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Galilean invariant dynamics in an emergent spin-
orbit coupled Zeeman lattice
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Periodic band structures are a hallmark phenomenon of condensed matter physics. While

often imposed by external potentials, periodicity can also arise through the interplay of

couplings that are not necessarily spatially periodic on their own, but this option is generally

less explored than the fully-periodic counterpart. Here, we investigate dynamics in a lattice

structure that emerges from the simultaneous application of Raman and radio frequency

coupling to a dilute-gas Bose-Einstein condensate. We elaborate on the role of Galilean

invariance in this system and demonstrate a variety of techniques, including Bloch oscillations

and lattice shaking with spin and momentum resolved measurements. This combined cou-

pling scheme allows for tunability and control, enabling future investigations into uncon-

ventional band structures such as quasi-flat ground bands and those with semimetal-like

band gaps.
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Periodic band structures and spin–orbit coupling play a key
role in many modern condensed matter contexts. Imple-
menting these aspects with ultracold quantum gases using

optical lattices1–4 and Raman dressing5 has opened up avenues
for research providing deep insights into topics including syn-
thetic gauge fields6–9, optical flux lattices10, topological state
spaces11,12, supersolids13–15, and more16–22.

Supplementing the Raman-dressing-induced spin–orbit cou-
pling with a suitably chosen radio frequency (RF) drive leads to
the emergence of an effective lattice structure even though neither
the spin–orbit coupling nor the RF alone produces a periodic
structure23–25. This synthesized system possesses spin–orbit
coupling and a lattice. The lattice is spin-dependent and is called
a Zeeman lattice. A static version of the spin–orbit coupled
Zeeman lattice was first introduced in the pioneering works by23

and24 for bosonic and fermionic systems, respectively. The
dynamical control of a bipartite spin–orbit coupled Zeeman lat-
tice leads to geometrical pumping25. These benchmark investi-
gations witness the powerful amalgamation of the spin–orbit
coupling and periodic band structures. Compared to these pre-
vious studies, here we extend the treatment of Zeeman lattices to
an accelerating case where questions regarding the Galilean
invariance of the system become important.

Periodic band structures can be implemented separately for
spin–orbit coupled atoms by optical lattices7. Such spin–orbit
coupled optical lattice systems have been an important platform
to predict novel spin states26, engineer energy band geometry27,
and explore spin–orbit coupled dynamics such as novel Bloch
oscillation22. However, the lack of Galilean invariance in
spin–orbit coupled systems7,16,28,29 greatly reduces the controll-
ability of optical lattices and strongly limits applications.

In our system, we find that the spin–orbit coupled Zeeman
lattice restores Galilean invariance. Accelerating the atoms by an
external force can be substituted by appropriate changes of the
Raman drive frequency. We exploit this feature to investigate
dynamics and demonstrate experimental techniques to manip-
ulate the lattice. We induce Bloch oscillations via an acceleration
of the Zeeman lattice, and spectroscopically probe inter-band
transitions by shaking the lattice resonantly. With the restoration
of Galilean invariance, this work shows that the Zeeman lattice
provides a flexible and robust system for manipulating
spin–orbit coupled atoms by equivalently tuning the Raman
lasers.

Results
Theoretical framework of a Zeeman lattice. A spin–orbit cou-
pled Zeeman lattice is realized via the simultaneous coupling of
two hyperfine states (j"i and j#i) using two separate methods: a
pair of Raman lasers and an external RF field. The couplings
produced by the Raman lasers and by the RF drive are schema-
tically demonstrated in the bare (uncoupled) basis in Fig. 1a. The
Raman beams (marked ΩR in Fig. 1b) are arranged such that they
induce spin–orbit coupling by imparting momentum on the
atoms while also flipping the spins in a two-photon transition.
The RF coupling flips the spins without changing the momentum
state. Then the coupled states, separated in momentum space by
the Raman momentum, can interfere, leading to a periodic
structure.

This coupling scheme is described by the Hamiltonian23

H0 ¼
p2x
2m

þ �Δϵ=2 C
C� Δϵ=2

� �
; ð1Þ

where C ¼ _ΩR
2 exp i 2kRx þ φðtÞ� �� �þ _ΩRF

2 exp iωRFt
� �

. ΩR is the
two-photon Rabi frequency due to the Raman coupling, ΩRF is
the RF Rabi frequency, ωRF is the angular frequency of the RF

field, and ℏ is the reduced Planck constant. The Raman coupling
involves a momentum exchange of 2ℏkR between the atoms and
the Raman beams, where kR is the effective wave vector of Raman
lasers. The energy unit associated with the recoil of the atom due
to the absorption of a photon is the recoil energy given by
ER ¼ _2k2R=2m. The phase φ(t) is connected to the angular
frequency difference between the Raman lasers ΔωR, which can
readily be tuned in the experiment, φðtÞ ¼ R t0 dτΔωRðτÞ. In the
Hamiltonian H0, m is the atomic mass and Δϵ is the energy
difference between the two Zeeman states due to the Zeeman shift
of an external 10 G bias field (see Experimental setup for details).
Without the RF coupling, the spatial dependence in C generates
spin–orbit coupling5, but effectively there is no lattice structure.
Due to the presence of RF coupling, the spatial dependence
cannot be gauged out, therefore leaving the signature of the
spin–orbit coupled Zeeman lattice.

In order to show the spin–orbit coupled Zeeman lattice
explicitly, we apply the unitary transformation
U ¼ exp i 2kRx þ φðtÞ� �

σz=2
� �

5 to the Hamiltonian H0 in Eq.
(1), leading to H=U†H0U− iℏU†∂U/∂t with

H ¼ p2x
2m

þ 1
2

Blatt½x þ x0ðtÞ� þ Bsoc

� 	 � S: ð2Þ

Here, S ¼ σx; σy; σz


 �
are the Pauli matrices. The Zeeman lattice

is spin-dependent and is denoted by Blatt[x]= (bx, by, bz) with
bx ¼ _ΩR þ _ΩRF cos 2kRx

� �
, by ¼ _ΩRF sin 2kRx

� �
, and the

detuning bz= ℏdφ/dt− Δϵ= ℏΔωR− Δϵ. The time-dependent
position offset is x0ðtÞ ¼ φðtÞ � ωRFt

� �
=2kR. Therefore, the

moving velocity of the Zeeman lattice is

vlat ¼
dx0
dt

¼ ΔωRðtÞ � ωRF

2kR
: ð3Þ

The spin–orbit coupling is represented by Bsoc ¼ 0; 0; 2_kRpx=m
� �

.
The combination of Blatt[x] and Bsoc in the Hamiltonian
H represents the spin–orbit coupled Zeeman lattice. If the RF
coupling is switched off, then there is no Zeeman lattice. The
Zeeman lattice becomes stationary when φðtÞ ¼ R t0 dτΔωRðτÞ ¼
ωRFt which implies bz= ℏωRF−Δϵ. The stationary Zeeman lattice

Fig. 1 Zeeman lattice coupling scheme and experimental setup.
a Coupling scheme employed to generate the spin–orbit coupled Zeeman
lattice. The horizontal direction indicates momentum, with a spacing of two
Raman momenta between adjacent states. ΩR is the two-photon Rabi
frequency due to the Raman coupling (illustrated by the green lines), while
ΩRF is the RF Rabi frequency (black wiggly lines). "

�� 
 and #
�� 
 are the

hyperfine states (red and blue lines, respectively), with dashed black lines
indicating the corresponding detuned states. b Schematic of the
experimental configuration. Two Raman beams (green beams, marked ΩR)
are incident on the center of a crossed optical dipole trap (red beams) at
approximately 45° angles relative to the x-axis. The polarization vectors
(colored light green) are perpendicular to the corresponding wave vectors
and lie in the xy-plane. The dark brown coils are the bias coils (marked B

!
).

The gray circle corresponds to the RF antenna (marked ΩRF).
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can be realized by tuning the angular frequency difference ΔωR

between the Raman lasers to exactly equal ωRF, which has been
explored in23,24.

The lattice structure of the above stationary spin–orbit-RF
coupled Hamiltonian [Eq. (2)] can have a meaningful spectrum
which has been presented in24. Fig. 2 shows the band structure
of the stationary Zeeman lattice in various parameter regimes
where the spin polarization 〈σz〉 is indicated by the color of the
curve and given by 〈σz〉= (N↑− N↓)/Ntot. Here, N↑ and N↓ are
the occupation of the spin up "

�� 
 and spin down #
�� 
 state,

respectively, and Ntot= N↑+ N↓. If one applies Bloch’s
theorem to diagonalize the spin–orbit coupling Hamiltonian
(without the RF coupling) assuming an infinite set of plane
wave solutions, one finds that bands in different Brillouin
zones are not coupled and therefore are trivially inaccessible,
shown in Fig. 2a. In other words, this shows that there is no
lattice structure in the Raman-induced spin–orbit coupling.
The inclusion of the RF coupling then opens up gaps and
produces a periodic band structure [cf. Fig. 2b]. The
Hamiltonian H given above can be tuned in highly flexible
ways. For example, it can result in a semimetal-like band
structure [Fig. 2c] or in a nearly flat band as the lowest Bloch
band [Fig. 2d] in different parameter regimes.

Galilean symmetry of the Zeeman lattice. It is well-known that
spin–orbit coupling breaks Galilean invariance7,16,28,30. Our
analysis of the synthesized spin–orbit coupled Zeeman lattice
reveals that this lattice restores the Galilean invariance in the
following sense: For the Zeeman lattice in Eq. (2), the time-
dependence relates to both the Raman lasers and the RF field, i.e.,
x0(t)= (φ(t)− ωRFt)/2kR. We can transform into a frame that is

co-moving with the lattice by applying the unitary transformation
G31,32,

G ¼ exp i
m
2_

Z t

0

dx0ðτÞ
dτ

� �2

dτ

 !
exp �i

m
_

dx0
dt

x

� �
exp i

x0px
_


 �
;

ð4Þ
which can be considered as a generalized Galilean transformation,
since x0(t) may be time-dependent arbitrarily33. With
G†xG= x− x0 and G†pxG= px−mdx0/dt, the resultant Hamil-
tonian in the co-moving frame is Hcom=G†HG− iℏG†∂G/∂t
given by

Hcom ¼ p2x
2m

þ 1
2

B0
latt½x� þ Bsoc

� 	 � Sþ Fx: ð5Þ

Here B0
latt½x� ¼ ðbx; by; b0zÞ with b0z ¼ _ωRF � Δϵ, and bx and by are

as in Eq. (2). Note that B0
latt½x� is exactly the same as for the

stationary Zeeman lattice [φ(t)= ωRFt] in Eq. (2). An arbitrary
acceleration of the Zeeman lattice leaves its Hamiltonian invar-
iant up to an additional term which represents the apparent force
due to the motion of the noninertial reference frame given by
F ¼ �md2x0=dt

2 ¼ �ðm=2kRÞ d2φ=dt2. Therefore, this analysis
reveals that applying an external force to the spin–orbit coupled
atoms in a stationary Zeeman lattice is equivalent to accelerating
the Zeeman lattice without an external force when viewed from
the non-inertial reference frame of the lattice. This equivalence is
taken as a signature of the restored Galilean invariance in the
system, even though it is in the presence of the spin–orbit
coupling.

From an experimental point of view, this is a significant feature.
The motion of spin–orbit coupled atoms can be manipulated
by performing operations on the Zeeman lattice. Moving, accelerat-
ing, or shaking a lattice by changing the laser frequency in one of
the beams can typically be performed with much higher precision
than directly moving the atoms1,31. The restoration of Galilean
invariance is, hence, an important aspect. The restoration is
specific for the spin–orbit coupled Zeeman lattice. A standard
spin–orbit coupled lattice lacks the Galilean invariance. A typical
Hamiltonian for a standard spin–orbit coupled optical lattice
is7,26Hsoc ¼ p2x=2mþ γpxσz þ V0cos

2½x þ x0ðtÞ�, where γ is the
spin–orbit coupling strength, V0cos

2½x þ x0ðtÞ� is the moving optical
lattice, and V0 is the lattice depth. Transforming into the co-moving
frame by applying the generalized Galilean transformation results
in GyHsocG� i_Gy∂G=∂t ¼ p2x=2mþ γpxσz � γmσzdx0=dt þ V0
cos2ðxÞ þ Fx. The lack of the Galilean invariance is demonstrated by
the appearance of the term γmσzdx0/dt, which depends on the frame
velocity dx0/dt. Physically, the optical lattice generated by optical
lattice lasers and the spin–orbit coupling generated by Raman lasers
have two independent frames. Working in the co-moving frame with
the optical lattice must affect the spin–orbit coupling frame in the
way that Raman laser frequencies are Doppler shifted. Therefore it
leads to the appearance of an effective detuning γmσzdx0/dt. The lack
of Galilean invariance in this system means that the manipulation of
motions of the spin–orbit coupled atoms via the optical lattice is
inevitably accompanied by the changing of the spin degree of
freedom. For the spin–orbit coupled Zeeman lattice, the frames for
the Zeeman lattice and the spin–orbit coupling are not independent.
The RF coupling does not produce an additional reference frame for
the atoms due to the negligible Doppler shift associated with RF
frequencies (see Supplementary Note 1 for details). The Zeeman
lattice presented here produces a spin-dependent lattice with a
reference frame that only depends on one parameter—the angular
frequency difference between Raman lasers ΔωR(t). Therefore, in our
experiments described below we only change ΔωR and keep ωRF

constant.

Fig. 2 Band structure over two Brillouin zones where the plot colors
indicate the spin polarization 〈σz〉. a Band structure with spin–orbit
coupling in the absence of RF coupling. The parameters are _ΩR= 2.6 ER,
_ΩRF= 0 and the detuning bz= h × 500Hz. b Band structure of the
stationary Zeeman lattice as described in Eq. (2). The values used in this
figure are _ΩR= 2.6 ER, _ΩRF= 2.3 ER and the detuning bz= h × 500Hz.
c Semimetal-like band structure in the Zeeman lattice. The values used in
this figure are _ΩR= 2.0 ER, _ΩRF= 0.10 ER and the detuning bz= 0 Hz.
d Flat band in the Zeeman lattice. The values used in this figure are
_ΩR= 4.0 ER, _ΩRF= 0.48 ER and the detuning bz= 0 Hz.
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Bloch oscillation in the Zeeman lattice. To investigate dynamics
and exploit the Galilean invariance of the Zeeman lattice, we first
consider Bloch oscillations, i.e., the oscillatory motion of particles
confined in a periodic potential under the influence of a constant
force. Here we explore the band structure shown in Fig. 2(b)
where the lowest band is well isolated from the first excited band,
suppressing Landau–Zener tunneling31.

To experimentally demonstrate Bloch oscillations in the
system, we prepare the ground state of the stationary Zeeman
lattice (see Materials and methods for details) and then ramp up
the frequency difference between the Raman beams in such a way
that the relative phase between the two Raman beams evolves as
φ(t)= ωRFt+ αt2 with α= 15πMHz s−1, or, in different experi-
mental runs, α= 15πMHz s−1. Therefore the Zeeman lattice is
accelerated as x0(t)= [φ(t)− ωRFt]/2kR= αt2/2kR with the con-
stant acceleration α/kR= 8.24 m s−2, or α/kR=− 8.24 m s−2,
respectively. The velocity of the lattice evolves as vlat= αt/kR.
Equivalently, in the frame of the moving lattice atoms feel a
constant force F ¼ �mα=kR from the last term in Eq. (5). It
linearly changes the quasimomentum of the atoms,
kðtÞ ¼ �0:97kR þ F t=_ ¼ �0:97kR �mvlat=_. The acceleration
is applied for up to 2 ms, which corresponds to moving through
more than two Brillouin zones. The ramp can be performed in
either direction (i.e., ± α), yielding four Brillouin zones worth of
data. At various stages along the ramp, and thus for various lattice
velocities, we perform expansion imaging of the BEC and from
the observed velocity components determine the average lab-
frame velocity vlab of the cloud. The obtained vlab as a function of
vlat are presented in Fig. 3a. The staircase structure is the
characteristics of Bloch oscillations. In the co-moving frame with
the lattice, the lattice is at rest and the BEC has the group velocity,
vg= vlab− vlat, which forms the sinusoidal pattern as shown in

Fig. 3b. In theory, the group velocity can be predicted by
calculating the gradient of the lowest band ϵ0(k) shown in Fig. 2b,
vg= ∂ϵ0(k)/ℏ∂k. The theoretically calculated group velocity is
shown by the orange curves in Fig. 3. The good agreement
between the observations and theoretical predictions confirms
that we can effectively accelerate atoms in the spin–orbit coupled
lattice by accelerating the lattice instead.

The condensate atoms experience modulational instability
during their Bloch oscillations, resulting in a fringe-like
substructure within each momentum class. This instability,
influenced by parameters like duration within the unstable
region, the system’s nonlinearity related to the condensate atom
numbers, and external perturbations, leads to random variations
in the width of momentum peaks, suggesting no inherent
significance to the differences observed in the insets of Fig. 3a.

Band spectroscopy of the Zeeman lattice. Next, we show that a
periodic modulation of the frequency difference between the
Raman beams leads to a shaken Zeeman lattice, which can induce
inter-band transitions. This provides a practical means for per-
forming band spectroscopy in the Zeeman lattice.

We begin with a BEC prepared in the ground state of the
stationary Zeeman lattice with ℏΩR= (2.6 ± 0.13) ER, ℏΩRF=
(1.15 ± 0.03) ER, and bz= h × (500 ± 100) Hz (see Materials and
methods for details and Supplementary Fig 2). To modulate
the phase of the lattice1, we apply a sinusoidal modulation
to the Raman frequency difference such that
x0ðtÞ ¼ ½φðtÞ � ωRFt�=2kR ¼ ϕ0 sinð2πftÞ=2kR, where ϕ0/2kR and
f are the shaking amplitude and frequency, respectively. In the co-
moving frame with the shaken lattice, atoms experience the
oscillating force as F ¼ 2π2mϕ0f

2 sinð2πftÞ=kR. To induce inter-
band transition, the amplitude of F should be a perturbation to
the system. We shake the lattice with an amplitude of ϕ0/2kR= π/
20kR for 6 ms using various frequencies f. The measured spin
polarization as a function of f is shown in Fig. 4a. The observed
response of the spin polarization centered at f= (2.02 ± 0.05) kHz
is the signature of an inter-band transition.

Further transitions can be observed by driving the system at
higher frequencies. Here, we modulate the phase by ϕ0/2kR= π/
40kR for 2 ms at each frequency. In this case, the clearest
signature of the transition is seen in the fractional population of
the bare momentum states, which can be understood by
inspecting the spin and bare-momentum composition of the
underlying bands. The availability of different but correlated
observables for the spectroscopy is a particular strength of our
Zeeman lattice. Figure 4b shows that the fractional population of
the zero-momentum state exhibits a single broad feature,
indicating transitions out of the ground band. Plotting the
fractional populations in the ± 2kR states resolves this broad peak
into two peaks centered at (8.24 ± 0.04) kHz and
(8.65 ± 0.02) kHz, respectively, where the uncertainty in the line
center is given by the standard error of the fit to the experimental
data.

These observed features are in reasonable agreement with the
theory calculations for the excitations to the n= 1, 2, 3 states. For
a BEC placed at a minimum of the lowest band occurring at the
quasimomentum k= (0.97 ± 0.02) kR, the diagonalization of Eq.
(2) for the stationary lattice predicts the n= 0→ 1, 2, 3 transi-
tions to occur at frequencies 2.05, 8.12, and 8.79 kHz for our
experimental parameters, as marked with dashed lines in Fig. 4.
These values are calculated based on a two-state model for an
infinite, noninteracting, two-state system. We note that the
resonance frequencies are quite sensitive to the atomic momen-
tum—displacing the momentum along the noninteracting
dispersion by just 0.02 kR produces a near perfect agreement

Fig. 3 Bloch oscillations. a Velocity in the lab frame versus lattice velocity.
The underlying straight line corresponds to vlab= vlat. The absorption
images are taken at two different instances where atoms occupy different
spin-momentum states due to Bloch oscillation. b Group velocity versus
lattice velocity. The blue dots represent the average of three experimental
realizations and the orange line represents the theoretical results based on
the curvature of the ground state band. The error bars represent the
standard deviation of the experimental data. The velocities are reported in
units of recoil velocity, vR= ℏkR/m, but can equivalently be read as
momentum in units of kR. The system was prepared with
ℏΩR= (2.6 ± 0.13) ER, ℏΩRF= (2.3 ± 0.07) ER, bz= h × (500 ± 100) Hz.
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between experiment and theory for all three resonances observed
here. The detuning bz breaks the parity symmetry Pσx of the
stationary spin–orbit coupled Zeeman lattice, where P is the
parity operator with PyxP ¼ �x. So the observation of above
three band transitions is possible without the constraint of the
selection rule due to the parity symmetry (see Supplementary
Note 3 for details).

Conclusions
We have studied the rich dynamics of atoms in a spin–orbit
coupled Zeeman lattice that emerges from the confluence of
spin–orbit coupling and an external radio frequency field. We
have discussed the role of Galilean invariance and find that this
invariance is restored in the Zeeman lattice, while spin–orbit
coupling alone breaks Galilean invariance. This has important
consequences for experiments: controlling the motion of the
lattice structure is typically much more precise and flexible than
controlling the motion of the atoms. We have applied this insight
to characterize the Zeeman lattice using Bloch oscillations and
resonant band spectroscopy. In our band spectroscopy, we have
shown that both spin and momentum composition are useful
observables, demonstrating the multifaceted nature of the Zee-
man lattice. The availability of a variety of correlated observables,
such as spin and momentum populations, affords powerful

experimental tools for performing detailed studies. This work
shows that the spin–orbit coupled Zeeman lattice introduced in
23,24 provides powerful methods for further investigations of
spin–orbit coupling including spin-dependent lattices, the char-
acterization of a semimetal-like band structure (Fig. 2c),
dynamics of a BEC in a tunable flat ground band (Fig. 2d), the
realization of Wannier-Stark ladders34, and exploration of the
spin Hall effect35, to name a few.

Methods
Experimental setup. In our experiment, we prepare a BEC of
approximately 2.5 × 10587Rb atoms in the F;mF

�� 
 ¼ 1;�1j i
Zeeman state. The BEC is confined in a crossed optical dipole
trap characterized by the harmonic trap frequencies ω= (ωx,
ωy, ωz)= 2π (20 ± 2, 160 ± 10, 190 ± 10) Hz. A 10 G ± 0.1 mG bias
field applied along the x-axis lifts the degeneracy among the three
states in the F= 1 hyperfine manifold. We generate spin–orbit
coupling in the x-direction using two Raman beams with a
wavelength of 789 nm intersecting at approximately 45° angles
with the x-axis, as shown in Fig. 1b. This leads to an effective
recoil energy of ER= h × 1.9 kHz. The frequencies of the Raman
beams are tuned such that the 1;�1j i and 1; 0j i states are nearly
resonantly coupled via the two-photon Raman transition. These
two states are additionally coupled by an RF drive (Fig. 1a). The
quadratic Zeeman shift places the 1;þ1j i state far out of reso-
nance so that effectively a spin-1/2 system composed of "

�� 
 �
1;�1j i and #

�� 
 � 1; 0j i as the two pseudo-spin states is realized.
After performing the experiments described in the previous sec-
tions, imaging is performed by suddenly turning off the trap and
all driving fields, and allowing time of flight in the presence of a
Stern–Gerlach field. An absorption image is then taken which
resolves the BEC into the bare-state spin and momentum com-
ponents. The existence of lattice structure has been experimen-
tally detected by Kapitza–Dirac scattering23 (see Supplementary
Note 2 for details and Supplementary Fig. 1).

Zeeman lattice ground state preparation. We begin an experi-
ment by preparing the BEC in a minimum of the lowest band of the
stationary Zeeman lattice: we adiabatically dress the condensate with
a Raman coupling field of strength ℏΩR= (2.6 ± 0.13) ER and a
detuning bz= h × (500 ± 100) Hz, and then adiabatically ramp on
the strength of the radio frequency drive to a coupling strength of
ℏΩRF= (2.3 ± 0.07) ER over 100ms while satisfying the stationary
lattice condition φ−ωRFt= 0.

Data availability
All data in the main text or the supplementary materials are available upon reasonable
request.
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