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Topological high-harmonic spectroscopy
Ana García-Cabrera 1✉, Roberto Boyero-García1, Óscar Zurrón-Cifuentes 1, Javier Serrano 1,

Julio San Román 1, Luis Plaja1 & Carlos Hernández-García 1

Linearly polarized vector beams are structured lasers whose topology is characterized by a

well-defined Poincaré index, which is a topological invariant during high-order harmonic

generation. As such, harmonics are produced as extreme-ultraviolet vector beams that inherit

the topology of the driver. This holds for isotropic targets such as noble gases, but analogous

behaviour in crystalline solids is still open to discussion. Here, we demonstrate that this

conservation rule breaks in crystalline solids, in virtue of their anisotropic non-linear sus-

ceptibility. We identify the topological properties of the harmonic field as unique probes,

sensitive to both the microscopic and macroscopic features of the target’s complex non-

linear response. Our simulations, performed in single-layer graphene, show that the harmonic

field is split into a multi-beam structure whose topology encodes information about laser-

driven electronic dynamics. Our work promotes the topological analysis of the high-order

harmonic field as a spectroscopic tool to reveal the nonlinearities in the coupling of light and

target symmetries.
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Nonlinear optics stands nowadays as a unique approach not
only to up-convert laser radiation to higher frequencies
but also to obtain information on the dynamics of laser-

driven media. High-harmonic generation (HHG) is an exemplary
manifestation of this phenomenon, capable of producing
extreme-ultraviolet (EUV) to soft x-ray coherent radiation, as
well as of unveiling electronic dynamics at the attosecond scale1.
In gases, HHG can be readily understood using a semiclassical
point of view2. According to it, first, an intense infrared laser field
liberates an electronic wavepacket from the atom via tunnel
ionization and accelerates it in the continuum. Then, upon
reversal of the field amplitude, the electronic wavepacket is
redirected to the parent ion, where it recombines emitting high-
frequency radiation. The radiated spectrum contains unique
information about the ultrafast non-perturbative electron
dynamics during the interaction. As a result, high-harmonic
spectroscopy has emerged as a main technique to access the
ultrafast dynamics of matter subjected to intense laser fields3–5.

It was not until recently that HHG in crystalline solids was
demonstrated, so the full potentialities of these targets are cur-
rently being unraveled6,7. For driving beams at grazing incidence,
HHG from solids is mediated by electrons detached from the
target and, therefore, has a resemblance to its atomic
counterpart8. However, despite this parallelism, it has been shown
that the periodicity of the crystal imprints a diffraction pattern in
the electronic wavefunction, giving rise to Talbot revivals, with
signatures in the harmonic spectrum9. In contrast, when driven at
normal incidence, HHG from solids can be interpreted in terms
of semi-classical trajectories of electron-hole pairs in the target,
excited via tunneling or Landau-Zener transitions, which subse-
quently evolve accordingly to the band’s energy dispersion10. In
this case, the harmonic emission takes place upon recombination
of the electron-hole pair, following either perfect or imperfect
recollisions11–13. As in gas targets, high-harmonic spectroscopy of
solids has emerged as a fundamental technique giving access to
information about intraband currents in bulk solids14, the Berry
curvature15, many-body dynamics in strongly correlated
systems16, or the ultrafast dynamics of carriers17,18, among
others.

During the last decade, there has been considerable interest in
driving HHG with structured laser beams, in order to obtain
coherent short-wavelength radiation with controlled spin (SAM)
and/or orbital (OAM) angular momentum. Whereas SAM is
connected to the field polarization—characterized by the spin
index, σ=−1 for right (RCP) and σ=+1 for left (LCP) circularly
polarization states—OAM is associated with the beam’s azi-
muthal phase variation19, and it is characterized by the topolo-
gical charge, a discrete index that can take infinite integer values.
Such laser sources are valuable tools for the ultrafast control of
electronic currents at the nanoscale20,21.

It is not trivial to convey the angular momentum properties of
the driving beam into high-order harmonic radiation. For
instance, in the case of gaseous targets, the efficiency of HHG
drops drastically when driven by elliptically polarized fields22.
Nevertheless, it is still possible to produce harmonic radiation
with on-demand SAM from atomic targets by using rather
sophisticated driver geometries, such as bicircular fields23 or
noncollinear beams24,25, among others26–29. In contrast, the
topological charge of the high-order harmonics driven by linearly
polarized single-OAM beams scales linearly with that of the
driving field30–32. The deep understanding of OAM-SAM con-
version in HHG from gaseous targets, which requires a macro-
scopic description, has inspired the engineering of a wide variety
of schemes that allow for the fine spatiotemporal control of the
intensity, phase and polarization properties of the high-order
harmonics33–38. In this context, vector beams are particularly

interesting. These beams result from the combination of raveled
SAM and OAM modes. Among them, linear-polarized vector
beams (LPVB) present a transversal distribution of linearly
polarized states with different tilt-angles39. This azimuthally-
varying orientation confers the beam with a topological character,
with a well-defined Poincare index40. In this sense, it has already
been demonstrated that the up-conversion of LPVBs to high-
order harmonics in gases preserves the topology of the driving
field41,42.

The general scenario of SAM-OAM conversion in HHG changes
completely in the case of solid targets, in particular for crystals,
where symmetries can introduce anisotropy in their nonlinear
optical response43–48. The exploration of the interplay of the elec-
tromagnetic field topology and the target symmetries in HHG
remains barely explored, being limited to the study of OAM con-
servation in semiconductors49, to the best of our knowledge. In this
sense, we shall see that the analysis of the topological properties of
high-order harmonics driven in solids stands as a promising route
for high harmonic spectroscopy of condensed matter50.

In this article, we identify light’s topology as a property sen-
sitive to the electronic dynamics in crystals, which establishes the
basis of a topological approach to high harmonic spectroscopy.
To do so, we explore the up-conversion to high-harmonics of an
LPVB driver by single-layer graphene (SLG). The investigation of
the coupling of light’s topology with crystal symmetries finds a
privileged scenario in HHG from two-dimensional crystals driven
by LPVB. On the one hand, their atomic-thin thickness excludes
the effects of the propagation inside the target. On the other hand,
the target presents well-defined symmetries that play a relevant
role. As an example, the nonlinear response of SLG is sensitive to
the driver’s polarization tilt-angle, with π/3 periodicity according
to the hexagonal symmetry of the lattice47. As a main result, we
find that HHG from SLG driven by LPVB produces harmonic
beams composed of a central vector beam, that retains the
topological characteristics of the driving field, surrounded by a
topological cluster encoding specific information about the
crystal’s anisotropic nonlinear response. Therefore, the con-
servation of the driver’s topology in HHG found in isotropic
targets41 is broken in the generation of the topological cluster. We
present an analytical model that demonstrates how the topolo-
gical structure of the harmonic far-field encodes unique infor-
mation about the crystal’s nonlinear response. Indeed, sub-cycle
dynamics, such as those arising from interband and intraband
transitions, can be also distinguished through the topological
structure of the harmonic beam. Therefore, we envisage a spec-
troscopic method that uses the parameters of the far-field
topology to unveil details of the nonlinear response of the tar-
get. In addition, our work demonstrates that crystalline solid
targets presenting a non-linear anisotropic response are suitable
for the generation of structured short-wavelength radiation with
intertwined SAM and OAM properties.

Results and discussion
We perform theoretical simulations of HHG in SLG driven by
LPVB (see “Methods”), corresponding to a superposition of two
counter-rotating circularly-polarized Laguerre-Gauss beams with
opposite topological charges. The driver’s transverse profile at the
focus can be described as:

Eðρ;φ; tÞ ¼ U0ðρÞe�iωt e�ið‘φ�θ0ÞeL þ eþið‘φ�θ0ÞeR
� � ð1Þ

where ρ is the radius, φ the azimuth angle, ℓ is the absolute value
of the OAM charge of the modes composing the LPVB, eL,R are
the left/right polarization vectors, and θ0 defines the geometry of
the beam’s polarization. For the particular case of ℓ= 1, θ0= 0
describes a radial vector beam and θ0= ±π/2 an azimuthal one. In
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the following, we shall consider a radial LPBV, therefore ℓ= 1
and θ0= 0. Note that, due to the opposite values of OAM and
SAM of the composing modes, LPVB are vectorial fields with no
net OAM or SAM. However, they are topologically characterized
by their Poincaré index, P—the number of complete rotations of
the polarization tilt along a closed loop around the axis40—which
coincides with the OAM charge of the RCP mode, i.e., P ¼ ‘.

In Fig. 1 we show an overview of the topological high-
harmonic spectroscopy. The interaction geometry studied in this
work is sketched in Fig. 1a. We consider an eight-cycle (28 fs full
width at half maximum in intensity), 3 μm wavelength driving
pulse, with sin2 envelope and peak intensity of 5 × 1010W/cm2.
The driving field, structured as an LPVB with beam waist 30 μm,
is aimed at normal incidence onto an SLG sheet. Note that tighter
focusing conditions, where the paraxial approximation is broken,
would induce a non-negligible on-axis longitudinal component51.

We consider that, after generation at the graphene layer, the
high-order harmonics are detected in the far field. Figure 1b
depicts the spatially-integrated far-field harmonic spectrum
generated in graphene by a radially polarized vector beam. As for
gas targets, the spectrum presents a plateau of harmonics, a
characteristic signature of the non-perturbative non-linear
interaction. For the present driving field, the harmonic plateau
extends up to the 9th order, followed by a cut-off frequency where
harmonic efficiencies decrease at a ratio of approximately one
order of magnitude per harmonic interval. The fundamental
details of this structure can be understood in semiclassical terms,
according to the recollision trajectories of electron-hole pairs
excited at the neighborhood of the Dirac points12.

We present in Fig. 1c, d, i the intensity and polarization profiles
of the LPVB with P ¼ 1 —which corresponds to a radially
polarized vector beam—and P ¼ 2 driving HHG in graphene
and argon. The far-field intensity and linear-polarization tilt-
angle distributions for two sample harmonics emitted from gra-
phene (the 9th harmonic for the P ¼ 1, and the 7th harmonic for
the P ¼ 2 driving fields) are shown in Fig. 1e–h. Results for the
rest of the high-order harmonics are shown in Supplementary
Note 3. For the sake of comparison, we show in Fig. 1j, k the far
field of the 25th harmonic obtained in an Ar slab driven by a
radially polarized beam (P ¼ 1). For this latter case, we have used
standard parameters for HHG in Ar (50 μm-waist, 800 nm
wavelength, peak intensity of 1.7 × 1014W/cm2 and same pulse
envelope and duration as that used in graphene). While the vector
beam character of the driver—intensity profile and P—is trans-
lated into the harmonic emission in Ar, the up-conversion in
graphene is much more complex.

To shed light on these results, we have analyzed in detail the
two polarization components of the harmonic emission. Figure 2
shows the far-field intensity and phase distributions of the 9th
and 7th harmonics depicted in Fig. 1 for the P ¼ 1 and P ¼ 2
LPVB drivers, decomposed into their LCP (see Fig. 2a, c, e, g) and
RCP (see Fig. 2b, d, f, h) components.

The diffraction patterns of the two polarization components
are displaced from each other. This demonstrates that SLG’s
diffraction of the harmonic field is spin-dependent, a con-
sequence of the anisotropic character of its non-linear response.
Note also that only at low-divergence angles, both polarization
modes fully overlap.

Fig. 1 Overview of topological high-harmonic spectroscopy in graphene and argon. a Scheme of the interaction geometry for HHG in single-layer
graphene driven by a mid-infrared (mid-IR) linearly-polarized vector beam (LPVB). The driving beam is aimed at a graphene sheet at normal incidence,
where high-order harmonic generation (HHG) results in the emission of high-order harmonics. b Spatially-integrated far-field harmonic spectrum emitted
by the graphene target when driven by an LPVB with Poincaré index P ¼ 1—which corresponds to a radial vector beam. Total intensity and polarization
profile of the driving LPVBs with Poincaré indices P ¼ 1(c) and P ¼ 2(d) for graphene and P ¼ 1 for argon e Far-field total intensity (f–h) and polarization
tilt-angle (i–k)—in the regions with an intensity over 10% of the maximum—for the 9th and 7th harmonics in graphene and the 25th harmonic in argon.
The off-axis far-field intensity is magnified for the harmonics in graphene to show the details of the spatial profile.
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Further analysis of the harmonic far-field characteristics can be
drawn by exploring the particular OAM composition of each of
the polarization modes. To do so, we perform the Fourier
Transform of the harmonic field along the azimuthal coordinate,
and we integrate its modulus squared over the radial coordinate.
In Fig. 3, we plot the OAM content of the LCP (red) and RCP

(blue) harmonic emission in SLG driven by Fig. 3a a P ¼ 1 and
Fig. 3b a P ¼ 2 LPVB as a function of the harmonic order. For
the sake of comparison we include in Fig. 3c results in Ar driven
by a P ¼ 1 LPVB. In this latter case each polarization mode of
the harmonic field is composed of the same OAM components as
in the driving field41. It is worth mentioning that, for the same gas

Fig. 2 Far-field harmonic emission profiles of the left (LCP) and right (RCP) circularly polarized components. Far-field intensity and phase distributions
for the LCP and RCP components of the 9th (a–d) and 7th (e–h) harmonics for single layer graphene driven by the P ¼ 1 and P ¼ 2 linearly polarized
vector beams, respectively.
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target driven by a vector-vortex beam, i.e., a vector beam with
non-zero net topological charge, it has been shown that the
harmonic topological charge scales linearly with the OAM charge
of the driver42,52. The comparison of the results in Fig. 3
demonstrates that the harmonic build-up in graphene is far more
complex than in isotropic targets. The OAM content of each
polarization mode is extended in steps Δℓ= ±6ℓ, a consequence
of graphene’s 6-fold rotational symmetry. Note also that all
harmonic orders present the same OAM content.

In order to understand the far-field characteristics of the har-
monic emission presented in the previous section, we derive an
analytical model by means of a Fraunhofer integration that
demonstrates the coupling between the target symmetries and the
driving field’s topology. Such understanding allows us to propose
a topological harmonic spectroscopy scheme by solving the
inverse problem: to identify the crystal’s nonlinear response
properties through the topological structure of the far-field har-
monic emission. This method is derived to consider any crys-
talline structure, though we have validated it in the case of SLG.

Understanding the coupling between the target symmetries
and the driving field’s topology. In this section, we derive an
analytical model for the high harmonic far-field profile that
allows us to obtain and understand its properties from the near-
field harmonic emission. We show the near-field total intensity
(Fig. 4a, g) and ellipticity (Fig. 4b, h) distributions of the 9th and
7th harmonics obtained from our simulations of SLG, driven by
P ¼ 1 and P ¼ 2 LPVBs, respectively, as well as the intensity and
phase profiles of the LCP (Fig. 4c, d, i, j) and RCP (Fig. 4e, f, k, l)
components. The amplitudes of both polarization components
are connected by a mirror transformation, φ→−φ. This sym-
metry is inherited from the driving field, and it is preserved
during HHG, as a consequence of the mirror reflection symmetry
stemming from the point group of graphene, namely the dihedral
group D6h.

For the sake of comparison, we show in Fig. 4m, n the intensity
and phase profiles of the LCP component of the 25th harmonic
obtained in Ar driven by a P ¼ 1 LPVB. In this case, as for any
isotropic target, the RCP component shows an identical intensity
profile as the LCP and conjugated phase. As a consequence, the
superposition of both polarization modes results in an LPVB
harmonic near-field with the same topology, same P, as the
driver. Therefore, HHG in gases can be regarded as a
topologically invariant frequency up-conversion of the driving

field—P being the topological invariant—resulting from the
isotropic character of the non-linear response of the gas.

In sharp contrast, the harmonic near-field intensity obtained
from SLG is structured into a necklace pattern (Fig. 4a, g). The
necklace beads correspond to target regions where the driver’s
polarization tilt coincides with those angles where the SLG
anisotropy shows a stronger non-linear response47. In corre-
spondence, the harmonic phase and ellipticity distributions are
modulated, as shown in Fig. 4b, d, f, h, j, l. Note therefore that, as
a result of the SLG anisotropic non-linear response, the harmonic
near-field emitted by SLG does not correspond anymore to an
LPVB, meaning that the P topological invariance in HHG is
broken.

According to Fig. 3, the amplitude of each polarization mode of
the harmonic field can be cast into a superposition of OAM
modes. Thus, in the general case of a target of N-fold symmetry,
the near field amplitude can be expressed as:

F ±
q ðρ;φÞ ¼ e± i‘φ ∑

1

s¼�1
c±q;sðρÞ e± iNs‘φ; ð2Þ

where q is the harmonic order, and c±q;sðρÞ are complex Fourier
amplitudes. The upper/lower sign in Eq. (2) applies to the RCP/
LCP components of the field, respectively. Factoring the near-
field as a product of the driving field amplitude times the material
response function (susceptibility)—i.e., the first factor and the
sum term in Eq. (2)—the susceptibility χq of the non-linear
response of the target is defined by the near-field amplitudes as:

χ ±
q ðρ;φÞ / ∑

1

s¼�1
c±q;sðρÞ e± iNs‘φ ð3Þ

The rotational symmetry of the target response reflects the
coupling between the target’s symmetry, CN, and the driving field
Poincaré’s topological index, P ¼ ‘, thus revealing the funda-
mental coupling between the target symmetries and the driving
field’s topology in HHG.

Taking into account the near-field harmonic description, we
now derive an analytical model to reproduce the far-field
harmonic profile, in order to understand its topological proper-
ties. To do this, we simplify the near-field harmonic emission
F ±
q ðρ;φÞ in Eq. (2) to a circumference with amplitude F ±

q ðρ0;φÞ,
ρ0 corresponding to the radius of maximum intensity in Fig. 4a, g.
We use this expression to compute the Fraunhofer integral for the
far-field distribution (see Methods “Derivation of the analytical

Fig. 3 Comparison of the orbital angular momentum (OAM) carried by the high-order harmonics emitted from anisotropic and isotropic targets. OAM
content of the left circularly polarized (LCP) and right circularly polarized (RCP) components of the HHG spectrum driven by a linearly polarized vector
beam (LPVB) with P ¼ 1(a) and with P ¼ 2(b) in graphene. The interplay between the driving beam and crystal symmetries leads to the appearance of
higher components—different from those of the driver—in the OAM content of the harmonic beams. For comparison, the OAM content obtained in argon
driven by an LPVB with P ¼ 1 is shown in (c). The OAM is extracted from the Fourier transform of the harmonic field along the azimuthal coordinate.
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far-field model”), which reads as:

U ±
q ðβ; ϕÞ ¼ ∑

s
η±
q;sJ ± ðNsþ1Þ‘ κβ

� �
e± iðNsþ1Þ‘ϕ ð4Þ

where (β, ϕ) are the radial and azimuthal far-field angular
coordinates, and κ= 2πqρ0/λ, λ being the driver’s wavelength.
The coefficients η±

q;s are complex amplitude factors propor-
tional to the near-field Fourier components cq;s

± ðρ0Þ:
η±
q;s ¼ �2πi qρ0λD ei2πqD=λc ±q;sðρ0Þe�iðNsþ1Þ‘π=2. In Fig. 5a, we plot
the far-field intensity profile of the LCP component of the 9th
harmonic from SLG computed from our model—Eq. (4) using
N= 6. The excellent agreement between the main features of
the results from our simplified model and the exact results
(Fig. 2a) allows us to use this model to analyze the topological
structure of the far-field harmonics.

Topological harmonic spectroscopy. Inspired by the results
presented in Figs. 2 and 5a, we propose to decompose a general
far-field harmonic profile into a topological cluster. Indeed, the
far-field profile in Eq. (4) can be rewritten as the superposition of
vortices. Such cluster is composed by the repetition of a single
elemental vortex structure, with topological charge ℓ and radius
a0. First, the central component of the cluster propagates on axis,
therefore it is given by:

U ± ;0
q ðr; ϕÞ ¼ A0J ± ‘ z‘

r
a0

� �
e ± i‘ϕ; ð5Þ

where zℓ is the position of the first amplitude maximum of the
Bessel function Jℓ(z), and r and ϕ are the polar coordinates of the
far-field plane. Note that the far-field divergence β and the radial
coordinate r are related through the distance to the detector, D,
by β ≈ r/D. Second, the other vortices composing the cluster,
present diverging centers and are organized as set of necklaces
with radii rν, ν > 0 being the necklace index (see red lines in
Fig. 5a). Each necklace ν is composed by a regular distribution of
Nℓ vortices, placed at azimuthal angles ϕ±

n;ν ¼ 2πn=N‘±ϕ0;ν .
Therefore, the ν necklace field is given by:

U ± ;ν
q ðr;ϕÞ ¼ Aν ∑

N‘�1

n¼0
J ± ‘ z‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x ± ;ν

n Þ2 þ ðy � y ± ;ν
n Þ2

q
a0

0
@

1
Ae

± i‘ arctan
y�y ± ;νn
x�x ± ;νn ð6Þ

where x ¼ r cosϕ, y ¼ r sinϕ are the far-field cartesian coordi-
nates, and x ± ;ν

n ¼ rν cosϕ
±
n and y ± ;ν

n ¼ rν sin ϕ
±
n denote the

position of the vortex centers within the necklace. Figure 5b
shows the resulting superposition of the central vortex and the
first necklace, with the choices A1/A0= 0.55e−i0.45π, r1= 4.1a0,
and ϕ0,1= 12°. As it can be observed, an excellent description of
the far-field harmonic profile can be given equivalently either by a
polar distribution of a set of on-axis vortices—obtained through
the analytical far-field model given by Eq. (4)—or by a topological
cluster composed of identical vortices distributed as necklaces
around a central one—given by Eq. (6). Note that from the
practical viewpoint, this later representation is described by
geometrical parameters: the vortex and necklace radii (a0 and rν),
and the necklace rotation (ϕ0,ν), which can be well determined by

Fig. 4 Near-field harmonic emission profiles obtained in anisotropic and isotropic targets. Near-field intensity, ellipticity and phase properties of the 9th
(a–f) and 7th (g–l) harmonics in single-layer graphene driven by a P ¼ 1 and P ¼ 2 linearly polarized vector beam (LPVB), respectively. The
decomposition into polarization components evidences the connection through a mirror transformation of the left circularly polarized (LCP) (c, d, i, j) and
right circularly polarized (RCP) (e, f, k, l) intensity and phase distributions. For the sake of comparison, m, n show the near-field LCP component’s intensity
and phase distributions of the 25th harmonic in argon driven by a P ¼ 1 LPVB. The ellipticity ϵ is computed from the Stokes parameters, where ϵ= ±1
corresponds to LCP (+) and RCP (−) fields, respectively.
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a simple inspection of the far-field intensity profile. On the other
hand, the contrast ratios Aν/A0 can be also found by best fit from
the far-field intensity distribution.

The configuration of the far-field topological cluster, therefore,
encodes the details of the non-linear response of the target, as
depicted by Eq. (3), defining topology as a relevant spectroscopic
observable. The suitability of the topological approach can be
demonstrated by determining the direct relationship between the
geometrical parameters of the far field vortices and the Fourier
components (cs) describing the material response (see Eq. (3)). To
this aim, we use the equivalence between the far-field descrip-
tions: the polar description of on-axis vortices—Eq. (4)—and the
topological cluster composed of necklaces of displaced vortices—
Eq. (6). As we demonstrate in the Methods section, the necklace
of displaced vortices ν can be re-written as:

U ± ;ν
q ðr; ϕÞ ¼ AνN‘e± i‘ϕ ∑

s
e± iNs‘ðϕ�ϕ0;ν ÞJ ±Ns‘ z‘

rν
a0

� �
J ± ðNsþ1Þ‘ z‘

r
a0

� �
: ð7Þ

Considering the on-axis vortex, which is given by

U ± ;0
q ðr; ϕÞ ¼ A0J ± ‘ z‘

r
a0

	 

e± i‘ϕ, the total far field can be

expressed as:

U ±
q ðr; ϕÞ ¼∑

ν
U ± ;ν

q ðr; ϕÞ

¼N‘∑
s

∑
ν>0

Aνe
�iNs‘ϕ0;ν J ±Ns‘ z‘

rν
a0

� �� �
J ± ðNsþ1Þ‘ z‘

r
a0

� �
e± iðNsþ1Þ‘ϕ

þ A0J ± ‘ z‘
r
a0

� �
e± i‘ϕ:

ð8Þ
Comparing Eqs. (8) to (4), we find two relevant relationships. On
the one hand, through inspection of the arguments of the Bessel
functions of order ±(Ns+ 1)ℓ we can extract the ratio between the
radius of the elemental vortex composing the far-field topological
cluster (a0) and the distance from the target to the far-field plane
(D) as:

a0
D

¼ z‘λ
2πqρ0

: ð9Þ

This allows us to establish a direct relationship between the vortex
radii, a0, with the radius of the driving LPVB, ρ0. On the other
hand, a second condition is given by:

c±q;sðρ0Þ ¼ i±Ns‘K ±
‘ N‘ ∑

ν>0
Aνe

�iNs‘ϕ0;ν J ±Ns‘ z‘
rν
a0

� �
for s ;≠ 0

ð10Þ

c±q;0ðρ0Þ ¼ K ±
‘ A0 þ N‘ ∑

ν>0
AνJ0 z‘

rν
a0

� �� �
; ð11Þ

with K ±
‘ ¼ i± ‘þ1e�i2πqD=λa0=z‘. Thus, Eqs. (10) and (11)

demonstrate that the target response, Eq. (3), is completely
defined by the characteristics of the topological objects that
describe the harmonic far field. Additionally, Eqs. (10) and (11)
ground a basic procedure for topological spectroscopy: once the
topological structure of the harmonic far-field is recorded, the
nonlinear response of the target can be extracted. In particular, by
measuring the number (ν) and rotation (ϕ0,ν) of the necklaces, the
necklace to vortex radii ratio (rν/a0), and the amplitudes ratio of
the necklace vortices to the central one (Aν/A0), and assuming
vortices with Bessel profiles—as those shown in Eq. (6)—Eqs.
(10) and (11) can be used to recover the Fourier components of
the target response in a circle of radius ρ0—i.e., the circle of
intensity maxima of the driving LPVB. The direct map of the
driver’s azimuth to the polarization, characteristic in an LPVB,
allows using the inverse Fourier transform of the coefficients c�q;s
to recover the q-th harmonic non-linear anisotropic response of
the target. In addition, it holds the potential to uncover the
possible inhomogeneous response of the target response along the
circle of maximum intensity of the driver.

As a proof of concept, we apply the above steps to the 9th order
harmonic far field obtained numerically from an P ¼ 1 LPVB
driver with ρ0= 22 μm, as shown in Fig. 2a, c. As we mentioned
above, a simple best-fit analysis yields a far-field cluster composed
by an on-axis vortex and a single necklace of Nℓ= 6 vortices, with
rotation ϕ0,1= 12∘, an amplitude ratio A1/A0= 0.55e−i0.45π, and a
radius r1= 4.1a0. For these parameters, Eq. (9) gives a0/D= 4.44

a Analytical far-field model

-1.8 0.2
Norm. Intensity (log. scale)

b Topological cluster

Fig. 5 The inverse problem: retrieving the nonlinear response from the topological harmonic properties. Harmonic far-field from our simplified model
and its reconstruction using a topological cluster of vortices. a Intensity profile of the left circularly polarized (LCP) component of the 9th harmonic from
single-layer graphene driven by a P ¼ 1 LPVB, obtained from the analytical far-field model, given by Eq. (4). The resulting far-field profile can be
decomposed into a topological cluster of vortices with ℓ= 1 and radius a0, as depicted by the red lines in (b): a central vortex and a necklace of radius
r1= 4.1a0 composed of Nℓ= 6 vortices. The excellent agreement of the resulting far-field intensity profile reconstructed from the topological cluster in (b),
given by Eq. (8), compared to (a) and Fig. 2a, demonstrates the working principle of topological harmonic spectroscopy.
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mrad. Feeding Eqs. (10) and (11) with these necklace and vortex
parameters we can find the values of the 9th-harmonic response
coefficients c9,0, c9,±1 defined in Eq. (3). The relative ratios found
are c9,1/c9,0= ±0.84 × ei0.22π and c9,−1/c9,0= ±0.83 × e−i0.87π. Tak-
ing into account that the ratios between the Fourier components
of the computed near-field shown in Fig. 5 are c9,1/
c9,0= 0.83 × ei0.35π and c9,−1/c9,0= 0.83 × e−0.84π, and that we
have only considered the central vortex, ν= 0 and the first
necklace ν= 1, our results demonstrate the potentiality of
topological high harmonic spectroscopy to extract information
about the anisotropic crystal’s response. In Supplementary Note 2,
we demonstrate that this method can be applied to identify the
role of interband and intraband contributions to HHG. However,
we note that the proposed method would highly benefit from
further developments in retrieval algorithms that can infer the
anisotropic response through topological far-field traces.

Conclusion. We have demonstrated a scenario for high-harmonic
spectroscopy stemming from the interaction of structured driving
beams with crystalline solid targets. In contrast to isotropic gas-
eous targets, we show that crystal symmetries couple with the
driving beam’s topology during HHG. The signature of this
coupling is encoded into a complex spatial structure in the
emitted harmonics. Particularly, we unveil this intertwined pho-
ton conversion by studying HHG from single-layer graphene
driven by LPVB. We show that, in contrast to the isotropic case,
the harmonics generated from crystal targets can break the
conservation of the driver’s topological structure, according to
their constituent symmetries. We provide an analytical derivation
that allows to (1) predict the topology of the high harmonic
beams from the target’s anisotropic symmetry, and (2), retrieve
the anisotropic response of the target from the topology of the
high harmonic beams. As a consequence, high harmonic spec-
troscopy based on topology allows to extract spatially resolved
information about the nonlinear response of the target, which can
not be obtained with standard spectroscopic techniques.

Though we have demonstrated the interplay of the vector beam
driver topology with the target’s symmetries in two-dimensional
materials such as graphene, we believe our results open a general
scenario for topological optics in which the target’s non-linear
response is coupled with the topological structure of light. Note
that propagation effects may play a relevant role in the case of
HHG in bulk crystals44,45. In general, any property that presents
an anisotropic HHG response could be characterized. For
example, interband and intraband contributions to HHG respond
differently to the driver’s ellipticity in bulk silicon44, and as such
the nature of the harmonic’s contribution can be characterized
through its topology when driven by properly chosen vector
beams (see Supplementary Note 2). Finally, we believe that this
technique can be further used to characterize more complex
targets such as polycrystals53,54 or heterostructures55.

Methods
Numerical simulations of high-harmonic generation in gra-
phene and in gases. HHG driven by structured beams requires
the computation of the macroscopic response of the target. Our
strategy follows the discrete-dipole approximation method pre-
sented in ref. 56, which has been recently also applied to graphene
polycrystals54. In this method, the graphene target is divided into
a set of elemental surfaces of dimensions small enough to assume
the local field profile constant, but still enclosing a sufficient
number of graphene’s lattice cells to allow the approximation of
the Brillouin zone as a continuous region. Next, we integrate the
Schrödinger equation to obtain the mean dipole acceleration in
each elementary surface. The dipole acceleration is used to

compute the time derivative of the current density, which is
proportional to the radiated near-field, and used as a source for
the electromagnetic field propagator, in order to find the far-field
distribution. Dynamics of the SLG interaction with the driving
field is integrated from the Schrödinger equation in the nearest
neighbor tight-binding approximation12,56. We have also imple-
mented the laser-driven dynamics in SLG through the semi-
conductor Bloch equations (SBE). The comparison between the
macroscopic TDSE and SBE simulations (see Supplementary
Note 1) demonstrates that our results do not depend on the
formalism used to calculate the current density.

In order to compare the results of HHG from SLG with that
from an isotropic target, we have conducted calculations of HHG
in an infinitely thin Ar gas jet. For this, we have followed the
method presented in ref. 57, that has been successfully validated
against several experiments (see for example24,25,27,36–38,41,52).
Similarly to the procedure used for SLG, discussed in the above
paragraph, the gas target is split into elemental emitters. The
dipole acceleration in each emitter is computed using the strong
field approximation, without resorting to the saddle-point
approximation.

Derivation of the analytical far-field model. In our model we
consider a simplified representation of the q-th harmonic near-
field as a circumference of radius of maximal amplitude ρ0, which
also corresponds to the radius of maximum intensity of the
driving field, as:

R±
q ðρ;φÞ ¼ F ±

q ðρ;φÞδðρ� ρ0Þ; ð12Þ
with F ±

q ðρ;φÞ the near-field azimuthal profile, Eq. (2), and (ρ, φ)
the near-field radial and azimuthal coordinates, respectively. In
the results presented in this work for SLG, ρ0 corresponds to
22 μm for the P ¼ 1 LPVB, and 25 μm for the P ¼ 2 LPVB.

We compute the harmonic far-field amplitude, U ±
q ðβ; ϕÞ, from

the Fraunhofer integral of the near-field R±
q ðρ;φÞ. Using Eq. (2),

and after the trivial radial integration, we obtain:

U ±
q ðβ; ϕÞ ¼ �iq

ei2πDq=λ

λD
ρ0 ∑

1

s¼�1
c±q;sðρ0Þ

Z 2π

0
dφ e± iðNsþ1Þ‘φe�iκβ cosðϕ�φÞ

ð13Þ
with κ= 2πqρ0/λ, λ being the driver’s wavelength, and (β, ϕ) the
far-field divergence and azimuthal angles, respectively. Using the
identity:

eiα cosðϕ�φÞ ¼ ∑
m
imJmðαÞeimðϕ�φÞ; ð14Þ

the azimuthal integral in Eq. (13) leads to the condition
m=∓(Ns+ 1)ℓ, and thus Eq. (13) leads to Eq. (4).

Derivation of the topological cluster. A vortex necklace is a
distribution of identical vortices with centers equally distributed
along a ring of radius rν. To compute the polar form of such
structure, we shall first find the polar expression of an off-axis
vortex with center at an arbitrary coordinate (xn, yn), as:

V ðxn;ynÞ
‘ ðx; yÞ ¼ V0J‘

z‘
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xnÞ2 þ ðy � ynÞ2

q� �
ei‘ arctan

y�yn
x�xn ;

ð15Þ
where (x, y) are the far-field cartesian coordinates. Equation (15)
corresponds to the translation of the on-axis vortex V ð0;0Þ

‘ to the
point (xn, yn). To compute the polar form of Eq. (15), we apply
the translation as a phase shift in Fourier space:

~V
ðxn;ynÞ
‘ ðkx; kyÞ ¼ e�ikxxn e�ikyyn ~V

ð0;0Þ
‘ ðkx; kyÞ: ð16Þ
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Defining the far-field polar coordinates in real and Fourier spaces
as (r, ϕ) and (k, φ), respectively, we use the coordinate transfor-
mations x ¼ r cos ϕ, y ¼ r sin ϕ, kx ¼ k cosφ and ky ¼ k sinφ, to

compute ~V
ð0;0Þ
‘ in polar coordinates as:

~V
ð0;0Þ
‘ ðk;φÞ ¼ V0

2π

Z Z
J‘ z‘

r
a0

� �
ei‘ϕe�ikr cosðϕ�φÞrdrdϕ

¼ i�‘V0e
i‘φ

Z
J‘ z‘

r
a0

� �
J‘ðkrÞrdr

¼ i�‘V0
a0
z‘
δ

z‘
a0

� k

� �
ei‘φ

ð17Þ

where, for the last step, we have used the identity:

1
x
δðx � aÞ ¼

Z 1

0
J‘ðxtÞJ‘ðatÞtdt: ð18Þ

Defining xn ¼ rn cos ϕn and yn ¼ rn sin ϕn, we can compute

V ðxn;ynÞ
‘ in Eq. (15) in polar coordinates as the inverse Fourier

transform of ~V
ðxn;ynÞ
‘ in Eq. (16), leading to:

V ðrn;ϕnÞ
‘ ðr; ϕÞ ¼ 1

2π

Z Z
~V
ð0;0Þ
‘ ðk;φÞe�ikrn cosðφ�ϕnÞeikr cosðφ�ϕÞkdkdφ:

ð19Þ
Using Eqs. (17) and (14), we find from Eq. (19) the polar

description for the vortex displaced to (xn, yn) as:

V ðrn;ϕnÞ
‘ ðr; ϕÞ ¼ ð�1Þ‘V0e

i‘ϕ ∑
m
e�imðϕ�ϕnÞJm

z‘
a0

rn

� �
Jm�‘

z‘
a0

r

� �
:

ð20Þ
Correspondingly, using Eq. (20) the polar expression of the

vortex necklace with radius rν defined in Eq. (6) is given by:

U ± ;ν
q ðr; ϕÞ ¼ ∑

N‘�1

n¼0
V

ðrν ;2π‘nN�ϕ0;ν Þ
± ‘ ðr; ϕÞ

¼ AνN‘e± i‘ϕ ∑
s
e± iNs‘ðϕ�ϕ0;ν ÞJ ±Ns‘

z‘
a0

rν

� �
J ± ðNsþ1Þ‘

z‘
a0

r

� �
;

ð21:Þ
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