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Non-orthogonal cavity modes near exceptional
points in the far field
Jingnan Yang1, Shushu Shi2, Sai Yan2, Rui Zhu2, Xiaoming Zhao3, Yi Qin4, Bowen Fu1, Xiqing Chen1, Hancong Li1,

Zhanchun Zuo 2, Kuijuan Jin 2, Qihuang Gong 1 & Xiulai Xu 1,5✉

Non-orthogonal eigenstates are a fundamental feature of non-Hermitian systems and are

accompanied by the emergence of nontrivial features. However, the platforms to explore non-

Hermitian mode couplings mainly measure near-field effects, and the far-field behaviours

remain mostly unexplored. Here, we study how a microcavity with non-Hermitian mode

coupling exhibits eigenstate non-orthogonality by investigating the spatial field and the far-

field polarization of cavity modes. The non-Hermiticity arises from asymmetric back-

scattering, which is controlled by integrating two scatterers of different size and location into

a microdisk. We observe that the spatial field overlap of two modes increases abruptly to its

maximum value, whilst different far-field elliptical polarizations of two modes coalesce when

approaching an exceptional point. We demonstrate such features experimentally by mea-

suring the far-field polarization from the fabricated microdisks. Our work reveals the non-

orthogonality in the far-field degree of freedom, and the integrability of the microdisks paves

a way to integrate more non-Hermitian optical properties into nanophotonic systems.
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Hermiticity in quantum mechanics guarantees orthogon-
ality and completeness of eigenstates in a Hermitian
system. In contrast, eigenstates of a non-Hermitian sys-

tem are usually non-orthogonal. The eigenstate non-
orthogonality is the fundamental and distinct feature to reveal
the non-Hermiticity1,2, and provides the basis for key non-
Hermitian phenomena such as the exceptional point (EP). In
other words, the eigenstates and eigenvalues simultaneously
coalesce at peculiar spectral singularities3–6. EP enables many
counter-intuitive phenomena including the chiral absorption7,8

and the strongly modified spontaneous emission9,10. Therefore,
degrees of freedom that exhibit the eigenstate non-orthogonality
are highly desired for functions of non-Hermitian quantum
devices11, such as discriminating non-Hermitian quantum
states12 and exploring non-Hermitian topological physics13,14.

Recently, optical systems have been attracting increasing
interests in studying non-Hermitian physics15–19, such as the
whispering gallery mode (WGM) microcavities with asymmetric
backscattering11,20, parity-time (PT) or anti-PT symmetry16,21.
Such microcavities provide a platform to investigate the non-
orthogonal modes in different degrees of freedom, such as pro-
pagation direction11,22, resonance frequency23, intensity and
beam dynamics24,25. Another degree of freedom, far-field polar-
ization, is correlated to the symmetry and the orthogonality of
near field26–28 and plays key roles in nanophotonics, such as
single-photon sources29, lasers30, nonlinear frequency
conversion31 and topological optics32 and structured light33.
However, the measurement of WGM microcavities with non-
Hermitian mode coupling or PT symmetry mainly relies on the
near-field fiber coupling11,23. As such, far-field polarization fea-
tures of such WGM microcavities remain unexplored.

We use an ensemble of quantum dots as internal broad-band
light sources to enable the far-field excitation34, and use integrated
internal scatterers to reduce the effects of disturbances from using
external scatterers in the far-field collection. By integrating internal
scatterers such as air cuts, bulges or holes, non-Hermitian mode
coupling can be obtained in the WGM microcavities35–38. Fur-
thermore, compared to traditional cavities with non-Hermitian
mode coupling realized by external scatterers or gain/loss, the
integrated internal scatterers enable small-size designs with small
mode volumes and large-scale on-chip integration. These two fea-
tures provide the basis for studying non-Hermitian cavity quantum
electrodynamics (QED) and quantum optical devices9,39–42.

Here we study the polarization of far-field photoluminescence
(PL) spectra from cavity modes in microcavities with non-
Hermitian mode coupling around an EP. The non-Hermiticity in
mode coupling is realized by the asymmetric backscattering from
two internal weak scatterers of different size and location, and the
mode non-orthogonality is further controlled by the relative angle
between the two scatterers. We reveal the angle dependence of the
spatial field distribution and the far field polarization as non-
Hermitian features of the system. Approaching an EP, we observe
that the spatial field overlap of two modes increases abruptly, and
the far-field polarizations of two modes are nearly identical,
corresponding to coalescent eigenstates at an EP. These polar-
ization features are further demonstrated by experimental mea-
surements of fabricated microdisks. Since our microdisks with
internal weak scatterers can be integrated on-chip, the non-
orthogonality based near- and far-field features enable further
applications to integrate the non-Hermitian optical properties
into nanophotonic systems.

Results
Theoretical analysis. Left and right eigenstates, ψL

i

�� �
and ψR

i

�� �
,

correspond to Hamiltonians H and H†, respectively43. In contrast

to a Hermitian system, in a non-Hermitian system we have
H ≠H†. Therefore, the non-Hermitian system follows the bi-
orthogonality hψL

i jψR
j i ¼ δi;j, which is very challenging to be

directly experimentally obtained. However, the self-orthogonality
terms hψR

i jψR
j i and hψL

i jψL
j i, which follow δi,j for a Hermitian

system, do not vanish for i ≠ j for a non-Hermitian system. This is
the intrinsic difference between Hermitian and non-Hermitian
systems. The non-orthogonality hψR

i jψR
j i supports non-trivial

phenomena such as chirality11 and topology44, therefore, it is one
focus of theoretical and experimental investigations on non-
Hermitian systems.

Non-Hermitian optical systems with non-Hermitian mode
coupling have been achieved by the asymmetric backscattering
between clockwise (CW) and counter-clockwise (CCW)
traveling-wave modes in a WGM microcavity. These modes are
quasinormal modes since the optical microcavity is non-
conservative with energy loss45–47. We only focus on well
confined transverse electric (TE) modes in the first radial order
with a high quality (Q) factors48 and dominating Ex, Ey and Hz

components, which can be easily experimentally observed in far-
field photoluminescence (PL) spectra from microcavities with
embedded self-assembled quantum dots as excitation
sources37,49–52. Here the TE modes are labeled by TE1,m with
the azimuthal mode number m. The cavity mode function follows
ψCW∝ e−imϕ and ψCCW∝ eimϕ thus has 2m antinodes along the
cavity perimeter. ϕ is the azimuthal angle in the polar coordinate.

WGMs are very sensitive to nano-scale perturbations53–56.
These perturbations act as Rayleigh scatterers that introduce the
backscattering coupling between CW and CCWmodes, which are
degenerate without scatterers. The non-Hermiticity in WGM
mode coupling can be realized and modulated by the asymmetric
backscattering from weak scatterers20 or strong scatterers38. Here
we consider a WGM cavity with two weak scatterers and use a
two-mode approximation based Hamiltonian picture to analyze
how the non-Hermiticity is controlled by the scatterers. The
corresponding Hamiltonian using the traveling-wave basis ψR

CW

�� �
and ψR

CCW

�� �
is written as

H ¼ ω0 þ ω0 Aþ Be�i2mβ

Aþ Bei2mβ ω0 þ ω0

 !
: ð1Þ

The terms A and B are complex because the scatterers induce a
frequency shift and extra loss to the cavity modes, and they
describe the backscattering effect from the two different weak
scatterers, respectively. For more details about the two-mode
approximation model, see Supplementary note 3 in supplemen-
tary materials (SMs). ω0 is the complex eigenvalues for the
unperturbed microcavity, ω0 represents the complex frequency
shift resulting from the two scatterers, and β is the relative angle
between the two scatterers, as illustrated in Fig. 1a. Eigenvalues
and eigenstates can be obtained respectively as

ω1;2 ¼ ω0 þ ω0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cosð2mβÞ

q
; ð2Þ

ψR
1;2

��� E
¼ M ψR

CW

�� �
±N ψR

CCW

�� �
: ð3Þ

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Be�i2mβ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 2B cosð2mβÞ

p
and N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Bei2mβ

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Aþ 2B cosð2mβÞ
p

. The eigenfrequencies are periodically modu-
lated by β with period P= 180°/m= 15° for m= 12. To quantify the
eigenstate non-orthogonality, we introduce cosðθeigmÞ ¼ hψR

1 jψR
2 i,

where we call ψR
1

�� �
and ψR

2

�� �
orthogonal (coalescent) if cosðθeigmÞ ¼

0 (cosðθeigmÞ ¼ 1).
When the two weak scatterers differ (A ≠ B), eigenstates exhibit

non-orthogonality. In particular, EPs can be realized when one of the
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non-diagonal terms ofH in Eq. (1) vanishes near β= (L+ 1/2) × 15°
(L is an integer) andH becomes defective20,57. To further explore the
non-Hermiticity, we calculate the dependence of ω1,2 and cosðθeigmÞ
on β for m= 12, and present the results in Fig. 1c–g. The values for
A, B and ω0 þ ω0 are deduced from complex eigenfrequencies in
simulation results, for details see Theoretical calculations of
eigenvalues in Methods. From eigenvalues in Eq. (2), it can be
inferred that non-Hermitian degeneracy happens when
A2 þ B2 þ 2AB cosð2mβÞ ¼ 0, which is possible when ∣A∣ ≈ ∣B∣,
cosð2mβÞ � �1 and sinð2mβÞ � 0. For every β= (L+ 1/2) × 15°,
there are two different β that can satisfy this requirement, but
correspond to different eigenmodes. As shown in Fig. 1e, f,
resonance frequencies (e) and decay rates (f) of two modes become
degenerate symmetrically around β= 172. 5° with two EPs.

Simulation results. We implement numerical simulations using
the finite element method. To control the non-Hermiticity,
cylinder air holes are set in the microdisks with a thickness of
250 nm and a radius of 1 μm as shown in Fig. 1a. The two
scatterers are defined by the radius r1,2, the distance from the
microdisk center d1,2 and the relative angle β. We use
r1,2= 37.285, 32.03 nm and d1,2= 733.12, 749.95 nm, which fol-
lows r1 > r2 and d1 < d2 to achieve ∣A∣ ≈ ∣B∣ for an EP20. Details
about the designs and the simulation methods are presented in
Methods and Supplementary note 1 in SMs.

We focus on the spatial field distribution and far-field
polarization of the two modes. At an EP, two modes propagate
as traveling waves and coalesce into one mode with the same
complex eigenfrequencies. As shown in Fig. 1b, the contrast
between near-field antinodes and nodes for β ≈ 172.44° becomes
vague, exhibiting features similar to traveling waves. More
obvious features like traveling waves rather than standing waves
can be seen in Supplementary Fig. S1(j) in SMs. Meanwhile, two
modes have almost the same complex eigenvalues as shown in
Fig. 1e, f. Ex and Ey components of two modes distributed along a
black circle on the microdisk surface as shown in Fig. 1b highly

coincide at β ≈ 172.44° as shown in Fig. 2a. In contrast, when
away from the EP (e.g., β ≈ 165°), an obvious spatial phase
difference exists between Ex and Ey components of the two
modes, as shown in Fig. 2a. To describe the spatial field overlap of
two modes, we define Sk (k= Ex, Ey or Hz) to quantify the non-
orthogonality. Take Hz for example, we have

SHz
¼
Z

Hz1
�Hz2dV

����
����; ð4Þ

where Hzi is the normalized field extracted from the simulations.
The normalization considers the field in the perfectly matched
layer due to the non-Hermiticity of the quasinormal modes45. For
details of the normalization, see Normalization of simulated
spatial field in Methods. Figure 1g shows cosðθeigmÞ from the two-
mode picture Eq. (1) and SHz

for two different holes (labeled by
green circles) from the simulation with varying β. Both two
parameters, which quantify the non-orthogonality, increase
abruptly when approaching the EP and reach their maximum
values at the EP. Similar changes also apply to SEx

(blue crosses)
and SEy

(purple dots) as shown in Fig. 2a, which exhibit the same

trend but in a larger ratio versus β compared to SHz
. By

comparison, such high non-orthogonality is not observed for two
identical holes as shown by the results in Fig. 1(g) (labeled by blue
circles) and Supplementary Fig. S2(c) and (d) in Supplementary
note 2 in SMs. The near-field distributions are strongly molded by
the holes because of their direct effects on the eigenstate non-
orthogonality. By comparison, the extra energy loss of the cavity
caused by the scatterers is relatively weakly molded because it is
affected by the spatial overlap between scatterers and mode field.

Note that cosðθeigmÞ in Fig. 1g indicates two EPs while SHz
only

responds to one EP at β ≈ 172.44°. Another EP is expected to
appear at β ≈ 172.56° based on the two-mode picture (Eq. (1)).
The deviation lies in the imperfection of the two-mode
approximation model we use instead of the imperfection of the
simulation mesh size, for example, only considering TE modes
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Fig. 1 Simulation and theoretical results for a microcavity with two scatterers. a Illustration of a microdisk integrated with two holes. b Simulated near-
field ∣E∣ distribution of two modes close to an EP with β≈ 172.44°. Here r1= 0.037285 μm, r2= 0.03203 μm, d1= 0.73312 μm, d2= 0.74995 μm.
Theoretical (solid lines) and simulated (dots) complex frequencies of two modes respectively colored in green and orange with their real parts (c) and
imaginary parts (d). e, f Magnified regions labeled by dashed squares in c and d. g cosðθeigmÞ (solid black line) and SHz

varying with β for two different holes
(green dots) and two identical holes (blue dots).
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with a fixed m is not a good assumption for internal scatterers36

and A and B in the Hamiltonian H are not always constant for
different β. Indeed, the two EPs correspond to two slightly
different sets of scatter designs as predicted by the local basis
theory58, rather than the same design predicted by the two-mode
picture using global basis. Further development is still needed to
improve for theoretically describing such WGM cavities with
non-Hermitian scattering physical process with multiple weak
scatterers, especially near EPs. Nevertheless, our conclusions are
further verified with the numerical simulations by solving
Maxwell’s equations considering the propagation laws in
different media and materials and subsequent experimental
demonstrations.

The far-field polarization is correlated to the symmetry of the
near-field distribution inside a cavity. For the cavity mode with
highly symmetric near-field distribution, such as the L3 photonic
crystal cavity, the linear far-field polarization can be predicted
according to the parities of their in-plane electric field
components26,27. However, asymmetric backscattering redistri-
butes the near field and disturbs the symmetry of mode field
distribution, which makes the polarization very complex. In
contrast to the linear polarization in an L3 cavity, elliptical
polarizations with different polarization angles and polarization
degrees are obtained for the two modes in the WGM cavities with
non-Hermitian mode coupling. The numerical simulation results
of typical cases are presented in the insets in Fig. 2b. To describe
the difference between two polarization ellipses, we consider both
polarization angle and polarization degree and define

Dfar ¼
jP1 � P2j
P1 þ P2

þ P1 þ P2

2
sinðΔγÞ: ð5Þ

P1 and P2 are the polarization degrees of two modes, defined as
the ratio of the major axis a to the minor axis b in the polarization

ellipse, while Δγ is the polarization angle difference (0° to 90°)
between two modes, which are illustrated in Supplementary
Fig. S4a in supplementary materials. The first term of Dfar

describes the difference originating from the polarization degree
difference between two modes, while the second term describes
the difference originating from the polarization angle difference
between two modes. For the second term, we multiply the
polarization angle difference sinðΔγÞ by the averaged polarization
degree (P1+ P2)/2. This is because when approaching the circular
polarization (P1,2 ≈ 0), the difference in the polarization angle has
less physical meaning. As shown in Fig. 2b, Dfar decreases when
approaching an EP and reaches the minimum value at an EP. The
polar maps of two polarization ellipses can vary from relatively
large Δγ with P1 ≠ P2 to relatively small Δγ also with P1 ≠ P2, and
coalesce as Δγ= 0 and P1= P2 at the EP.

Experimental results. To experimentally demonstrate the far-field
features, we fabricated microcavities with two holes according to
the simulation results. We span β from 160° to 200° with 1°
increment, and fabricate five identical microdisks for each para-
meter. Figure 3a shows the typical SEM images, recorded for two
microdisks with different β. We use InAs quantum dots embedded
inside the microdisks as the broad-band light sources for the far-
field excitation of the cavity modes. In principle, all the cavity
modes in the spectral range of PL emission from the ensemble of
quantum dots (QDs) can be observed and be tuned for achieving
EPs if with proper scatterer design. However, we only focus on
TE1,12 mode in this work. Specific details on the fabrication method
and experimental setup can be found in Methods.

Figure 3b shows the PL spectra recorded from the microdisks
with different β. As shown, we observe that a pair of split peaks
gradually emerge into one peak at β= 173° and β= 187°, in
agreement with the β ≈ 11.5 × 15° and β ≈ 12.5 × 15° for realizing
EPs predicted in theory discussed above. Figure 3c, d show the
statistics of the fitting results of the frequency splitting (c) and
the decay rates (d) of the two modes. Here in Fig. 3c we use the
difference between two mode frequencies, because the absolute
cavity resonance wavelengths contain fluctuations arising from
random fabrication errors and intrinsic backscattering54.

In Fig. 4a we present the experimental results of far-field
polarization extracted from the PL spectra. As shown, Dfar varies
quasi-periodically with β with two clear dips in Fig. 4a,
corresponding to the coalescent polar maps of polarization
ellipses predicted approaching an EP (Fig. 2b). The polarizations
in three typical cases are presented in Fig. 4b–d, corresponding to
the three pink dots in Fig. 4a. The case of β= 165°= 11 × 15° in
Fig. 4b corresponds to a small spatial overlap (165° in Fig. 2a)
with the maximum frequency splitting and decay rate difference.
As expected, the experimental polarization of spectra (Fig. 4b)
shows that the polarization angle difference can reach up to
Δγ= π/2, in good agreement with the prediction in Fig. 2b. In
contrast, for β= 173° ≈ 11.5 × 15° in Fig. 4c, polar maps of two
polarization ellipses have almost the same polarization angles but
different polarization degrees. For β= 187° ≈ 12.5 × 15° in Fig. 4d,
polar maps of two polarization ellipses are almost identical. These
cases are consistent with the corresponding cases approaching EP
as predicted in Fig. 2b. The good agreement between the theory
and the experiment further strengthens our conclusion that the
far-field polarization is modulated by the eigenstate non-
orthogonality in an optical microcavity with non-Hermitian
mode coupling.

Discussion
Due to the small scale of holes, fabricated active microdisks with
two holes can still allow both small mode volume and high quality
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Fig. 2 Simulation results for the spatial field overlap and the far-field
polarization. a SEx (blue crosses) and SEy (purple dots) of two modes for
two different scatterers where the maximum value corresponds to high
coalescence while the minimum values correspond to high orthogonality.
Insets: Ex (green lines) and Ey (orange lines) of two modes (subscript 1 and
2) with distributed along a black circle inside the microdisks for three
different β as shown in Fig. 1b. b Far field polarization difference Dfar

between two modes labeled by gray dots. The dashed gray line is the
Lorentz fitting curve. Insets: polar maps of normalized polarization ellipses
of two modes colored in orange and green for different β by setting the
ellipse area as 1.
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factors as shown in Supplementary Fig. S3c, d. As they are non-
Hermitian systems with controllable near-field distribution and
far-field polarization, such microcavities show great application
potential in polarization-controllable low-threshold lasers or
single-photon sources, and in the study of non-linear optics and
cavity QED. Furthermore, using internal degrees of freedom of
light, such as frequency and orbital angular momentum,
researchers have proposed to use coupling between different
modes to configure synthetic dimensions59, which can be used for
simulating one-dimensional or two-dimensional non-Hermitian
topological systems60–63. For the cavity in this work, due to the
effects of holes on all the modes, m in Eq. (1) can represent any
different mode. Therefore, by introducing a coupling between
different modes, extra synthetic dimensions could be configured
for simulating non-Hermitian topological systems to study rich
physical phenomena, such as PT phase transition, non-Hermitian
skin effect and novel topological states. The far field polarization
can provide observable channels for understanding the intrinsic
topological physics of these phenomena32,63.

In summary, we integrate two different scatterers into active
microdisks and obtain controllable non-Hermitian systems with
non-orthogonal eigenstates. The eigenstate non-orthogonality is
revealed by the spatial field overlap and the far field polarization
of cavity modes through numerical simulations where high
non-orthogonality corresponds to a large spatial-field overlap
and a small difference in polarization angle and polarization
degree. Further experimental measurements of far-field polar-
ization of the PL spectra of cavity modes demonstrate such far-
field polarization features predicted in simulations. Experi-
mental demonstration of controllable non-Hermitian systems
can inspire more integrated optical devices based on con-
trollable non-orthogonal eigenstates. Meanwhile, such micro-
cavities with non-Hermitian mode coupling have potential
applications in simulating high-dimensional non-Hermitian
topological systems using extra synthetic dimensions to study
novel physical phenomena.

Methods
Theoretical calculations of eigenvalues. To analyze how the
scatterers affect the microdisks, we calculate the eigenvalues and
eigenstates for the two different scatterers. We directly set values
to A and B, which actually considers the mutual effects on
backscattering from each another. A and B are obtained by cal-
culating the eigenvalues at β= 165° and β ≈ 172.44° close to an
EP. For β= 165°, we have δðωÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
. For βEP ≈ 172.44°

near an EP, we have δðωÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2ABcosð2mβEPÞ

q
. By

calculating these two equations, we can deduce the complex
values of A and B. Here A= 0.2985+ 0.0135i,
B= 0.2990+ 0.0056i. While if we use eigenvalues for βEP ≈
172.44° and β ≈ 187.19°, we have A= 0.0231+ 0.0089i and
B= 0.0234+ 0.0077i. Obviously, two sets of A and B are differ-
ent. For the two different scatterers, r1= 0.037285 μm,
r2= 0.03203 μm, d1= 0.73312 μm, d2= 0.74995 μm.

Simulation method for spatial field. To numerically compute
the complex eigenfrequencies and spatial field of TE1,12 quasi-
normal modes in a microdisk, we use a simulation method based
on the finite element method to study the wave optics in a
whispering galley mode (WGM) microcavity. The model we
simulate contains a microdisk with two holes, an outer air layer (a
column with radius of 2.2 μm and height of 2.65 μm removing the
microdisk in the center) and a perfectly matched layer (PML) (a
column with radius of 2.8 μm and height of 4.0 μm removing the
microdisk and air layer) which absorbs the waves emitting out-
wards in different directions and in different wavelength in
spectra from the microdisk. The refractive index of GaAs for
simulation is n= 3.44. Complex eigenfrequencies (ω) of modes
can be directly obtained, of which real and imaginary parts
represent the resonance frequency and the energy loss rate,
respectively. The imaginary parts mainly result from the radiation
loss due to the curved edge of the microdisk as well as the
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Fig. 3 Experimental far-field PL spectra from fabricated microcavities with different β. a Scanning electron microscope (SEM) images of fabricated
microdisks with two holes labeled by red circles for β= 170° and β= 184°. The scale bars are 1 μm. b PL spectra of cavity modes for β from 160° to 187°.
Here the center resonance frequency of each doublet is set as 0 THz for a better demonstration. Statistics of fitting results of resonance frequency splitting
(c) and decay rates (d) of two modes.
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scattering loss from scatterers. The Q factor is calculated by
Q ¼ ReðωÞ

2ImðωÞ.

Normalization of simulated spatial field. To calculate the
overlap of the spatial field of two quasinormal modes, we need to
post-process the simulation results to obtain the integral of two
normalized field components from two different quasinormal
modes. The mode field we obtain from the simulation are initially
not normalized. For the normalization of simulation results, we
follow the quantized cavity mode field, which is

EðrÞ ¼ i

ffiffiffiffiffiffiffiffiffiffi
_ω

2εrε0

s
ðaαðrÞ � aþα�ðrÞÞ: ð6Þ

ω is the cavity mode frequency. ε0 (εr) is the vacuum (relative)
permittivity. a/a+ is the ladder operator of photons. α(r) is the
normalized cavity mode function which means ∫α(r)α*(r)dV= 1.
Therefore, based on the simulated electric field Ecal, we normalize
and get the cavity mode function as

αðrÞ ¼ nðrÞEcalðrÞffiffiffiffiffiffiffiffi
sum

p : ð7Þ

Here sum= ∫∣n(r)Ecal(r)∣2dV. Then we get the normalized electric
field E(r) by

EðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
_ω

2εrε0

s
αðrÞ: ð8Þ

Finally we have

EðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω

2ε0sum

s
EcalðrÞ: ð9Þ

Here normalization coefficient is c ¼
ffiffiffiffiffiffiffiffiffiffi
_ω

2ε0sum

q
.

After the normalization of the simulated field, the spatial field
overlaps between field components of two quasinormal modes are
calculated. Considering the non-Hermiticity of quasinormal
modes, the volume integration to calculate sum= ∫∣n(r)
Ecal(r)∣2dV and spatial field overlap both consider PML, according
to PML-based normalization in45. The refractive index n(r) is set
to different values according to the specific material with n(r)= 1
for air and PML while n(r)= 3.44 for GaAs. V includes all the
simulation space including the air layer, the PML and the
microdisk with two holes. Therefore, j R H�

z1Hz2dVj,
j R E�

x1Ex2dVj and j R E�
y1Ey2dV j can be calculated as SHz

, SEx

and SEy
, respectively.

Simulation method of far-field polarization. To calculate the
far-field polarization ellipse, we use another method, the finite
difference time domain method (FDTD). The simulation model is
the same as above. Randomly positioned magnetic dipoles with
random phases are set inside the microdisk cavity as excitation
sources to simulate quantum dots embedded inside microdisks.
Far-field polarization is exhibited through plotting a polarization
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Fig. 4 Experimental far-field polarization results from fabricated microcavities with different β. a Experimental Dfar labeled by gray and pink dots
between two polarization ellipses of two modes varying with β. The dashed line is a fitting curve. b–d Polar maps of two normalized polarization ellipses for
β= 165°, β= 173° and β= 187° corresponding to the pink dots in a. The green and orange dots refer to the experimental PL intensity fitting data with error
bars when rotating the 1/2λ waveplate and the solid lines refer to theoretical fits. The relative larger error bars in b are due to the weaker PL intensities in
experiments.
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ellipse with the ellipse polarization angle and polarization degree
based on the s and p polarization components with the zero-order
diffraction (0, 0) considered.

The sample. The sample we used for fabricating the microdisks
was grown by molecular beam epitaxy. It is constituted from
bottom to top by a GaAs substrate, an AlGaAs layer of 1 μm in
thickness and a GaAs slab of 250 nm in thickness. One layer of
InAs QDs is grown in the middle of the GaAs slab, which works
as excitation sources with a spectral emission range from 250 to
333 THz.

The fabrication process. To obtain fabricated microdisks, a mask
on the sample surface was first patterned with the designed
structures by the electron beam lithography. Then the sample
with the mask was etched by inductively coupled plasma to
transfer the pattern on the mask onto the GaAs slab and the
AlGaAs layer. Finally the sample with the mask removed was
etched by HF solutions where most of AlGaAs under the
microdisk is etched away. In the end, microdisk devices with an
AlGaAs pedestal below were obtained.

Optical measurement. The optical measurement of fabricated
microdisks was implemented with a conventional confocal micro-
photoluminescence (PL). The microdisk devices were positioned
in a sealed chamber cooled down to 10 K by the liquid helium
flow. The QDs were first indirectly excited by a laser with an
emission wavelength of 532 nm, and then the PL emission of the
ensemble of QDs in a wide spectral range further excited the
microdisk modes. The radiating PL spectra from microdisks were
collected by a high-NA objective lens and then reflected and
focused by a series of optical elements onto a linear array of
InGaAs detectors dispersed through a spectrometer. The far-field
polarization of the cavity modes was measured through putting a
rotating 1/2λ waveplate and a polarizer in the light route and in
front of the spectrometer. After traveling through a 1/2λ wave-
plate, the polarization rotating angle of PL related to the polarizer,
corresponds to twice the rotating angle α1/2λ of the 1/2λ wave-
plate, which is 2α1/2λ.

Experimental polarization data analysis. The cavity modes
exhibit elliptic polarization in the far-field. For a polarization
ellipse, polarization degree Pi (polarizability) and polarization
angle γi (major axis angle) are used to describe it. Here Pi is
obtained by fitting the intensity curve of PL spectra of two modes.
The data is obtained through multiple-peak Lorentz fitting the
intensities of PL spectra of two modes when varying the rotating
angle α1/2λ of 1/2λ wave-plate, as shown in Supplementary
Fig. S4a, b in Supplementary note 4. Then a sine function y ¼
y0þ jAj sinðaðγ� γcÞÞ is used to fit the intensity curve with
varying 2α1/2λ. Finally, the polarization degree Pi is obtained by
calculating Pi= (∣A∣+ y0)/(∣A∣− y0) and the polarization angle
difference Δγ is obtained by calculating Δγ= γ2− γ1. The major
axis is a= (∣A∣+ y0)/2 and the minor axis b= (∣A∣− y0)/2. The
polarization ellipse is normalized by normalizing the area S=
π(∣A∣+ y0)/(∣A∣− y0)/4 to 1 as shown in Fig. 4. Inversely, the
polar maps of polarization ellipses in Fig. 2b can be obtained
when the polarization degree and the polarization angle are
known. To describe the difference between two polarization
ellipses, we define a parameter by considering both the differences
in major angle and polarization degree as

Dfar ¼ jðP1 � P2Þ=ðP1 þ P2Þj þ 0:5ðP1 þ P2Þ sinðΔγÞ: ð10Þ
Here P1 and P2 are the polarization degrees of two quasinormal
modes defined by the ratio of the long axis to the short axis in the

polarization ellipse. ∣(P1− P2)/(P1+ P2)∣ describes the difference
in polarization degree for two quasinormal modes and
0:5ðP1 þ P2Þ sinðΔγÞ describes the difference in polarization angle
multiplying the average polarization degree of two quasinormal
modes. For example, for two identical polarization ellipses,
Dfar= 0. For two polarization ellipses with different polarization
degrees and Δγ= π/2, Dfar= ∣(P1− P2)/(P1+ P2)∣+ 0.5(P1+ P2).

Data availability
Relevant data supporting the key findings of this study are available within the article and
the Supplementary Information file. All raw data generated during the current study are
available from the corresponding authors upon request.
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