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SHEEP, a Signed Hamiltonian Eigenvector
Embedding for Proximity
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Signed network embedding methods allow for a low-dimensional representation of nodes and

primarily focus on partitioning the graph into clusters, hence losing information on con-

tinuous node attributes. Here, we introduce a spectral embedding algorithm for under-

standing proximal relationships between nodes in signed graphs, where edges can take either

positive or negative weights. Inspired by a physical model, we construct our embedding as

the minimum energy configuration of a Hamiltonian dependent on the distance between

nodes and locate the optimal embedding dimension. We show through a series of experi-

ments on synthetic and empirical networks, that our method (SHEEP) can recover continuous

node attributes showcasing its main advantages: re-configurability into a computationally

efficient eigenvector problem, retrieval of ground state energy which can be used as a

statistical test for the presence of strong balance, and measure of node extremism, computed

as the distance to the origin in the optimal embedding.
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Networks provide a powerful representation of complex
systems, comprising of a collection of nodes joined by
edges that represent interactions1. Typical examples stem

from an array of disciplines, including sociology (social contact
networks) urban infrastructures (public transportation networks),
or biological interactions (gene interaction networks). Edges
represent diverse types of interactions, which can be distinguished
by attributes on the edges, such as edge weights, to identify the
nature and intensity of the relationship. In this paper, we consider
signed networks, where the edges can have either positive or
negative weights. A fundamental example is a social network,
where positive edges represent friendship and negative edges
represent animosity between individuals.

Despite their classical origin2, signed networks represent a
relatively new field of exploration. However, research into signed
networks has been increasing in popularity due to a number of
examples from online social networks such as Epinions3 and
Slashdot4 where users can mark each other as friend or foe. More
recently, signed social networks have been constructed by infer-
ring the sined signals using sentiment analysis, using data from
social media platforms like Reddit 5 and Twitter 6. We give an
overview of the related literature on signed networks in the fol-
lowing sections, and direct the reader to7 for a more detailed
explanation of their properties and principles.

In general, networks are highly complex, and the structure of
signed (and unsigned) networks are often investigated through
dimensionallity-reduction techniques called network embedding.
Network embedding refers to a method for obtaining a low-
dimensional representation of nodes, taking into account multi-
scale graph topology. Embedding methods have a range of
applications from clustering to semi-supervised node classifica-
tion, and are used in recommender systems to make recom-
mendations based on proximity in a latent (embedding) space8,9.
For signed networks, embedding methods typically seek to place
nodes close together in latent space if they are connected by
positive edges and paths, while simultaneously separating nodes
connected by negative edges10–14.

In this article, we present a physically inspired signed net-
work embedding method called SHEEP (Signed Hamiltonian
Eigenvector Embedding for Proximity), which incorporates
local, intermediate and global information into a continuous
proximity measure between nodes. Modeling the nodes as a
system of particles interacting with attractive forces (positive
edges) and repulsive forces (negative edges), we construct a
Hamiltonian which is dependant on the distance between
nodes, such that the relative embedding distance results in a
similarity metric. Unlike embedding methods which focus on
partitioning the graph into clusters, and are useful for binary
prediction, our measure is intended to retain proximal infor-
mation between nodes. We propose two applications of the
signed network embedding method; (1) a way to recover con-
tinuous node attributes based on their proximity in the
embedding, and (2) using the node’s distance to the origin as a
measure of extremism or conflictuality, evaluating the method
on both synthetic generated signed networks and empirical
networks. In addition, the Hamiltonian admits a global mini-
mum energy configuration, which can be re-configured as an
eigenvector problem, and therefore is computationally efficient
to compute. We also present an energy-based approach to
finding the optimal embedding dimension for proximity. At the
global level, the embedding generated by the minimum energy
configuration is intrinsically related to the notion of structural
balance, i.e., the existence of stable and unstable types of cycles
in a signed graph, and the ground state energy can be used as a
statistical test for bi-polarization.

Results and discussion
Notation. For a matrix M 2 Rnxn we denote the eigenvalues
λi(M) with associated eigenvectors νi(M). A symmetric matrix M
has an eigenvalue ordering λ1(M) ≥ λ2(M)…≥λn(M) with asso-
ciated eigenvectors. We denote 1 as the all ones vector. The graph
G= (V, E) is the signed graph with node set V and edges E, with
E+ being the set of positive signed edges, and E− being the set of
negative signed edges, such that E+∪E−= E and Eþ \ E� ¼ ;.

If A is the adjacency matrix of graph G, then Aii= 0, ∀ i ∈V. In
what follows, we focus on unweighted signed networks. For an
edge (i, j)∈ E+, it follows that Aij= 1 and likewise, an edge (i,
j)∈ E− corresponds to the matrix entry Aij=−1. The positive
adjacency matrix A+ is defined by Aþ

ij ¼ 1 if Aij= 1, and 0
elsewhere. Similarly, the negative adjacency matrix A�

ij is defined
by A�

ij ¼ �1 if Aij=−1, and 0 elsewhere, such that
A= A++ A−. We also have that
Dþ ¼ diag ðdegþ1 ; degþ2 ¼ degþn Þ, where degþi ¼ ∑jA

þ
ij , the

degree matrix of the positive sub-graph, and
D� ¼ diag ðdeg�1 ; deg�2 ¼ deg�n Þ, where deg�i ¼ �∑jA

�
ij , the

degree matrix of the negative sub-graph, where in particular we
note that deg�i ≥ 0. We also use the convention that an
n-complete graph is a complete graph with n nodes, such that
every possible edge exists. In this work, we are looking at the
possibility to associate each node i to a position in k dimensional
space, which is encoded by the n × k matrix X with entries Xiα or,
equivalently, the set of n vectors xi. For further clarity, we use
Latin indices for nodes, and Greek indices for dimensions. The
literature does not have a consistent naming system for the
different Laplacians we refer to here. What we call the opposing
Laplacian after15 is also known as the signed Laplacian as in10.
The opposing Laplacian is defined as Lo ¼ �D� A where �D is a
diagonal matrix with entries �Dii ¼ ∑jjAijj. Following15 we also
consider the repelling Laplacian Lr=D− A where D is a diagonal
matrix defined Dii=∑jAij It is also known as the physics
Laplacian in13, the net Laplacian in16, or simply the unsigned
Laplacian due to its identical construction to the Laplacian on
unsigned graphs.

Structural balance. Signed networks are most commonly
understood through Heider’s psychological theory of structural
balance, developed to explain why “balanced” structures are more
favorable in interpersonal relationships, following the adage an
enemy of my enemy is my friend and that a friend of a friend is
also a friend 2. Cartwright and Harary use the term strong balance
to refer to a signed network where all cycles contain an even
number of negative edges. They show this is equivalent bi-
polarization, when a graph can be divided into two groups with
positive edges inside, and negative edges connecting them17,18.
In19, Davis defines weakly balanced graphs as graphs where no
cycle has only a single negative edge, proving that such graphs
can be partitioned into k clusters with positive edges inside, and
negative edges connecting them. Identifying the optimal partition
of a signed graph into k clusters, where k is unknown, has been
shown to be NP hard and various methods have been proposed to
solve this problem numerically20,21. A popular approach takes
inspiration from spin glass literature, using simulated annealing
to locate the optimal cluster assignment22,23. Figure 1 shows
examples strong balanced, weak balanced and unbalanced cycles,
while Fig. 2 depicts a strongly balanced (2 faction) graph and a
weakly balanced (3 faction) graph. These conditions are deeply
related to the Ising spin glass model, where negative plaquettes
introduce geometric frustration, analogous to the unbalanced
k-cycles on signed graphs24.
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While structural balance provides a valuable framework for
understanding signed networks, it has been argued in the
literature that empirical networks are often not perfectly
balanced, and the tendency for signed social networks to become
balanced may not even hold over time25. In particular, signed
networks may not have a natural cluster structure, and as
proposed in21, their formation may be influenced by a
combination of other processes, resulting in different patterns
than structure balance alone. It is precisely when ground truth
clusters do not exist that it may be more useful to consider the
proximity measure provided by SHEEP, eliminating the need to
make assumptions about faction numbers and memberships.

Spring/anti-spring signed graph Hamiltonian. Several network
embedding methods are based on the minimization of a Hamil-
tonian associated to a network (See Supplementary Note 1 for an
overview of spectral and energy-based embedding methods).
Here, we draw inspiration from SpringRank, a physically inspired
model generating hierarchical rankings of nodes for directed,
unsigned networks 26, which we adapt to a signed setting. Sup-
pose each node i has an associated position vector xi in metric
space Rk. Positive edges are modeled as spring attractive forces,

and negative edges are associated with an anti-spring repulsive
force, which is similarly quadratic in distance, resulting in:

H ¼ ∑
i;j
Aþ
ij jxi � xjj2 þ∑

i;j
A�
ij jxi � xjj2: ð1Þ

The first term of the Hamiltonian is minimized when positively
connected nodes have minimal distance between them, while the
second term requires negatively connected nodes to have the
largest possible distance between them. We seek to find the set of
position vectors {xi} that describe the minimum energy config-
uration. When a negative edge exists between two nodes, their
interaction term may be minimized when the two nodes are
pushed apart to infinity. Consequently, we introduce a constraint
on Eq. (1) to control for the explosion of distance. As we will see,
the optimal embedding defined by the position vectors {xi} does
not only depend on the number of positive and negative con-
nections, but also on their specific arrangement between the
nodes and on the constraints induced by the dimension k of the
embedding.

Let us first consider a one-dimensional form where each node i
is associated with a position πi, such that π 2 Rn. Then, our
objective function to minimize is:

HðπÞ ¼ ∑
i;j
Aþ
ij jπi � πjj2 þ∑

i;j
A�
ij jπi � πjj2; ð2Þ

where, H(π)= πTLrπ, the quadratic form of the repelling
Laplacian (see Methods). As the minimization of Eq. (2) is
computationally difficult, we follow a method proposed in27 for
ordering nodes in graphs, and impose the spherical constraint
condition that ∑π2i ¼ R. This constraint can be written using a
Lagrange multiplier, as:

Lðπ; λÞ ¼ HðπÞ � β ∑π2
i � R

� �
; ð3Þ

where β is the Lagrange multiplier. Taking the gradient and
setting it to zero gives the following eigenvalue equation for the
extrema:

Lrπ ¼ βπ: ð4Þ
The extrema conditions generated by the constraint requires

that π is an eigenvector of the repelling Laplacian, ν, which gives:

HðνÞ ¼ νTLrν ¼ λR; ð5Þ
where λ is the associated eigenvalue, and the eigenvector has been
normalized such that νTν= R.

From Eq. (5), we see that the minimum is obtained when ν is
the eigenvector νn associated to the minimum eigenvalue λn.
Finally, we have that minimum value of the Hamiltonian subject
to the spherical constraint is the minimum eigenvalue of the
repelling Laplacian. This minimum is a global minimum for the
system defined in Eq. (3) with the spherical constraint, and the
associated one-dimensional embedding is given by the eigenvec-
tor νn. The resulting embedding is invariant under reflection

Fig. 1 Examples of balanced and unbalanced cycles. Strongly balanced cycles (a) have even numbers of negative edges. Weakly balanced cycles (b) have i
negative edges, where i≠ 1. Unbalanced cycles (c) have a single negative edge. Red indicates a negative edge, while blue indicates a positive edge.

Fig. 2 Strong and weakly balanced signed networks. Strongly balanced
signed networks (a) have two opposing factions with positive edges inside
and negative edges between. Weakly balanced networks (b) can have three
or more factions. Red indicates a negative edge, while blue indicates a
positive edge.
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about the origin. Furthermore, since we are most interested in the
relative distances between nodes in this proximity-based embed-
ding, the resulting normalized distance matrix generated from the
embedding is also invariant under translations and re-scaling of
the vector νn. In what follows we take R= 1.

In the Methods section, we provide a more thorough
discussion of the one-dimensional case, its relation to strong
balance, and show how the minimum eigenvalue can be statistical
measure for the bi-polarization of the system, i.e., one faction on
the left and one faction on the right. Note that unlike the other
force based approaches which often employ non-convex
optimization to locate local minima, finding the minimal value
of the Hamiltonian with the spherical constraint reduces to a
computationally efficient eigenvalue problem.

In the method proposed here, we only consider signed graphs
which have at least one negative eigenvalue. For positive graphs,
the repelling Laplacian is equivalent to the standard graph
Laplacian. Since this matrix always has zero row sum, it has a 0
eigenvalue associated to the eigenvector 1, which is the smallest
eigenvalue for the positive graph. From the physical interpreta-
tion of the system, this means the attractive forces have collapsed
all the nodes onto a single point. It is also possible for signed
networks to have no negative eigenvalues, for example if the
positive sub-graph is fully connected28. We consider only graphs
that have at least one negative eigenvalue, which occurs when the
negative edges are sufficiently dense or well positioned in the
graph such that the proximity embedding information is non-
trivial. We refer the reader to the Supplementary Note 2 for a
more detailed explanation of this argument and a numerical
experiment.

Weak balance and extension to higher dimensions. In a one-
dimensional embedding, we can understand graphs in terms of
strong balance, because the bi-partition can be projected along
the one dimensional line. In contrast, weakly balanced graphs are
k-clusterable, meaning they can be partitioned into k factions.
This also implies that representing the relationships between
nodes may not be possible using a one dimensional projection.
For noisy and unbalanced graphs, this is even more important;
more dimensions may be required to ensure that the distance
between nodes in the embedding represents a proximity measure
that takes into account the global graph structure.

When considering embedding in higher dimensions, finding
the optimal dimension of the embedding is a challenging task. In
the extreme case of a complete negative graph, intuition suggests
that an optimal embedding should place these n nodes at
equidistant positions, which requires a n− 1-dimensional
embedding (a detailed analysis of this case is discussed in
Supplementary Note 5). To investigate the general case of non-
complete graphs, we define, for each node i, a k-dimensional
vector xi, which is the vector built using the i-th entry of each of
the first k eigenvectors, ie. xi= (νni, νn−1i, …ν(n−k+1)i). Let the
distance matrix D(k) correspond to the distances associated to the
positions of the nodes found using the first k eigenvectors, such
that:

DðkÞij ¼ jxi � xjj2 ¼ ∑
n�k

α¼n
ðναi � ναjÞ2; ð6Þ

where ναi is i-th entry of the α-th eigenvector of the repelling
Laplacian. This implies that the distance matrix D(k) is linear in
dimension in the sense that if DðναÞij ¼ ðναi � ναjÞ2 are the
entries of the distance matrix associated with the α-th

eigenvector, then:

DðkÞ ¼ ∑
n�k

α¼n
DðναÞ: ð7Þ

Since the Hamiltonian in Eq. (1) can be written in terms of the
distance matrix D(k):

HðDðkÞÞ ¼ ∑
i;j
Aþ
ij DðkÞij þ∑

i;j
A�
ij DðkÞij; ð8Þ

where in one dimension,

HðDð1ÞÞ ¼ ∑
i;j
Aþ
ij DðνnÞij þ∑

i;j
A�
ij DðνnÞij ¼ λn; ð9Þ

it follows that the Hamiltonian is similarly linear in dimension:

HðDðkÞÞ ¼ ∑
n�k

α¼n
HðDðναÞÞ: ð10Þ

With the spherical constraint given in Eq. (5), we have that
H(D(να)) is simply λα, the eigenvalue associated with the α-th
eigenvector. Then:

HðDðkÞÞ ¼ ∑
n�k

α¼n
λα: ð11Þ

As a consequence of linearity, the Hamiltonian as a function of
distance trivially decreases with an increase in dimension as long
as λα≤ 0. Our experiments on artificial networks and real-life
networks show that the number of negative eigenvalues is usually
relatively large, in any case too large for an efficient embedding of
the signed network. At the same time, one can observe that each
new dimension allows the nodes to be separated by greater
distances, as the norm of the distance matrix will grow with each
added dimension. To compare the quality of embeddings at
different dimensions, a natural choice is to combine these two
quantities, and to normalize the Hamiltonian by the norm of the

distance matrix, i.e., dividing by the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑i;jðDðkÞijÞ2Þ

q
. This

procedure defines the higher dimensional generalized Hamilto-
nian:

~HðDðkÞÞ ¼ ∑n�k
α¼n λαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ijðDðkÞijÞ2
q : ð12Þ

Note that this choice is a heuristic, which we show to work well in
practice in the following.

Based on these arguments, and on our understanding of the n-
complete negative graph, we propose to minimize the higher
dimensional generalized Hamiltonian given in Eq. (12) as a
function of k, thus finding the embedding dimension that
minimizes the ground state energy. Note that even if λk+1 < 0, the
addition of the k+ 1-th dimension may still increase the energy
~HðDðkþ 1ÞÞ>~H DðkÞð due to the normalization factor. This is an
alternative to the idea proposed in12 of using the k smallest
eigenvectors for the embedding, where k is chosen by looking for
the largest eigen-gap, but formalizes this argument in term of a
physical energy function. Let us emphasize again that, within our
framework, the energy minimization is intended to find the
dimension that produces the best proximity measure, and not the
number of weak balance clusters (see Supplementary Note 5).

We test our results using signed stochastic block models
(SSBMs) which are synthetic graphs of n communities with
positive edges inside the communities, and negative edges
between. Figure 3 shows the normalized energy versus dimension
plots for various realizations of SSBMs with different community
numbers, sizes and sign flip probabilities. Figure 3a shows the
normalized energy as a function of dimension for three
community SSBM with edge probability 0.5, and randomly
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generated community sizes between 20 and 50. For each of the
ten realizations, the energy is minimized at k= 2, the expected
dimension for representing 3 communities. Likewise, in Fig. 3b,
the energy versus dimension plots for the three community
SSBMs with noise (0.1 probability of edge sign flip), shows the
minimum is still obtained at k= 2. Figure 4 shows a two-
dimensional SHEEP embedding for two realizations of a three
community SSBM, with and without noise on the edge signs.
When the number of SSBM communities is increased to 6 as in
Fig. 3c, the minimum energy is obtained at dimension k= 5 for
each of the ten realizations. For the noisy six community SSBMs
show in Fig. 3d, the energy minimum is obtained at k= 5 for
most realizations, but can vary depending on the faction size and
noise. When the probability of sign flip increases, the optimal
dimension found will no longer be equal to the number of
clusters. This is because our method is designed for finding the
best embedding to represent proximity, not for clustering, and the
noise will naturally effect the proximal relationships between

nodes. We explore the effect of noise on the optimal dimension in
Supplementary Note 6.

Numerical experiments I: proximity-based node attributes.
Since our constructed Hamiltonian is a function of distance,
SHEEP is designed to represent node proximity, taking into
account both local interactions (link sign) and global structure
(factions from structural balance). Here, we build on this insight
to show how SHEEP can be used to recover continuous node
attributes. We emphasize that embedding methods designed for
clustering are particularly adapt at predicting binary variables
(edge signs), while SHEEP provides a continuous metric for
understanding node relationships and relative extremism. We
compare our method to two other spectral embedding methods
for signed networks, the opposing Laplacian as defined in ref. 10

and SPONGE (Signed Positive Over Negative Generalized
Eigenproblem) 11. Both of these methods introduce a matrix

Fig. 3 Normalized energy vs dimension for various Signed Stochastic Block Models (SSBMs). Normalized Energy ~HðDðkÞÞ vs dimension k for 10
realizations of different SSBMs. Each line color indicates a different SSBM realization, dashed line shows the energy minima. a 3 Community SSBM. The
energy minimum is obtained at k= 2 as expected. b Same as in (a), but with 0.1 probability of sign flip. The the energy minimum is still obtained at k= 2.
c 6 Community SSBM. The energy minimum is obtained at k= 5 as expected. d Same as in (c) with 0.1 probability of sign flip. The energy minimum is still
obtained at k= 5, for most realizations, but can vary depending on realization faction sizes and random variations.
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operator, and use the k smallest eigenvectors to embed the graph.
Since these methods are designed for finding factions, the
dimension k is chosen first by selecting the number of expected
factions, k+ 1. These factions are recovered by performing a
k-means clustering on the embedding.

Figure 5 provides an illuminating example of the distinction
between the proximity-based SHEEP embedding method and the
two spectral methods designed for clustering. The figure shows
various embeddings for a modified signed stochastic block model
which obeys weak balance. Each embedding has been normalized
such that the norm of both the x and y embedding vectors are
equal to 1, which allows for visual comparison between the
methods. Each signed community in the SSBM is separated into
two groups of nodes: the yellow nodes have a lower density of
negative edges to the other communities (p= 0.3), as compared
to the black nodes which have a higher density of negative edges
(p= 0.7). The two spectral methods defined for clustering, the
opposing Laplacian and SPONGE, produce embeddings that can
easily recover the 3 factions. In the embedding produced by
SHEEP, the yellow nodes appear closer to the origin, indicating
the weaker negative relationships between these groups, as
compared to the black nodes. In the cases of the opposing
Laplacian and SPONGE, the separation between the yellow and
black nodes is smaller, and the embeddings actually place the less
conflictual yellow nodes further away from the other factions, as
compared to the black nodes. This indicates that the SHEEP
embedding is better at representing the strength of node

relationships, taking into account the presence (or absence) of
edges, as compared to the other two methods. See Supplementary
Note 7 for further visual examples. In the following section, we
refine this argument by quantitatively evaluating these methods’
performance on both synthetic generated and empirical signed
networks.

Rankings on generated synthetic graphs. Since the SHEEP
Hamiltonian is a function of distance, the sign of an edge between
two nodes is related to the distance between them in the resulting
embedding. In one dimension, the positions generated by the
SHEEP embedding resembles an ordering of the nodes, where
nodes that are closer together in the ordering have more positive
connections. Here, we present an experiment designed to test the
ability of SHEEP to recover ordinal information, using a synthetic
network where the edge signs correspond to a well-defined node
order. This well-ordered synthetic graph is constructed such that
nodes are assigned a random position from −1 to 1, and con-
nected by a positive (negative) edge if the difference in their
position is smaller (larger) than a chosen threshold (see
Methods).

Figure 6a shows the initial positions of 50 nodes, and the
resulting edges signs with threshold of 0.2. We generate the one-
dimensional SHEEP embedding using the first eigenvector of the
repelling Laplacian, and compare the resulting node ordering to
the initial positions by taking the Kendall Tau correlation,
denoted as KT correlation from now on. Since multiplying the

Fig. 4 SHEEP embedding of 3-community SSBMs. 3 Community SSBMs with 50 node communities and 0.5 edge probability, embedded using SHEEP (first
two eigenvectors of repelling Laplacian). No edge sign flips (a) and 0.2 probability of sign flip (b). Red indicates a negative edge, while blue indicates a
positive edge.

Fig. 5 Proximity vs clustering: embedding examples. Resulting embedding of grouped signed stochastic block model with 3-way partition, which obeys
weak balance. The yellow nodes have fewer negative edges compared to the black nodes. SHEEP/Repelling Laplacian (a), opposing Laplacian (b), SPONGE
(c). Red indicates a negative edge, while blue indicates a positive edge.
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eigenvector by −1 returns the same eigenvalue, but with opposite
node ordering, we take the absolute value of the KT correlation.
We also compare SHEEP to the opposing Laplacian and
SPONGE, two spectral methods designed for clustering, finding
that our method is better at recovering ordinal information.
Figure 6b shows a plot of the generated node position versus the
position determined by the first eigenvector for a well-ordered
synthetic graph with 100 nodes and threshold= 0.1. Unlike the
opposing Laplacian and SPONGE, the SHEEP embedding
recovers the initial node ordering. We test this over several
realizations of generated well-ordered synthetic graph with
various parameters (see Supplementary Note 8), finding that
SHEEP is highly successful at recovering the resulting node
ordering, unlike the other two spectral methods, demonstrating
the usefulness of our proximity-based embedding measure.

Australian rainfall correlations. We test the method on an
empirical graph with a ground-truth proximity measure. Using a
time series of seasonal rainfalls across 305 different stations in
Australia, we construct signed network from the Pearson corre-
lation matrix (see Methods for details). Using the higher
dimensional generalized Hamiltonian method, we find that the
best embedding dimension is k= 1. Intuitively we might expect
geographically embedded stations to require two dimensions,
however, meteorological research has shown that the Australian
climate is determined largely by latitude, due to a high-pressure
belt which moves north and south over the year, influencing the
rainfall patterns over the seasons29. Since our embedding method
can be used to understand proximal relationships and continuous
node properties, we can compare the embedding positions to the
station latitude, which has an approximate linear relationship to
north-south distance. As in previous experiments, we take the
absolute value of the KT correlation between the repelling
Laplacian first eigenvector and the latitude. Again, we compare to
the opposing Laplacian and SPONGE.

The first eigenvector of the repelling Laplacian (SHEEP) has
the highest ordinal correlation with station latitude (0.744),

compared to the first eigenvector of both the opposing Laplacian
(0.719) and SPONGE (0.178). We note that the second
eigenvector of SPONGE has a higher correlation with latitude
as compared to the first (0.733). As we will see with the following
examples, the location of the best SPONGE eigenvector changes
for different networks, making it difficult to know which
eigenvector to choose without ground truth proximity informa-
tion. Figure 7 shows the SHEEP embedding position versus
latitude for each station, visually demonstrating the correlation
between the embedding and the node attribute.

Numerical experiments II: node extremism measure
Signed configuration model. In this section, we argue that the
distance from the node to the origin in the optimal embedding
dimension gives a measure of the node’s “extremism” or con-
flictuality. In general, the distance from the node to the origin in
the embedding is dependent on both local measures, like the
node’s positive and negative degrees, and more global properties
like the structure of the graph. For instance, as in Fig. 5, SHEEP
places nodes with fewer negative edges to the other factions closer
to the origin. Thus, the distance to the origin is determined by
both the cluster structure of the graph, and by the intensity of the
negative interactions between the nodes. When the graph struc-
ture is random, we expect that local and global measures will
coincide. Using both a signed graph configuration model, and
SSBMs with various levels of noise, we investigate the relationship
between the node’s distance to the origin in the SHEEP embed-
ding, and the net degree (negative degree minus positive degree).

The configuration model is a random graph model constructed
from a given degree sequence, where each edge “stub” is matched
with equal probability30. We construct a signed configuration
model and take 100 realizations of the graph with the same
optimal dimension (k= 9). See Methods for a more in-depth
description. We find for each node the net degree, and the
distance to the origin, that is, the norm of its 9-dimensional
position vector. The mean distance for each net degree is shown

Fig. 6 Well-ordered synthetic graph embedding. Position s of 50 nodes with edge signs assigned according to threshold of 0.1 Red indicates a negative
edge, while blue indicates a positive edge. a Generated node position (initial position) plotted against first eigenvector position from SHEEP/repelling
Laplacian (red dots), the opposing Laplacian (blue dots) and SPONGE (purple dots) for a 100 node graph with threshold 0.1 (b). There is a high correlation
between the initial and SHEEP embedding position.
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in Fig. 8, where the shaded area gives the standard deviation. We
observe an increasing relationship, where nodes with a higher
proportion of negative edges are more “extreme” and thus further
from the origin.

In the case when the graph is not random and has structure
(eg. factions), the norm gives a measure of extremism that cannot
be explained by the net degree. In Supplementary Note 9, we use
SSBMs with varying levels of noise, to show how for networks
with strong bi-polarization, the norm in the embedding is
determined primarily by the negative degree of the node. When
the bi-polarization structure of the graph is perturbed, by noise or
by other structural effects, the extremism measure is no longer
determined just by the the negative degree. For graphs without a
perfect polarization structure, both the positive and negative
degree play a role in the extremism measure outputted by SHEEP,

as well as the structure of the graph, indicating that this measure
incorporates more than just local information.

Continuous political ideology. Here, we consider an empirical
network with ground truth continuous node attributes, which
provides a better intuition for the node extremism measure. We
take a signed network representing relationships between mem-
bers of the USA House of Representatives for different congresses
(here, we focus on sessions 110, and 144). Since we focus on the
more recent congresses, which Aref et al. argue in ref. 20 are
highly bi-polarized along Democrat-Republican lines, it is not
surprising that the optimal SHEEP embedding dimension is
k= 1. Because SHEEP represents proximal relationships, we want
to understand whether the embedding can recover the political
ideology of the members on a continous scale, and investigate

Fig. 7 Australian rainfall network latitude vs embedding. Station latitude versus SHEEP embedding positions, obtained from the first eigenvector of the
repelling Laplacian. Edge weights are masked using the sign function, (i, j∈ {−1,1}). KT correlation is 0.744.

Fig. 8 Signed configuration model node norm vs net degree. Mean distance to origin in SHEEP embedding (the norm in k= 9 dimensions) versus the
node’s net degree over 100 realizations of the signed network configuration model, for which k= 9 was the optimal embedding dimension. Shaded area
gives the standard deviation. Nodes having relatively more negative edges are further from the origin.
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whether the distance to the origin in the embedding corresponds
with political extremism. As suggested in ref. 20, we use Nokken-
Poole (NP) ideology scores as our ground truth measure. See
Methods for more details on the data. We compare the SHEEP
embedding to the embedding obtained by the opposing Laplacian
and SPONGE, noting that these methods are designed for clus-
tering. In this example, the opposing Laplacian and SPONGE
would likely outperform SHEEP at finding the two clusters
associated to the Democrat and Republican parties, while SHEEP
recovers the continuous ideology information contained in the
NP scores.

For the 110th congress, the first first eigenvector of the
repelling Laplacian (SHEEP) has the highest correlation with the
NP scores (0.685), compared to the opposing Laplacian (0.432)
and SPONGE (0.209). We note that the fourth eigenvector of
SPONGE obtains a better correlation with the NP scores
compared to the first (0.640). As we will see with the second

choice of congress, the location of the best SPONGE eigenvector
changes as the network changes. Figure 9a shows the one-
dimensional embedding of the network obtained by SHEEP,
where the nodes are colored according to the NP scores.

For the 114th congress, SHEEP once again obtains the highest
correlation with the NP scores (0.698), compared to the opposing
Laplacian (0.382) and SPONGE (0.626). For this network, the
first eigenvector of SPONGE has the highest correlation with the
NP scores. We observe that the location of the best SPONGE
eigenvector has changed for each graph. Knowing where this
proximal information will occur in the set of SPONGE
eigenvectors is non-trivial, especially when the ground truth
scores do not exist. For this, SHEEP is superior, as the
information is contained in first k eigenvectors deemed optimal
by the embedding method. Figure 9b shows the one-dimensional
SHEEP embedding of the network, where the nodes are colored
according to the NP scores. Since the optimal embedding

Fig. 9 House of representative network embeddings. One dimensional SHEEP embedding of Congress 110 (a) and Congress 114 (b) signed networks.
Nodes colors indicate Nokken-Poole political ideology scores obtained from20.
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dimension for the 114th congress is k= 1, the KT correlation
shows directly the relationship between the node’s distance to the
origin and its political extremism, using the NP scores.

Since this graph is neither random, like the signed configura-
tion model, nor perfectly bi-polarized, like the SSBM, the node
extremism measure given by the NP scores cannot be completely
explained by the net degree or the negative degree alone. Neither
of these measure are sufficient for determining the extremism of
the node; the positive edges and the graph structure play a role,
which is captured in the SHEEP embedding. Consequently, the
SHEEP embedding gives a better correlation with the NP scores,
compared to the negative degree alone. For a more detailed
analysis, see Supplementary Note 9.

The node extremism measure outputted by SHEEP is a result
of the interplay between the negative degree, positive degree and
graph structure. For random graphs, like the signed configuration
model, the the local and global measures coincide, and the norm
in the embedding is determined by the net degree. For graphs
with perfect faction structure, the norm is determined by the
negative degree. SHEEP is most useful for investigating the cases
in between, for which the graph structure is not completely
random nor completely polarized. In these cases, the norm in the
SHEEP embedding provides a meaningful way of understanding
node extremism, as we see for the case of the political ideologies.

Conclusions
In this paper, we have presented SHEEP, a spectral embedding
algorithm for finding proximal relationships between nodes in
signed networks. The method is based on a physically inspired
model: we construct a Hamiltonian that assigns attractive and
repulsive forces to the positive and negative edges in the graph.
We show that the Hamiltonian is intrinsically related to the
graph’s repelling Laplacian, and that finding the minimum energy
configuration reduces to an eigenvector problem. We show that
the resulting ground state energy, or minimum eigenvalue, is a
statistical measure of graph bi-polarization structure. We extend
our results to higher dimensions, presenting an energy-based
approach to locating the optimal embedding dimension for the
network. We propose an application of our measure to recovering
proximity-based continuous node attributes, showing how the
SHEEP embedding reproduces ordinal information on synthetic
and empirical networks. We also show that the distance to the
origin in the optimal embedding dimension gives a measure of
node “extremism”, which is related both to local information like
the net degree, and to the graph’s global structure. Overall, this
work contributes to the growing body of literature on spectral
methods for understanding signed networks, and characterizing
node relationships by taking into account multi-scale
information.

Future research perspectives include exploring application of
SHEEP to signed social media datasets, for providing fresh/
additional insight on the node proximity and extremism. With
further investigation, the method could be extended quite natu-
rally to weighted signed networks as well. Given the form of the
Hamiltonian, a weighted adjacency matrix is equivalent to loos-
ening the requirement that each spring has a unit-weight spring
constant, incorporating the weights into the proximity-based
embedding. The method could also be modified to perform better
on sparse networks, perhaps through regularization31. Further-
more, extending the method to be robust to changes in number
and density of edges would allow applications to temporal signed
networks. In this case, understanding the dynamics of node-to-
node proximity could be a rich area for future investigation. We
also note that we made the choice of the spherical constraint as it
seemed the most natural, but other constraints are possible, and

comparing this method with other constraints could also prove to
be a fruitful research direction.

Methods
Relation between SHEEP and spectral methods. Here, we
illustrate the relationship between SHEEP, and spectral approa-
ches. As a graph with strong balance can be separated into two
factions, we constrain ourselves to a one dimensional embedding
for the remainder of this section. The vector π denotes the n-
dimensional vector describing the positions πi of the n nodes
along a line.

In15, the authors introduce two types of signed graph
Laplacian. The Laplacian of the positive part of the graph is
L+=D+−A+. There are two possibilities for the negative graph
Laplacian, corresponding to two possibilities for the signed
Laplacian. The opposing Laplacian:

Lo ¼ Dþ � Aþ þ D� � A�; ð13Þ
and the repelling Laplacian:

Lr ¼ Dþ � Aþ � D� � A�: ð14Þ
Note that in the case of a positive graph, the repelling Laplacian is
precisely the standard graph Laplacian. These two matrices
induce quadratic forms on the vector π 2 Rn. Note that πi is a
scalar value associated with the node i. The induced quadratic
form of the opposing Laplacian is:

πTLoπ ¼ ∑
i;j
Aþ
ij jπi � πjj2 �∑

i;j
A�
ij jπi þ πjj2; ð15Þ

and the repelling Laplacian:

πTLrπ ¼ ∑
i;j
Aþ
ij jπi � πjj2 þ∑

i;j
A�
ij jπi � πjj2: ð16Þ

The quadratic form resulting from the repelling Laplacian is
equivalent to the spring-inspired Hamiltonian proposed in Eq.
(1), for one-dimensional position vectors.

Unlike the function arising from the inner product of the
opposing Laplacian (Eq. (15)), the inner product of the repelling
Laplacian is a function of distance for pairs of nodes connected by
both positive or negative edges. Consequently, in the embedding
generated by the opposing Laplacian, the presence of many or few
negative links between positively connected factions does not
effect the final positions, unlike the physically inspired method
that we propose here. In particular, the opposing Laplacian
identifies whether the graph is strongly balanced or not, but does
not given an indication of the intensity of the negative
interactions between the nodes, which is precisely the advantage
of our proximity-based embedding.

The repelling Laplacian is symmetric and real, so its
eigenvectors can be chosen to be orthonormal. Unlike the
opposing Laplacian, which has been previously used for spectral
embedding as in ref. 10 because it is positive semi-definite, the
repelling Laplacian is indefinite. From a physical perspective, it
describes a Hamiltonian that permits explosions of distances due
to the quadratically increasing energy of repulsive forces, which is
why we impose the spherical constraint.

Ground state energy and strong balance. In this section, we
propose a test statistic for bi-polarization, which is inspired by the
physical interpretation of our system, the ground state energy,
denoted as E0. Analogously to the Ising model, where the lowest
ground state energy is achieved when there is no geometric
frustration introduced by negative cycles, we want to show that
the ground state energy of our Hamiltonian is minimized when
the graph exhibits strong balance. If a test statistic is significant, it
should be highly improbable on a null model. As the ground state
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energy depends on many aspects of the network structure, we
focus on the following null model: fixing the graph topology, we
randomly reshuffle the signs of the edges, while preserving the
density of positive and negative edges, as in32,33. If the real net-
work has a lower ground state energy then the networks produced
by the null model, we can conclude that the network has sig-
nificant underlying bi-polarization structure. Since the ground
state energy of our Hamiltonian is the minimum eigenvalue of the
repelling Laplacian, we present here some results on the spectrum
of the repelling Laplacian for complete graphs, and then gen-
eralize the results numerically to non-complete graphs.

Repelling Laplacian: spectral results. We consider the set of
complete signed graphs with n nodes, subject to the condition
that Eþ; E�≠;, denoted by {Gn}. We present three results: (1) The
minimal eigenvalue λn is bounded from below by −n. (2) The
lower bound λn=−n is achieved when the graph has a perfect bi-
partition (strong balance). And (3) Introducing frustration by
switching edge signs will strictly increase the value of the ground
state energy. These results motivate the use of the ground state
energy as a bi-polarization measure, or measure of strong balance.

Theorem 1. For an n-complete signed graph subject to the
condition that Eþ; E�≠;, the smallest eigenvalue of the repelling
Laplacian λn≥−n.

The proof is deferred to Supplementary Note 3, but the main
steps involved are as follows. Beginning with the n-complete
graph of all negative edges, one can easily show that the spectrum
is − n with multiplicity n− 1 and 0 with multiplicity 1. Any other
signed n-complete graph can be reached by successively changing
an edge sign to positive, associated with the addition of a Lshift to
the repelling Laplacian, which is positive semi-definite. Applying
Weyl’s inequality to the sum of the two Laplacians gives the
required result.

Next, we show that the lower bound is reached when the graph
is strongly balanced and admits a bi-partition.

Theorem 2. Consider a strongly balanced graph ~G 2 fGng, such
that the nodes of graph ~G can be partitioned into two sets V1 and
V2, where V1;V2≠;. Nodes inside each set are connected with
positive edges, while the edges connecting the sets are negative.
The smallest eigenvalue of the repelling Laplacian is λn=−n.

Again, we defer the proof to Supplementary Note 3. Broadly,
we construct the eigenvector ν associated to the minimum
eigenvalue λn by placing nodes in the same set at the same point
such that for node k∈Vi we set νk= xi where i ∈ (1, 2). Using the
orthonormality of the eigevectors, we can show that associated
eigenvalue is −n,

E0
bal ¼ λn ¼ �n: ð17Þ

By Theorem 1, this is the minimum eigenvalue. By Theorems 1
and 2, the ground state energy reaches the lower bound when the
graph is non-frustrated, and has a perfect bi-partition in
accordance with strong balance. When the graph is frustrated
we want to show that the ground state energy, E0

frus is larger than
the energy associated with the balanced graph E0

bal given in Eq.
(17) as −n. We compare between graphs that have the same
number of nodes, n, as well as the same density of positive and
negative edges.

Theorem 3. Consider a strongly balanced graph ~G 2 fGng, such
that the nodes of graph ~G can be partitioned into two sets V1 and
V2, where V1;V2≠;. Introduce frustration into the graph by
switching two edge signs. When the graph is sufficiently large
such that n > 4, and ∣V1∣, ∣V2∣ > 2, the ground state energy is
strictly increased E0

frus>E
0
bal .

The proof involves writing the repelling Laplacian of the
frustrated graph as the sum of the repelling Laplacian of the
balanced graph L~G

r , and a perturbation, Lswitch, associated to the
switching of a positive and negative edge sign. The new graph is
frustrated because the two terms L~G

r and Lswitch cannot be
simultaneously minimized. Finding a bound on the second
smallest eigenvalue of the repelling Laplacian of the balanced
graph L~G

r , gives an approximation for the energy gap between the
ground and first energy levels. When the graph is sufficiently
large such that n > 4, and ∣V1∣,∣V2∣ > 2, we can use the energy gap
to bound the ground state energy from below, obtaining the
inequality we require. In practice, n > 4 is a weak constraint, as
most graphs of interest contain more than four nodes, so

E0
frus>� n ¼ E0

bal: ð18Þ
Bi-polarization measure. Following the intuition provided by the
spectrum of the repelling Laplacian on complete signed graphs,
we numerically generalize to the case of non-complete graphs,
showing that the ground state energy is a statistically significant
measure of bi-polarization, as compared to the null model. The
test correctly identifies the polarization structures on various
synthetic signed graphs with strong balance. We propose a bi-
polarization score using the z-score of the ground state energy of
the graph, compared to the the null model energy distribution.
We define:

ZðGÞ ¼ EG
0 � hE0i

σ
; ð19Þ

where 〈E0〉 is the mean of the null model distribution, and σ is
the standard deviation. A large negative value of Z(G) indicates
that the graph is significantly polarized.

There exist a number of proposed bi-polarization measures for
signed networks, which typically focus on the local or global
properties of the graph. For example,34 proposes a balance
measure that counts the number of unbalanced cycles in the
graph, inversely weighted by length. A more global measure is the
frustration index, which counts the number of frustrated edges
associated with the best bi-partition35. An intermediate scale
measure, POLE, takes the correlation between a node’s signed and
unsigned random walk, based on the assumption that link sign
should be related to unsigned community structure36. Our
measure incorporates both local and global structure, and allows
for comparison between networks with fixed size and edge
density. See Supplementary Note 4 for a numerical test of the bi-
polarization measure on synthetic signed networks with polariza-
tion structure.

Well-ordered synthetic graph construction. The well-ordered
synthetic graph is constructed as a complete signed graph. We
place nodes randomly with uniform distribution between −1 and
1, and normalizing the resulting position vector to 1. The signed
graph is constructed deterministically: nodes are connected by a
positive edge if the distance between them is less than a chosen
threshold value, otherwise the edge sign is negative. In comparing
the ordinal information obtained by the embedding, we use the
KT correlation is over the Pearson correlation because the
proximal relationship obtained by the embedding may be
monotonic, but non linear.

Signed configuration model. The signed configuration model is
generated by first generating two 50 node (unsigned) configura-
tion models using randomly generated degree sequences of
integers between 1 and 20. We take the graph obtained by sub-
tracting the adjacency matrix of the first model from the second
to obtain a random signed network. Over 5000 realizations of the
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signed configuration model, the most frequently obtained optimal
embedding dimension is k= 9 using SHEEP. To ensure we
compare across graphs with the same optimal dimension, we use
100 realizations of the signed configuration models for which
k= 9 was optimal in our analysis.

Australian rainfall network construction. The Australian
Rainfall graph is constructed from the Pearson correlation matrix
obtained from the seasonal rainfall time series. The rainfall is
given in millimeters. This results in a complete signed graph on
n= 305 nodes, corresponding to the 305 stations. We mask the
edge weight magnitude by taking the sign of the Pearson corre-
lations such that for all (i, j)∈ E, (i, j)∈ {−1,1}. Note that the sign
of Pearson correlation is not transitive, depending non-trivially
on the magnitude of the correlation. As a result, the resulting
signed graph does not have a perfect bi-partition. The same data-
set was studied in ref. 11, where the authors used a k= 6 and
k= 10 dimensional embedding to obtain clusters of stations,
which corresponded with the ground truth geographical regions.

House of representatives data. The data-set for this analysis is
obtained from ref. 20. The signed network represents the rela-
tionships between members of the USA House of Representatives
for two different congresses (sessions 110, and 144). In this signed
network, a positive (negative) edge indicates that the two repre-
sentatives have co-sponsored statistically significantly more
(fewer) bills than expected by chance. The NP ideology scores
place each member of congress on a continuous scale from +1
(conservative) to −1 (liberal). The score is frequently used in
political science, and is the result of a three step multi-
dimensional scaling method based on member’s voting habits
in a given congress, derived by maximizing their utility37,38. The
NP scores are two dimensional, but the first dimension is often
taken to represent political ideology on a left/right spectrum. The
110th congress session forms a signed graph of n= 452 nodes.
Taking the largest connected component, results in a graph of
n= 450 nodes. The 114th congress session forms a signed graph
of n= 446 nodes. Taking the largest connected component results
in a signed graph with n= 443 nodes. When looking for the
eigenvector of SPONGE and the opposing Laplacian that has a
better correlation with the NP scores, we search through the ten
smallest eigenvectors of each matrix respectively.

Data availability
The Australian rainfall data-set was obtained from the authors of ref. 11, and is available
upon request. The congress network data-sets were obtained from20,39,40 and can be
downloaded: https://osf.io/3qtfb/.

Code availability
The code required to perform the SHEEP embedding is available at https://github.com/
saynbabul/SHEEP.
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