u ¼ uðx; y; tÞ; vðx; y; tÞ� �T 2 R2 is the velocity vector,
T= 2s is the time length we simulated, and ν represents the
viscosity. The initial condition (IC) u0 is generated according to,

u0 ¼
u0 ¼ ∑

4

i¼�4
∑
4

j¼�4
rð1Þi;j sin ix þ jy

� �þ rð2Þi;j cos ix þ jy
� �

v0 ¼ ∑
4

i¼�4
∑
4

j¼�4
rð3Þi;j sin ix þ jy

� �þ rð4Þi;j cos ix þ jy
� �

8>>><
>>>: rðkÞi;j � N ð0; 1Þ; k ¼ 1; 2; 3; 4;

ð7Þ

where x, y are spatial coordinates of grid points, and rðkÞi;j ; k 2
1; 2; 3; 4 are random variables sampled independently from a
normal distribution. The IC is normalized in the same way as
mentioned in the RD case. We attempt to learn the dynamics
given different ICs and viscosities. Similar to the RD cases, the
parameter space Rd is also high-dimensional (d= 324), as the IC
is parameterized by 4 × 92 independent random variables and the
scalar viscosity can also vary in range [0.02, 0.07]. The reference
solution is generated by solving the Burgers’ equations on the
domain of (x, y)∈ [0, 3.2]2, discretized by a fine mesh of
256 × 256 grids using finite difference method.

The velocity magnitude contours of the 2D Burgers’ equation
with different testing parameters are shown in Fig. 2b, obtained
by the black-box baseline, PPNN, and reference numerical solver,
respectively. Note that all the testing parameters are not seen
during training. (More predicted solutions on different testing
parameters are presented in Fig. S13.) Similar to the RD case,
PPNN shows a significant improvement over the black-box
baseline in terms of long-term rollout error accumulation and
generalizability on unseen ICs and viscosity ν. Due to the strong
convection effect, black-box baseline predictions deviate from the
reference very quickly, and significant discrepancies in spatial
patterns can be observed as early as t < 0.6T. In general, the black-
box baseline suffers from the poor out-of-sample generalizability
for unseen parameters, making the predictions useless. Our
PPNN significantly outperforms the black-box baseline, and its
prediction results agree with the reference for all testing samples.
Although slight prediction noises are present after a long-term
model rollout (t > 1.2T), the overall spatial patterns can be
accurately captured by the PPNN even at the last learning step
(t= 2T). The error propagation of both models is given in Fig. 2,
where the rollout errors ϵt at each time step, averaged over 100
randomly selected parameters from training and testing sets, are
plotted. Figure 2e shows the averaged model rollout error
evaluated on 100 training parameters, while Fig. 2f shows the
error averaged on 100 randomly generated parameters, which are
not used for training. Zoom in views of Fig. 2e and f can be found
in Fig. 2i and j, respectively. As both models are only trained with
the 1T (100Δt) time steps for each parameter in the training set, it
is clear that the error of the black-box model grows rapidly once
stepping into the extrapolation range [T, 2T]. The error
accumulation effect of the black-box model becomes more
obvious for those parameters which are not in the training set
due to the poor generalizability. In contrast, the error of PPNN
predictions remains surprisingly low even in the extrapolation
range for both training and testing regimes, and there is nearly no
error accumulation. In addition, the error scattering significantly
shrinks compared to that of the black-box model, indicating
significantly better accuracy, generalizability and robustness of
the PPNN compared to the black-box baseline.

Naiver-Stokes equations. The last case investigates the perfor-
mance of PPNN to learn an unsteady fluid system exhibiting
complex vortex dynamics, which is governed by the 2D para-
metric unsteady Naiver-Stokes (NS) equations:

∂u
∂t

þ u � ∇u ¼ �∇pþ ν∇2u; t 2 ½0;T�;
∇ � u ¼ 0;

ð8Þ

where u ¼ uðx; y; tÞ; vðx; y; tÞ� �T 2 R2 is the velocity vector,
pðx; y; tÞ 2 R is the pressure, and ν ¼ 1=Re represents the
kinematic viscosity (Re is the Reynolds number). The NS equa-
tions are solved in a 2D rectangular domain (x, y)∈ [0, 4] × [0, 1],
where a jet with dynamically-changed jet angle is placed at the
inlet. Namely, the inflow boundary is defined by a prescribed
velocity profile u(0, y, t),

uð0; y; tÞ ¼ uð0; y; tÞ
vð0; y; tÞ

� �
¼

exp �50 y � y0
� �2	 


sinðtÞ � exp �50 y � y0
� �2	 


2
64

3
75 ð9Þ

where y0 represents the vertical position of the center of the inlet
jet. The outflow boundary condition is set as pressure outlet with
a reference pressure of p(4, y, t)= 0. No-slip boundary conditions
are applied on the upper and lower walls. In this case, the neural
network models are expected to learn the fluid dynamics with
varying Reynolds number Re and jet locations y0. Namely, a two-
dimensional physical parameter vector λ ¼ ½Re; y0�T is con-
sidered. In training set, we use five different Re evenly distributed
in the range 2 ´ 103; 1 ´ 104

� �
and 9 different jet locations y0

uniformly selected from 0.3 to 0.7. Figure 3a–b shows the snap-
shots of velocity magnitude of the NS equations at two repre-
sentative testing parameters, which are not seen in the training
set. To be specific, λ0= [2500, 0.325]T represents a relatively low
Reynolds number Re= 2500 with the jet located at y0= 0.325,
while λ1= [8500, 0.575]T is a higher Reynolds number case
(Re ¼ 8500) with the jet located at y0= 0.325. The rollout pre-
diction results of the PPNN and baseline black-box ConvResNet
are compared with the ground truth reference. Although both
models can accurately capture the spatiotemporal dynamics at the
beginning stage (when t ≤ 0.4T), showing good predictive per-
formance for the unseen parameters for a short-term rollout, the
predictions by the black-box model are soon overwhelmed by
the noises due to the rapid error accumulation (t > T). However,
the proposed PPNN significantly outperforms the black-box
baseline as it managed to provide accurate rollout predictions
even at the last testing steps (t= 3T), which extrapolate as three
times long as the training range, indicating preserving the PDE
structure can effectively suppress the error accumulation, which is
unavoidable in most auto-regressive neural predictors. To further
investigate the error propagation in time for both models, we plot
the relative testing errors ϵt against time in Fig. 3c–d, which are
averaged over 5 randomly selected parameters in both training
(Fig. 3c) and testing sets (Fig. 3d). We can clearly see that PPNN
managed to maintain low rollout error in both training and
extrapolation ranges, in contrast to the significantly higher error
accumulation in the black-box baseline results. In particular, the
black-box model relative error visibly grows only after a short-
term model rollout and increases rapidly once it enters the
extrapolation range even for testing on the training parameter set
(Fig. 3c), and the errors are accumulated even faster for the
testing on unseen parameters (Fig. 3d). On the contrary, our
PPNN has almost no error accumulation and performs much
more consistently between the training and extrapolation ranges,
with significantly lower rollout errors. The results again demon-
strate outstanding predictive accuracy and generalizability of the
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proposed method. Besides, PPNN also shows a significantly
smaller uncertainty range, indicating great robustness among
different testing parameters.

When the governing PDEs are partially known. In real-world
applications, the underlying physics behind complex spatio-
temporal phenomena might not be fully understood, and thus
the governing equations can be incomplete, e.g., with unknown
source terms, inaccurate physical parameters, or uncertain I/
BCs. Such partially-known physics poses great challenges to the
traditional simulation paradigm since the governing equations
are partially known. Nonetheless, the incomplete prior knowl-
edge can be well utilized in our proposed PPNN framework,
where preserving partially-known governing PDE structures can
still bring significant merits to data-driven spatiotemporal
learning and prediction, which will be discussed in this
subsection.

Reaction diffusion equations with unknown reaction term. We
first revisit the aforementioned FitzHugh-Nagumo RD equations.
Here, we consider the scenario where only the diffusion phe-
nomenon is known in the FitzHugh-Nagumo RD dynamics.
Namely, the reaction source terms remain unknown and PPNN
only preserves the incomplete RD equations, i.e., 2D diffusion

equations,

∂u
∂t

¼ γ∇2u: ð10Þ

All the case settings remain the same as those discussed pre-
viously. Although incomplete/inaccurate prior knowledge about
the RD system is preserved, our PPNN still shows a significant
advantage over the black-box baseline. Figure 4a compares the
snapshots of reactant u at two randomly selected unseen para-
meters λ2 and λ3 predicted by black-box baseline model
(first rows), PPNN with the diffusion terms preserved only
(second rows), PPNN with the complete RD equation preserved
(third rows), against the ground truth (fourth rows). The PPNNs
preserving either complete or incomplete RD equations accu-
rately capture the overall patterns and well agree with the refer-
ence solutions, while the black-box baseline shows notable
discrepancy and large errors, particularly at t= 2T, which is the
twice of the training phase length. At the last extrapolation step,
the prediction results of black-box baseline show some visible
noise and are less smooth compared to the results by preserving
the complete RD equation, indicating that lack of the prior
information on the reactive terms could slightly reduce the
improvement by PPNN. Figure 4b–c shows the relative model
rollout errors averaged over 100 test trajectories, which are not
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Fig. 3 Prediction comparison in the case governed by Naiver-Stocks (NS) equations. a, b Predicted solution snapshots of velocity magnitude ∥u∥2 for the
NS equations obtained by black-box ConvResNet (baseline); partial differential equation preserved neural network (PPNN, Ours), compared against the
ground truth (high-resolution numerical simulation), where λ0 is (Re ¼ 2500; y0 ¼ 0:325, shown in (a)), and λ1 is high Reynolds number
(Re ¼ 8500; y0 ¼ 0:575, shown in (b)). c, d Relative prediction error ϵt of PPNN (blue lines ) and black-box ConvResNet baseline (orange lines ) at
different timesteps for the NS equation, averaged on 5 randomly sampled (c) training parameters and (d) testing (unseen) parameters. The shaded areas
show the scattering of the relative errors over all testing trajectories.
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seen in the training set. The shaded area in the upper panel shows
the error distribution range of these 100 test trajectories. Even the
preserved PDEs are not complete/accurate, the mean relative
error (blue line ) remains almost the same as the PPNN with
fully-known PDEs (see Fig. 2a), which is significantly lower than
that of the black-box baseline (orange line ), showing a great
advantage of preserving governing equation structures even if the
prior physics knowledge is imperfect. Compared to the PPNN
with fully-known PDEs, the error distribution range by preser-
ving partially-known PDEs is increased and error ensemble is
more scattered, implying slightly decreased robustness. Although
the envelope of the error scattering for incomplete PDEs is much
larger than that of the case with fully-known PDEs, this is due to
a single outlier trajectory, which can be seen in Fig. 4c. This
indicates embedding a incomplete PDE terms will leads to
restricted performance of PPNN when the disregarded term plays
an important role in the dynamic system. In general, the standard

deviation of the error ensemble from the PPNN with partially-
known PDE (σ= 1.123 × 10−4) is still significantly lower than
that of the black-box baseline (σ= 3.412 × 10−4). In comparison,
the standard deviation of errors in PPNN with fully-known PDEs
over the 100 test trajectories is 0.854 × 10−4.

Naiver-Stokes equations with an unknown magnetic field. In the
second case, we consider the the complex magnetic fluid dynamic
system governed by Naiver-Stokes equations with an unknown
magnetic field:

∂u
∂t

þ u � ∇u ¼ �∇pþ ν∇2uþ F;

∇ � u ¼ 0;
ð11Þ

where u= [u, v]T is the velocity vector; p is the pressure; while ν
represents the kinematic viscosity. Here F ¼ ½Fx; Fy�T represents
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Fig. 4 Prediction comparison in the cases where the governing equations are partially known. a Predicted solution snapshots of u for the reaction-
diffusion (RD) equations at different time steps and unseen parameters, obtained by black-box ConvResNet (baseline model), and partial differential
equation (PDE)-preserved neural network (PPNN, preserving diffusion terms only), and PPNN (preserving complete FitzHugh-Nagumo RD equations),
compared against ground truth. λ2 and λ3 are two randomly selected testing (unseen) parameters. b, c Averaged relative testing error ϵt of the PPNN with
incomplete PDE (blue lines ) and Black-Box ConvResNet baseline (orange lines ) for the RD dynamics evaluated on 100 randomly generated testing
(unseen) parameters (same parameters as shown in Fig. 2c). Shaded areas in (b) indicate envelopes of the maximum and minimum relative errors of all
testing trajectories, while the dash lines in (c) indicate the relative error of each test trajectory. d, e Predicted solution snapshots of flow velocity magnitude
∥u∥2 obtained by black-box ConvResNet (baseline), PPNN (ours), compared against ground truth (high-resolution numerical simulation) of the NS
equations without (d) and with (e) an unknown magnetic source term, respectively. The PPNN only preserves a NS equation portion for both scenarios,
which are at the same testing (unseen) parameter λ= [9000, 0.475]T, which is not in the training set. f, g Relative prediction errors ϵt of the PPNN (blue
line ) and black-box ConvResNet baseline (orange line ) for the NS equation with (e) and without (f) a unknown magnetic body force, averaged on
five randomly sampled unseen parameters. The shaded area shows the scattering of relative errors for all testing trajectories.
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the body force introduced by a magnetic field:

Fx ¼ mH
∂H
∂x

; Fy ¼ mH
∂H
∂y

Hðx; yÞ ¼ exp �8 x � L=2
� �2 þ y �W=2

� �2	 
h i ð12Þ

where m= 0.16 is the magnetic susceptibility, and H is a time-
invariant magnetic intensity. The contour of the magnitude of the
body force source term is shown in the supplementary infor-
mation (see Fig. S11). In this case, the magnetic field remains
unknown and PPNN only preserves the NS equation without the
magnetic source term. All the other case settings remain
unchanged as described in the Naiver-Stokes equation case.

Similar to what we observed in the example of RD equations
with the unknown reaction term, the PPNN still remains a
significant advantage over the black-box baseline even by
preserving an incomplete physics of the flow in a magnetic field.
Figure 4d–e, shows the velocity magnitude ∥u∥2 results of the
flow with (Fig. 4d) or without (Fig. 4e) a magnetic field at the
same testing parameter (λ ¼ ½Re ¼ 9000; y0 ¼ 0:475�T ), pre-
dicted by the PPNN and black-box ConvResNet, compared
against the reference solution. For both scenarios, only the NS
equation portion is preserved in the PPNN, i.e., the magnetic
field remains unknown. Figure 4d shows the solution snapshots
for the flow without the magnetic field (i.e., PPNN preserving the
complete physics), while Fig. 4e shows the predictions of the flow
with the magnetic field (i.e., PPNN preserving an incomplete
physics). Comparing the reference solutions at upper and lower
panels, the spatiotemporal patterns of the flow fields exhibit
notable differences for the cases with and without magnetic
fields. In both scenarios, the black-box baseline model suffers
from the long-term model rollout, particularly for the flow
within the magnetic field, the black-box baseline completely fails
to capture the physics when t > 2T. In both scenarios, the PPNN
outperforms the black-box baseline. In particular at the last time
step t= 3T, which is three times the training phase length, the
black-box predictions are totally overwhelmed by noise, while
our PPNN predictions still agree with the reference very well.
Compared to the case preserving the complete physics (Fig. 4d),
a slight deviation from the reference solution can be observed in
the PPNN predictions of the flow with an unknown magnetic
field (Fig. 4e), indicating that incomplete prior knowledge could
slightly affect the PPNN performance negatively. Nonetheless,
preserving the partially-known PDE structure still brings
significant merit. The error propagation is shown in Fig. 4f–g.
The relative model rollout errors are averaged over 5 randomly
selected unseen parameters for the systems with (Fig. 4f) and
without (Fig. 4g) the magnetic field. Comparing to the PPNN
with completely-known PDEs, the PPNN preserving incomplete/
inaccurate prior knowledge does show a slight increment in the
mean relative error ϵt as well as the error scattering, which
implies a slight decrease in the robustness. However, the
significant advantage over the black-box baseline remains, and
almost no error accumulation is observed in PPNN for both
scenarios.

When encoding completely mis-specified PDE terms. In the
scenarios we have presented so far, the preserved PDE operators are
incomplete but not entirely incorrect, which allows the PPNNmodel
to outperform the black-box baseline. However, in certain situations,
our prior knowledge about the target system may sometimes be
entirely incorrect. In this section, we consider an extreme case where
the preserved physics are completely mis-specified.

To investigate this, we consider a system governed by the
viscous Burgers’ equation (Eq.(6)), but we preserving a reaction

term (Eq.(4)) in the PPNN that does not reflect the actual
physical processes at all. This experiment aims to assess our
model’s performance when the physics are completely mis-
specified and determine how this mismatch affects the overall
model performance.

These results show the model’s behavior under the extreme
conditions, when the underlying physics might be either
completely unknown or inaccurately specified. As depicted in
Fig. 5, the performance of the PPNN model suffers when the
embedded PDE terms diverges significantly from the actual
physics. In such cases, the performance of the PPNN model is
adversely affected, with its predictions being worse than those of
the black-box method. As expected, this result suggests that an
certain level of alignment between the embedded PDEs and the
underlying physics is essential for optimal performance. Particu-
larly, the error distribution range of the PPNN model is
significantly narrower than that of the black-box baseline,
indicating that mis-specified embedded PDEs also impose an
inductive bias to the deep learning model.

Training and inference cost. We have demonstrated that the
proposed PPNN significantly improves the accuracy, general-
izability, and robustness of next-step neural predictors by pre-
serving the mathematical structure of the governing PDEs. Since
the PPNN has a more complex network structure than the black-
box baseline, it is worthwhile to discuss the training and inference
costs of the PPNN and its comparison with the corresponding
black-box baseline and the reference numerical solvers.

Training cost. As shown in Fig. 6a–c, the averaged relative (roll-
out) prediction error ϵT on n testing parameters λ at the last time
step T in the training process (n= 8 in RD, n= 6 in Burgers and
n= 5 in NS). For all the cases, PPNN features a significantly
(orders of magnitude) lower error than the black-box model from
a very early training stage. This means that, to achieve the same
(if not higher) level of accuracy, our PPNN requires significantly
less training cost compared to the black-box baseline. In addition,
under the same training budget, the PPNN is much more accu-
rate than the black-box baseline, demonstrating the merit of
PPNN by leveraging the prior knowledge for network architecture
design.

Inference cost. The inference costs of different neural networks
and numerical solvers on the three testing cases (see section
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When the governing PDEs are fully known) with the model
rollout length of T are summarized in Fig. 6b–f. Due to the fast
inference speed of neural networks, both next-step neural models
show significant speedup compared to the high-fidelity numerical
solvers. In particular, the speedup by the PPNN varies from
10 × to 60 × without significantly sacrificing the prediction accu-
racy. Such speedup will become more tremendous considering a
longer model rollout and enormous repeated model queries on a
large number of different parameter settings, which are com-
monly required in many-query applications such as optimization
design, inverse problems, and uncertainty quantification. Note
that all models are compared on the same hardware (GPU or
CPU) to eliminate the difference introduced by hardware.
However, as most legacy numerical solvers can only run on
CPUs, the speedup by neural models can be much more sig-
nificant if they leverage massive GPU parallelism. Admittedly,
adding the PDE-preserving part inevitably increases the inference
cost compared to the black-box baseline, but the huge perfor-
mance improvement by doing so outweighs the slight computa-
tional overhead, as demonstrated in section When the governing
PDEs are fully known. We have to point out that the computation
of the PDE-preserving portion is not fully optimized, particularly
in the NS case, where low-speed I/O interactions reduce the
overall speedup ratio compared to the numerical solver based on
the mature CFD platform OpenFOAM. Further performance
improvements are expected by customized code optimizations in
future work.

Relationship between the PDE-preserving portion and
numerical solvers. The advantages of the proposed PPNN over
the pure black-box baseline mainly come from “baking" the
prior knowledge into the network architecture. As discussed
above, the mathematical structures of the governing physics are
encoded into the PPNN based on the relationship between
neural network structures and differential equations. From the

numerical modeling perspective, if our understanding of the
underlying physics is complete and accurate (i.e., complete
governing PDEs are available), the PDE-preserving portion in
PPNN can be interpreted as a numerical solver with the explicit
forward Euler scheme defined on a coarse mesh. For simplicity,
we here refer to this numerical solver derived from the fully-
known PDE preserving part as the “coarse solver". It is inter-
esting to see how well it performs by the coarse solver only
when governing equations and IC/BCs/physics properties are
fully known.

We use the NS case as an example. Figure 7b shows the
magnitude of velocity ∥u∥2 predicted by the PPNN, black-box
ConvResNet and coarse solver, respectively, compared against
the reference solution. Two representative testing parameters
are studied here, one is at a lower Reynolds number Re ¼
2500; y0 ¼ 0:325 (Fig. 7b, λ0), and the other is at a higher
Reynolds number Re ¼ 9000; y0 ¼ 0:475 (Fig. 7b, λ2). It is clear
that the predictions by the coarse solver noticeably deviate from
the reference solution from 0.4T, and most vortices are damped
out due to the coarse spatial discretization. This becomes worse
in the higher Reynolds number scenario, where the coarse
solver predicted flow field is unphysical at 0.1T and the
simulation completely diverged at t= 1.16T, because of the
large learning timestep making traditional numerical solvers fail
to satisfy the stability constraint.

As shown in the error propagation curves in Fig. 7a, the coarse
solver has large prediction errors over the testing parameter set
from the very beginning, which is much higher than that of the
black-box data-driven baseline. Since several of the testing
trajectories by the coarse solver diverges quickly after 70 evolving
steps, the error propagation curve stops.

This figure again empirically demonstrates that the PPNN
structure not only overcomes the error accumulation problem in
black-box methods, but also significantly outperforms numerical
solvers by simply coarsen the spatiotemporal grids. On the other
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hand, for those trajectories that do not diverge, the coarse solver’s
relative errors are limited to a certain level, which is in contrast to
black-box, data-driven methods where the error constantly grows
due to the error accumulation. This phenomenon implies that

preserving PDEs plays a critical role in addressing the issue of
error accumulation, which does not simply provide a rough
estimation of the next step, but carries underlying physics
information that guides the longer-term prediction.
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Fig. 7 Prediction comparison between partial differential equation (PDE)-preserved neural network (PPNN), the PDE-preserving part of PPNN
(numerical solver results on a coarse mesh), the black-box baseline, and the label data. a Relative error at different time steps of PPNN (blue line ),
Black-Box neural network (orange line ) and the coarse solver (green line ) compared to the ground truth results obtained by icoFoam on a fine mesh.
The relative error is an averaged value of 5 test trajectories with randomly sampled parameters, these parameters are not in the training set. The shaded area
shows the maximum and minimum relative error of these testing trajectories. In coarse solver, 2 of the testing trajectories diverged (NaN) at the 72nd step thus
the green curve ( ) stops at the 71st step. b The contours show predicted solution snapshots of velocity magnitude ∥u∥2 for the NS equations, obtained by
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PPNN as a general framework for embedding known physics.
In the previous sections, we have demonstrated the performance
enhancement achieved by PPNN based on ConvResNet archi-
tecture. However, the proposed approach is not restricted to a
particular neural network structures. In this section, we showcase
the flexibility of PPNN as a general framework by integrating the
PDE-preserving part into various DNN architectures, specifically
U-Net and Vision Transformer (ViT). More details on the par-
ticular U-Net and ViT architectures employed in our study are
provided in the supplementary information. To illustrate the
versatility of PPNN, we tested it alongside its corresponding
baseline in the context of the viscous Burgers’ equation, as dis-
cussed in Section Viscous Burgers’ equation.

Figure 8 presents the relative error ϵt gathered from 100
randomly selected unseen input parameters λ over 200 testing
time steps for both the U-Net and ViT scenarios. In both cases,
the PPNN variant considerably outperforms its black-box
counterpart, achieving much lower relative errors. Furthermore,
the error distributions of the PPNN exhibit narrower ranges in
comparison to those of the baseline models. When compared to
the ConvResNet (see Figure 2f), both the U-Net and ViT
baselines exhibit significantly enhanced performance in terms of
the average relative error. It is noteworthy that while the baselines
exhibit improved performance, the PPNN variant demonstrates
does not have the same performance gain, albeit still superior to
their corresponding baseline models. This observation suggests a
potential overfitting issue in the PPNN variant, warranting
further investigation.

By successfully incorporating PPNN with a variety of DNN
architectures and exhibiting its superior performance in the
setting of the viscous Burgers’ equation, we furnish compelling
evidence that PPNN operates as a flexible framework for
integrating known physics into deep neural networks. This
underlines its potential for enhancing the predictive accuracy and
robustness across various neural architectures.Moreover, our
approach not only demonstrates compatibility with different
neural networks but also shows impressive generalizability across
varying boundary conditions. For additional insights into the
application of PPNN on diverse boundary value problems, we
invite readers to refer to the Section Supplementary Note 1 in the
supplementary information.

Comparison with existing SOTA methods for neural operator
learning. The backbone of the proposed PPNN method is a next-
step auto-regressive model, which learns the transition dynamics
of a spatiotemporal process, by mapping the solution fields from
previous time steps to the next ones, and the whole trajectory

prediction is obtained by rolling out the learned transition model
autoregressively. Since the PPNN prediction is also conditioned
on parameters λ, the proposed model can be interpreted as
learning an operator G in a discrete manner,

G : uðξ; λÞ7!G½uðξ; λÞ�; ð13Þ
where ξ= [x, t] represents spatial and temporal coordinates and
u 2 Rn is the n-dimensional state variable. In addition to the
auto-regressive formulation, one can directly learn the operator G
using deep neural networks in a continuous manner, generally
referred to as neural operators. In the past few years, several
continuous neural operator learning methods have been pro-
posed, e.g., DeepONet25,68 and Fourier Neural Operator (FNO)26.
Although many of them have shown great success for a handful
of PDE-governed systems, it remains unclear how these methods
perform compared to our proposed PPNN on the challenging
scenarios studied in this work,

● Problems with high-dimensional parameter space, i.e.,
λ 2 Rd; d � 1.

● Limited training data for good generalizability in parameter
space and temporal domain.

Therefore, we conduct a comprehensive comparison of
PPNN with existing state-of-the-art (SOTA) neural operators,
including physics-informed neural network (PINN)12,
DeepONet25,68, and Fourier Neural Operator (FNO)26, on one
of the previous test cases, Viscous Burgers’ equation, where the
PDE is fully known. (Strictly speaking, original PINN by Rassi
et al.12 is not an operator learner, but can be easily extended to
achieving so by augmenting the network input layer with the
parameter dimension, as shown in ref. 13). For a fair
comparison, the problem setting and training data remain the
same for all the methods and the number of trainable
parameters of each models are comparable (PINN: 1.94M
parameters; DeepONet: 1.51M parameters; PPNN: 1.56M
parameters. Please note in DeepONet, we used two separate
but identical neural networks to learn the two components
ux, uy of velocity u respectively to achieve optimal performance;
each network contains 0.755M trainable parameters). Except for
FNO, which has 0.58M trainable parameters due to the spatial
Fourier transformation in FNO is too memory-hungry for a
larger model to fit into the GPU used for training (RTX A6000
48GB RAM). It is worth noting that FNO could be formulated
either as a continuous operator or as an autoregressive model.
Here we show the performance of the continuous FNO. The
performance of autoregressive FNO (named as aFNO) is shown
in the Section Supplementary Note 3.6 supplementary
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Fig. 8 Prediction comparison when partial differential equation preserved neural network (PPNN) using different deep neural networks as the
trainable part. The relative error ϵt of 100 randomly sampled testing parameters λ is showed in this figure. The solid lines shows the averaged error over
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information, which is slightly better compared to continuous
FNO in terms of testing error with unseen parameters. Besides,
we also include a DeepONet with significantly more trainable
parameters (79.19M) to show the highest possible performance
DeepONet would achieve, which is named as DeepONet-L.
Note that since some of these models’ original forms cannot be
directly applied to learn parametric spatiotemporal dynamics in
multi-variable settings, necessary modifications and improve-
ment has been made. The implementation details and hyper-
parameters of these models are provided in the supplementary
information (see Supplementary Note 3).

Predictive performance comparison. All the models are used to
predict the spatiotemporal dynamics of 100 randomly generated
initial fields which are not seen in training. The relative prediction
errors ϵt of the existing SOTA neural operators and PPNN are
compared in Fig. 9. As shown in Fig. 9a, b, PPNN significantly
outperforms all the other SOTA baselines for all the time steps in
both training and testing parameter regimes. All the existing
SOTA neural operators have much higher prediction errors
(several orders of magnitude higher) compared to PPNN, espe-
cially when entering the extrapolation range (after 100 time
steps), where the error grows rapidly. In contrast, the relative
error of PPNN predictions remains very low (10−3) and barely
accumulated evolving with time (shown in Fig. 9a). The predic-
tion errors of most continuous neural operators do not grow
monotonically since their predictions do not rely on auto-
regressive model rollout and thus does not have error

accumulation issue. However, the overall accuracy of all con-
tinuous neural operators (particularly in extrapolation range) is
much lower than that of PPNN. Besides, PPNN exhibits a much
smaller error scattering over different testing samples (shown in
Fig. 9b), indicating significantly higher robustness compared to
existing SOTA methods. All of these observations suggest the
obvious superiority of the PPNN in terms of extrapolability in
time.

The comparison of the generalizability in parameter space of
all methods is shown in Fig. 9a, where the dashed lines
represent the averaged testing errors on the training parameter
set, while the solid lines indicate the errors on the testing
parameter set. It is clear that all the continuous neural operators
have a significantly higher prediction error on the testing set
than that on the training set, while the PPNN’s prediction
errors are almost the same on both the testing and training sets,
which are much lower than all the other methods, indicating a
much better generalizability.

It is worth mentioning that the notable overfitting issue is
observed in DeepONet with increased trainable parameters, i.e.,
DeepONet-L. It can be seen that although the prediction errors of
DeepONet-L and FNO are relatively lower on training parameter
sets and interpolation regimes, they rapidly increase when
stepping into extrapolation ranges and unseen parameter regimes.
We would like to point out that there are “physics-informed”
variants of DeepONet and FNO27,69, which regulate the DNN
training by minimizing the residual of governing PDEs, in
conjunction with data loss. However, these approaches typically
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necessitate the knowledge of the complete equation forms to
formulate the physics-informed loss, while our method excel at
integrating partially known physics, such as individual PDE
operators, into the neural network structures. Moreover, the
challenge of balancing DNN training with equation loss and label
data is a well-documented issue, often requiring sophisticated
hyperparameter tunning to adjust the weights between equation
loss and data loss30,70,71. In addition, the use of equation loss for
problems with a high-dimensional parameter space poses a
significant challenge in minimizing the composed loss function,
leading to marginal and often unstable improvement over purely
data-driven methods. We provide a more detailed comparison
and discussion regarding the performance of these physics-
informed variants of FNO/DeepONet in the supplementary
information (see Supplementary Note 5).

Cost comparison. Figure 9c and d show the time cost and memory
footprint in the inference phase. Even compared to the fastest
baseline DeepONet, PPNN is still about 20% faster and the
memory footprint of PPNN is very close to the model with the
smallest memory footprint: DeepONet. It should be noted that all
the models, including our PPNN are not exhaustively fine-tuned.
Although carefully tuning hyperparameters may further improve
the performance of each model, issues such as generalizability or
robustness presented above cannot be addressed by hyperpara-
meter tuning.

Limitations and future directions. Despite the significant
advancements of the PPNN model, it is important to acknowl-
edge some inherent limitations and potential areas of improve-
ment. One such limitation is the minor accumulation of error
when extrapolating over a significantly long duration. This can be
attributed to the one-step prediction formulation currently uti-
lized by the PPNN model. It is worth noting that the trainable
aspect of PPNN is mathematically equivalent to learning closure
models under the current design. However, a crucial distinction
between our proposed method and existing closure model
approaches lies in the ability to propagate gradients through
PPNN, encompassing both the PDE-preserving segment and the
trainable portion. This capability arises from our representation
of physics priors through convolutional neural networks, making
it differentiable. This differentiable feature empowers us to con-
duct end-to-end training with long-term model rollouts, an
achievement unattainable in traditional closure model learning,
where the physics priors (i.e., numerical solvers) lack differ-
entiability, often necessitating direct labels for the discrepancy of
such prior models. More importantly, this study underscores the
connection between numerical PDE operators and neural archi-
tecture components, which can pave the way for innovative
neural solver designs that go beyond classic PDE solvers aug-
mented with DNN closures. From this viewpoint, conventional
numerical PDE solvers can be conceptualized as a specific
instance of neural networks. Their architecture details, including
elements like convolution kernels, residual connections, or
recurrent structure, are completely determined by the governing
PDEs and their associated numerical schemes. In contrast, fully
trainable neural networks are completely flexible and derive their
structural parameters purely from data. Nonetheless, it is
important to note that in this work, we did not fully explore the
potential of PPNN through extended model rollouts during
training. Conventional time-marching solvers operate based on
predefined time integration schemes. In contrast, the PPNN
framework offers the potential to weave various numerical PDE
operators and trainable components to construct a modern DL
architecture such as LSTM or transformer, clearly a departure

from standard PDE solvers. This paper represents our initial step
into the field of differentiable hybrid neural modeling, primarily
aiming to explore and demonstrate the merit of PDE-integrated
neural models. As such, the design and comparison of various
hybrid PDE-neural architectures fall outside the scope of this
work.

Our present work primarily focuses on structured data or
meshes, a choice driven by their simplicity and computational
efficiency. These are commonly used in many computational
physics problems with relatively simple geometries. The novelty
of our approach lies in the innovative use of structured meshes to
design a PDE-preserving neural network. This is accomplished
by mapping known PDE operators onto convolutional filters,
thereby transposing the laws of physics into the language of deep
learning. However, this focus on structured data does not mean
that our model is inherently limited to such data. We see our
demonstration on structured meshes as an essential first step
towards extending the approach to more complex geometries
and unstructured data. Addressing concerns about the applic-
ability of our method to unstructured data and irregular
geometries, we note that our current method could be extended
using graph neural networks. The graph convolution operation,
interpreted as a localized spectral filtering on unstructured data,
can be viewed as a generalization of the CNN’s convolution
operation. By carefully designing spectral filters, the concept of
“PDE-preserving” can be incorporated into desired spatial PDE
operators through finite-volume-based or finite-element-based
kernel functions. Although such an extension would require
rigorous mathematical derivations and extensive empirical
studies, we believe it serves as an intriguing direction for future
research.

Furthermore, the ConvResNet formulation in the current
version of PPNN is not mesh-invariant due to the discrete
convolution operation, suggesting it cannot directly process data
represented on different meshes without interpolations. However,
the proposed PPNN framework can be extended to accommodate
mesh invariance. One potential way to achieve this is to use
mesh-invariant convolutional layers, which apply the same
operations to the input data regardless of the underlying mesh
structure. This could be realized, for instance, by employing
geodesic convolutions or graph convolution kernel in spectral
domain, allowing the model to adapt to variations in the mesh
resolutions. Additionally, integrating adaptive mesh refinement
techniques into the training process might provide another route
towards mesh invariance. This strategy would involve dynami-
cally adjusting the mesh resolution by incorporating mesh info Δx
into the model, allowing the model to capture the mesh
variations.

In real-world applications, training data can be gathered from
experiments or in-situ sensing, where data uncertainty may arise
due to measurement noises in both inputs and training labels.
Our current PPNN model does not include an uncertainty
quantification (UQ) capability, but uncertainty propagation and
quantification represent fascinating directions for future research.
Extending the PPNN model to incorporate Bayesian learning
could be a potential solution. Techniques like Bayesian neural
networks using variational inference72–75 or deep ensemble
methods76–78 may offer promising avenues for expanding the
PPNN model to include UQ capabilities.

Spatiotemporal dynamics constitute a fundamental aspect of
numerous physics systems, ranging from classical fields like fluid
dynamics, acoustics, and electromagnetics to the intricate realm
of Quantum mechanics. The governing equations for such
dynamics often fall within the domain of partial differential
equations. Consequently, the ability to effectively solve these
PDEs is imperative for comprehending, modeling, and
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controlling the underlying physical processes. By integrating the
PDE structure into deep neural networks, PPNN represents a
powerful tool for modeling such PDEs. In the context of various
physics applications, PPNN exhibits considerable potential.
Contrasted with traditional numerical solvers or earlier
physics-informed neural networks, PPNN demonstrates lower
training and inferring cost and the capacity to assimilate
unknown physics from data. Additionally, when compared to
purely data-driven methods, PPNN provides enhanced accuracy
in out-of-sample scenarios while maintaining stability over
prolonged model rollouts. The versatile nature of PPNN makes
it a promising candidate for applications in modeling and
predicting dynamic physics systems, including heat transfer,
turbulent flow, and electromagnetic fields. While not delving into
the specifics of each application, it is evident that PPNN holds
significant promise for speeding up the study and understanding
of complex spatiotemporal dynamics across various physics
domains.

Conclusion
In this work, we proposed a physics-inspired deep learning
framework, PDE-preserved neural network (PPNN), aiming to
learn parametric spatiotemporal physics, where the (partially)
known governing PDE structures are preserved via fixed con-
volutional residual connection blocks in a multi-resolution
setting. The PDE-preserving ConvResNet blocks together with
trainable blocks in an encoding-decoding manner bring the
PPNN significant advantages in long-term model rollout
accuracy, spatiotemporal/parameter generalizability, and train-
ing efficiency. The effectiveness and merit have been demon-
strated over a handful of challenging spatiotemporal prediction
tasks, including the FitzHugh-Nagumo reaction diffusion
equations, viscous Burgers equations and Naiver-Stokes equa-
tions, compared to the existing baselines, including Con-
vResNet, U-Net, Vision transformer, PINN, DeepONet, and
FNO. The proposed PPNN shows satisfactory predictive accu-
racy in testing regimes and significantly lower error-
accumulation effect for long-term model rollout in time, even
if the preserved physics is incomplete or inaccurate. Finally, the
discussion on the inference and training costs shows the great
potential of the proposed model to serve as a reliable and
efficient surrogate model for spatiotemporal dynamics in many
applications that require repeated model queries, e.g., design
optimization, data assimilation, uncertainty quantification, and
inverse problems. While Direct Numerical Simulations (DNS)
are used as the source of labeled training data in our study, the
data could just as well originate from experimental results or
field observations. A unique feature of PPNN, and one of its
significant advances, lies in its ability to generalize to different
physical parameters and initial/boundary conditions. Unlike
most label-free PINN techniques, which act as PDE solvers for a
given set of parameters and conditions, PPNN’s ability to adapt
to varying parameters and conditions underscores its capability
to learn the PDE system. In general, this work explored a
creative design of leveraging physics-inductive bias in scientific
machine/deep learning and showcased how to use physical
prior knowledge to inform the learning architecture design,
shedding new light on physics-informed deep learning from a
different aspect. Therefore, this work represents a inventive
PiDL development and a significant advance in the realm
of SciML.

METHODS
Problem formulation. We are interested in predictive modeling
of physical systems with spatiotemporal dynamics, which can be

described by a set of parametric coupled PDEs in the general
form,

∂u
∂t

þF u; u2; ¼ ;∇xu;∇
2
xu;∇xu � u; ¼ ; λ

� � ¼ 0; x; t 2 Ω ´ ½0;T�; λ 2 Rd;

ð14aÞ

I x; u;∇2
xu;∇xu � u; λ� � ¼ 0; x 2 Ω; t ¼ 0; λ 2 Rd; ð14bÞ

B t; x; u;∇2
xu;∇xu � u; λ� � ¼ 0; x; t 2 ∂Ω ´ ½0;T�; λ 2 Rd; ð14cÞ

where u ¼ uðx; t; λÞ 2 Rn is the n-dimensional state variable; t
denotes time and x∈Ω specifies the space; F½�� is a complex
nonlinear functional governing the physics, while differential
operators I ½�� and B½�� describe the initial and boundary condi-
tions (I/BCs) of the system, respectively; λ 2 Rd is a d-dimen-
sional vector, representing physical/modeling parameters in the
governing PDEs and/or I/BCs. Solving this parametric spatio-
temporal PDE system typically relies on traditional FD/FV/FE
methods, which are computationally expensive in most cases.
This is due to the spatiotemporal discretization of the PDEs into a
high-dimensional algebraic system, making the numerical simu-
lation time-consuming, particularly considering that a tiny step is
often required for the time integration to satisfy the numerical
stability constraint. Moreover, as the system solution u(x, t; λ) is
parameter-dependent, we have to start over and conduct the
entire simulation given a new parameter λ, making it infeasible
for application scenarios that require many model queries, e.g.,
parameter inference, optimization, and uncertainty quantifica-
tion. Therefore, our objective is to develop a data-driven neural
solver for rapid spatiotemporal prediction, enabled by efficient
time-stepping with coarse-gaining and fast inference speed of
neural networks. In particular, this study focuses on the learning
architecture design by preserving known PDE structures for
improving the robustness, stability, and generalizability of data-
driven auto-regressive predicting models.

Next-step prediction models based on convolutional ResNets.
The next-step DNN predictors are commonly used for emulating
spatiotemporal dynamics in an autoregressive manner,

ut ¼ f θðut�1; λjθÞ; ð15Þ
where the state solution ut at time step t is approximated by a
neural network function f θ : R

n ´Rd ! Rn, taking the previous
state ut−1 and physical parameters λ as the input features. The
function fθ( ⋅ ∣θ) is parameterized by trainable weight vector θ that
can be optimized based on training labels. Once the model is fully
trained, it can be used to predict spatiotemporal dynamics by
autoregressive model rollouts given only the initial condition u0
and a specific set of physical parameters λ. In general, the next-
step model is built based on residual network (ResNet) blocks,
which have recently improved the state-of-the-art (SOTA) in
many benchmarks learning tasks9. Given the input features z0, a
ResNet block with N layers outputs zN as,

z jþ1 ¼ z j þ f ðjÞðz jjθðjÞÞ; j ¼ 0; � � �N � 1; ð16Þ
where f (j) represents the generic neural network function of jth

layer and θ(j) are corresponding weights. For end-to-end spatio-
temporal learning, f(j) are often formulated by (graph) convolu-
tional neural networks with trainable convolution stencils and
biases. In a ResNet block, the dimension of the feature vectors
(i.e., the image resolution and the number of channels) should
remain the same across all layers. The ResNet-based next-step
models have been demonstrated powerful and effective for pre-
dicting complex spatiotemporal physics. One of the examples is
the MeshGraphNet9, which is a GNN-based ResNets and shows
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the SOTA performance in spatiotemporal learning with
unstructured mesh data.

In this work, as we limit ourselves to structured data within
regular domains, a CNN variant of the MeshGraphNet,
Convolutional ResNet (ConvResNet)-based next-step model, is
used as one of the baseline black-box models in this work, whose
network structure is shown in Fig. 10a. The ConvResNet takes the
previous state and physical parameters as the input and predicts
the next-step state using a residual connection across the entire
hidden ConvResNet layers after a pixel shuffle layer. The hidden
layers consist of several ConvResNet blocks, constructed based on
standard convolution layers with residual connections and ReLU
activation functions, followed by layer normalization. To learn
the dependence of physical parameters λ, each scalar component
of the physical parameter vector is multiplied by a trainable
matrix, which is obtained by vector multiplication of trainable
weight vectors.

Neural network architecture and differential equations. Recent
studies have shown the relationship between DNN architectures
and differential equations: ResNets can be interpreted as dis-
cretized forms of ODEs/PDEs, while differential equations can be
treated as a continuous interpretation of ResNet blocks with
infinite depth.

Residual connections and ODEs. As discussed in44,50, the residual
connection as defined in Eq. (16) can be seen as a forward Euler
discretization of a ODE,

∂zðtÞ
∂t

¼ FðzðtÞjθðtÞÞ; fort 2 ð0;T�; ð17Þ

where z(t= 0)= z0 and T is total time. In ResNets, a fixed time
step size of Δt= 1 is set for the entire time span and N ⋅ Δt= T.
Namely, the depth of the residual connection (i.e., the number of
layers in a ResNet block) can be controlled by changing the total
time T. On the other hand, an ODE as given by Eq. (17) can be
interpreted as a continuous ResNet block with infinite number of

layers (i.e., infinite depth). Based on this observation, the classic
ResNet structure can be extended by discretizing an ODE using
different time-stepping schemes (e.g., Euler, Runge-Kutta, leap-
frog, etc.). Moreover, we can also define a residual connection
block by directly coupling a differentiable ODE solver with a
multi-layer perception (MLP) representing F( ⋅ ), where the
hybrid ODE-MLP is trained as a whole differentiable program
using back-propagation, which is known as a neural-ODE
block50.

Convolution operations and PDEs. In the neuralODE, MLP is
used to define F( ⋅ ), which, however, can be any neural network
structure in a general setting. When dealing with structured data
(e.g., images, videos, physical fields), the features z(t, x) can be
seen as spatial fields, and convolution operations are often used to
construct a CNN-based F( ⋅ ). A profound relationship between
convolutions and differentiations has been presented in
refs. 45,79,80. Following the deep learning convention, a 2D con-
volution is defined as,

conv z; hðθÞ
� � ¼ Z

zðx0 � xÞhðθÞðxÞdx; ð18Þ

where h represent convolution kernel parameterized by θ. Based
on the order of sum rules, the kernel h can be designed to
approximate any differential operator with prescribed order of
accuracy81, and thus the convolution in Eq. (18) can be expressed
as49,

conv z; hðθÞ
� � ¼ D u; ¼ ;∇xu;∇

2
xu;∇xu � u; ¼ ; θ

� �
; ð19Þ

where D is a discrete differential operator based FD/FV/FE
methods. For example, from the point of view of FDM, con-
volution filters can be seen as the finite difference stencils of
certain can be interpreted as the discrete forms of certain PDEs,
and thus the PDEs can be used to inform ConvResNet archi-
tecture design.
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Fig. 10 Schematics of the deep neural network structures used in this work. a Network architecture of the baseline black-box ConvResNet-based next-
step model. b Network architecture of the trainable portion of partial differential equation (PDE)-preserved neural network (PPNN). The only difference
between them is trainable portion of PPNN has an extra input variable F ðutÞ, provided by the PDE-preserving portion of PPNN.
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Multi-resolution PDE-preserved Neural Network (PPNN)
architecture. It is well known that auto-regressive models suffer
from error accumulation, which is particularly severe for the
next-step formulation. Although remedies such as using training
noises82 or sequence models10 have been explored, the error
accumulation issue cannot be easily mitigated, and the model
usually fails to operate in a long-span rollout. Inspired by the
relationship between network architectures and differential
equations, we hypothesize that the performance of an auto-
regressive ConvResNet model for spatiotemporal learning can be
significantly improved if the network is constructed by preserving
(partially) known governing physics (i.e., PDEs) of the spatio-
temporal dynamics. Therefore, we propose a multi-resolution
PDE-preserved neural network (PPNN) framework, where the
discrete governing PDEs are preserved in residual connection
blocks using grids with multiple resolutions.

As shown in Fig. 1, the PPNN has the same backbone ResNet
structure as the black-box next-step baseline model, where a
residual connection is applied across the entire hidden Con-
vResNet layers. The hidden ConvResNet consists of two portions:
PDE-preserving ConvRes layers and trainable ConvRes layers,
coupled in an encoding-decoding manner. In the PDE-preserving
portion, the ConvRes connection is constructed based on the
convolution operators defined by the discrete differential
operators of the governing PDEs using finite-difference stencils.
The preserved-PDE ConvRes layers are operated on low-
resolution grids by taking in the downsampled input solution
fields using bi-linear algorithm and the output is upsampled back
to the original resolution using bi-cubic algorithm, which
improves the model rollout stability with large evolving steps,
meanwhile reducing the cost overhead during the model
inference. This structure resembles the multgrid method which
significantly improves the speed and reduce the cost by solving
PDEs on different mesh resolutions. The trainable portion takes
the high-resolution solution fields, together with the output of the
PDE preserving part, as the input and contains a few classic
ConvResNet blocks. For a fair comparison, the network
architecture of the trainable portion is exactly the same as that
of the black-box ConvResNet baseline, except that the trainable
portion of PPNN takes the output of the PDE-preserving portion
(see Fig. 10). The PDE-preserving part and trainable part are
connected via bi-cubic up-sampling operation. Overall, the PDE-
preserving part enhance the trainable part by (a) preserving a
time integration scheme (b) providing input feature enrichment.
An ablation study of these two components can be found in the
section Supplementary Note 2 in supplementary information.
Note that a smaller time step Δt0 can be used within the PDE-
preserving portion via inner-iteration to stabilize model rollout.
In general, the combination of the two portions can be seen as a
ConvResNet architecture that preserves the mathematical struc-
ture of the underlying physics behind the spatiotemporal
dynamics to be modeled.

Data availability
All the used datasets in this study can be generated by the openly available Python scripts
on GitHub at https://github.com/jx-wang-s-group/ppnn upon publication.

Code availability
All the source codes to reproduce the results in this study will be openly available on
GitHub at https://github.com/jx-wang-s-group/ppnn upon publication.
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