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Chern dartboard insulator: sub-Brillouin zone
topology and skyrmion multipoles
Yun-Chung Chen 1, Yu-Ping Lin2 & Ying-Jer Kao 1,3,4✉

Topology plays a crucial role in many physical systems, leading to interesting states at the

surface. A paradigmatic example is the Chern number defined in the Brillouin zone that leads

to robust gapless edge states. Here we introduce the reduced Chern number, defined in the

subregions of Brillouin zone, and construct a family of Chern dartboard insulators with

quantized reduced Chern numbers but with trivial bulk topology. Chern dartboard insulators

are protected by the mirror symmetries and exhibit distinct pseudospin textures, including

(anti)skyrmions, inside the sub-Brillouin zone. These Chern dartboard insulators host exotic

gapless edge states, such as Möbius fermions and midgap corner states, and can be realized

in the photonic crystals. Our work opens up new possibilities for exploring sub-Brillouin zone

topology and nontrivial surface responses in topological systems.
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Chern insulators are classic examples of non-interacting
systems with nontrivial bulk topology1, where the quan-
tized Hall conductivity is related to the first Chern number

defined in the Brillouin zone (BZ)2. The associated quantum
anomalous Hall effect has been observed experimentally3–7 along
with robust gapless edge states4,5,8,9.

Recently, it is proposed that there exist a family of topological
insulators with delicate topology protected by rotation
symmetries10,11. These systems have symmetric and
exponentially-localized Wannier functions that cannot be entirely
localized to δ-functions. This multicellular topology is shown to
be a delicate property, where the topology can be trivialized by
adding appropriate bulk atomic bands to either the conduction or
valence bands11. A related concept of noncompact atomic insu-
lators is proposed12, where certain obstructed atomic insulators
with fragile complement cannot have orthonormal compact
Wannier functions which are strictly local and have zero support
outside a finite domain.

In this work, we show that nontrivial topology can appear
locally in the BZ, even when the global topology is trivial. The
idea relies on the concept of sub-Brillouin zone (sBZ) topology,
where the topological invariant is defined in a fraction of the BZ.
Consider a two-dimensional (2D) system with n mirror sym-
metries. The mirror symmetries divide the BZ into 2n sBZs with
the high-symmetry lines (HSLs), which are the irreducible BZs in
these systems. Based on these sBZs, we introduce a family of
delicate topological systems, termed as the Chern dartboard
insulators (CDIs). The n-th order CDIs (CDIn) are defined with
quantized first Chern numbers inside the irreducible BZs. Since
the irreducible BZs are only 1/2n fraction of the BZ, all the CDIs
exhibit sBZ topology. The n mirror symmetries protect the CDIs
and the associated quantized reduced Chern numbers (Fig. 1a).
These systems cannot be captured by the theories of tenfold
way13,14, symmetric indicators15–17 or topological quantum

chemistry18,19. In addition, all the CDIs exhibit multicellular and
even noncompact topology, i.e., the Wannier functions cannot be
entirely localized to δ-functions due to the reduced Chern
numbers.

Results
Theory. We aim at finding possible topology protected by n
mirror symmetries M1;M2; :::;Mn. These symmetries divide
the BZ into irreducible BZs, which become a fundamental
domain to define the topology. A possible realization is to con-
sider systems with the same mirror symmetry representation
M1; :::;Mn ¼ σz � I,

MiHðkÞM�1
i ¼ HðRikÞ; ð1Þ

where σz and I are the Pauli and identity matrices, and Ri’s
represent the mirror reflections in the k space. Here, the basis
orbitals are chosen such that the mirror symmetry representation
is diagonal. Therefore, the projection matrix onto the occupied
space is block-diagonal at the HSLs. Notice that the system also
has Cn symmetry with trivial representation Cn= I.

Next, we consider the models in which all the occupied states
have the same mirror representations at the HSLs. The blocks in
the projection matrix are thus composed of zero and identity
matrices, which correspond to the unoccupied and occupied
spaces, respectively. Up to a k-dependent U(1) phase, the HSLs
are mapped onto a point in the Hilbert space. Note that the
boundaries of irreducible BZs are composed of HSLs, or lines that
can be mapped to each other by a Cn symmetry with trivial
representation. Therefore, the irreducible BZs are topologically
equivalent to a compact manifold. The first Chern number is

Fig. 1 Illustration of Chern dartboard insulators. a Chern dartboard insulators with different orders. The black dashed lines denote the high-symmetry
lines of mirror symmetries in the Brillouin zone. The Chern number is quantized inside the regions enclosed by the high-symmetry lines. Here, the regions
with blue and red color have reduced Chern number Cn ¼ 1;�1 respectively. b Mercator projection of Type I n= 1 Chern dartboard insulator.
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well-defined in the irreducible BZ

Cn ¼ � 1
2π

Z
irBZ

d2kTrFxy: ð2Þ

Here Fxy is the non-Abelian Berry curvature, and Cn is the
reduced Chern number of the n-th order CDIs.

The simplest CDI1 is protected by one mirror symmetry and
has quantized reduced Chern number inside half of the BZ. There
are two types of CDI1: Type I has opposite mirror representations
at the two HSLs, which are positive and negative, respectively. A
two-band tight-binding Hamiltonian with mirror symmetry
My ¼ σz serves as an example

HI
1ðkÞ ¼ cos kx sin kyσx þ sin kx sin kyσy

þ ðmþ cos kyÞσz:
ð3Þ

In this model, the basis orbitals are an s and a py orbitals. The
two HSLs at ky= 0, π divide the BZ into upper and lower sBZs.
When− 1 <m < 1, the upper and lower sBZs have quantized
reduced Chern numbers C1 ¼ ±1, respectively. Note that the
model hosts a flat-band limit at m= 0. If the total number of
occupied bands is odd, Type I CDI1 exhibits a quantized bulk
polarization20–23.

On the other hand, Type II CDI1 has the same mirror
representations at the two HSLs, which are either both positive or
both negative. A flat-band model is given by

HII
1 ðkÞ ¼ 1

2 ð1þ cos kxÞ sin 2kyσx þ sin kx sin kyσy
þ 1

2 ½ð1þ cos kxÞðcos 2ky � 1Þ þ 2�σz:
ð4Þ

The bulk polarization Px ¼
R 2π
0 TrAxdkx shows the returning

Thouless pump (RTP) behavior in both cases10,11. The returning
Thouless pump invariant is given by the difference of polariza-
tions along the HSLs ΔPx= Px(ky= π)− Px(ky= 0). Notably, this
invariant is equivalent to the quantized reduced Chern number in
the Type II CDI1.

The sBZ topology can be visualized by mapping (3) to the
Bloch sphere with kx→ ϕ, ky→ θ24,25. This mapping is mean-
ingful only when ky∈ [0, π] or ky∈ [− π, 0]. In the Type I CDI1,
the upper sBZ is mapped to the entire sphere through the
Mercator projection, thereby hosting the reduced Chern number
C1 ¼ 1 (Figs. 1b and 2a). Meanwhile, the lower sBZ with
ky∈ [− π, 0] is also mapped to the entire sphere, but now with a
negative reduced Chern number C1 ¼ �1 due to mirror
symmetry. The quantization of these reduced Chern numbers
can be understood as follows: Under the mirror symmetry
My ¼ σz , the ky= 0 and π HSLs are mapped to the north and
south poles, respectively, as they have opposite representations.
The sBZs are then topologically equivalent to S2, and the reduced
Chern numbers C1 are well-defined (Fig. 1b). In contrast to Type
I CDI1, Type II CDI1 has well-defined skyrmions inside the sBZs,
as shown in Fig. 2b. The sBZ topology is more complicated as
both HSLs are mapped to the north pole, which can be directly
related to the existence of skyrmions.

Higher-order CDIs are quite different from the CDI1s, since
they cannot be captured by the returning Thouless pump
invariant. The connection of all HSLs enforces the same
mirror-symmetry eigenvalues in the valence bands (or the
conduction bands) among them. Therefore, the valence or
conduction bands transform exactly the same as one of the
trivial s or p orbitals with Wyckoff position a. Figures 2c–f and 3b
plot the peudospin textures of the two-band higher-order CDIns
with n= 2, 3, 4. All these cases have blue-centered skyrmions or
antiskyrmions inside the irreducible BZs, which lead to the
nontrivial reduced Chern numbers Cn ¼ ± 1. With the proper
definition from the irreducible BZ, the reduced Chern number

serves as a powerful generalization from the returning Thouless
pump invariant.

Importantly, the mirror symmetry eigenvalues alone cannot
detect CDIs. The CDIs are still inequivalent from the ones with δ-
like Wannier functions, as they cannot be adiabatically trans-
formed into each other. Moreover, the n= 2, 4, 6 CDIs are
noncompact atomic insulators, where the orthonormal Wannier
functions cannot be strictly local and compact12. Note that these
models are quite different from the noncompact cases studied in
Ref. 12, where the noncompactness arises from the obstruction of
the lattices that leads to obstructed atomic insulators. Here, the
CDIs are not obstructed and the noncompactness arises due to
the multicellularity. Also note that the CDI5 does not exist since it
is not lattice compatible.

There are also two types of CDI3s. We define the Type I CDI3
as the one with HSLs passing through the K and K 0 points
(Fig. 1), and the Type II CDI3 as the one with HSLs passing
through the M and M0 points (Fig. 3a). The Type II CDI3 is
slightly different from other CDIs. Here, the irreducible BZs are
not enclosed by the HSLs (Fig. 3). Nevertheless, the lines M0 � K 0

and M � K 0 are mapped to each other by an emergent C0
3

symmetry at the center of K or K 0 point. This C0
3 symmetry is a

combination of a C3 symmetry (which comes from the three
mirror symmetries) plus a k-space translation. Therefore, the two

Fig. 2 Pseudospin textures of the Chern dartboard insulators. The vector
field represents the components of nx and ny, and the color represents the
nz component. a Type I n= 1 Chern dartboard insulator in the flat-band
limit. The reduced Chern number C1 ¼ 1 arising from the winding around
the south pole at ky= π. b Type II n= 1 Chern dartboard insulator in the flat-
band limit. The reduced Chern number C1 ¼ 1 arising from the skyrmion
living inside half of the BZ. c n= 2 Chern dartboard insulator. d Type I n= 3
Chern dartboard insulator. e n= 4 Chern dartboard insulator. f The zoom-in
subplot for the red frame in e.
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boundary lines are glued together and effectively disappear. The
sBZ topology is thus well-defined and Eq. (2) still applies. In
particular, if we calculate the loop integral around the path
Γ�M0 � K 0 �M � Γ,

1
2π

Z K 0

M0
A � dk þ 1

2π

Z M

K 0
A � dk ¼ 0 ð5Þ

due to the C0
3 symmetry. The remaining integral

1
2π

Z M0

Γ
A � dk þ 1

2π

Z Γ

M
A � dk ¼ �C3 2 Z ð6Þ

is a loop integral since M0 maps to M by C0
3 symmetry, which has

a trivial representation. Therefore, the region enclosed by this
path has a quantized reduced Chern number C03 2 Z.

Gapless edge states. Similar to the Chern insulators, the
appearance of gapless edge states in CDIs can be explained by the
domain walls, with the exception of Type I CDI1. Since the edges
of CDIs serve as the boundaries between bulk and vacuum,
domain walls naturally appear from the negative mass terms in
the irreducible BZs under band inversions. For Type I CDI1, there
are no isolated band-inversion points. Therefore, the gapless edge
states only exist in the directions perpendicular to the HSLs. On
the other hand, the rest CDIs host isolated band-inversion points
inside the irreducible BZ, owing to the quantized reduced Chern
number Cn. Inside the irreducible BZ, the topology shares similar
behavior with regular Chern insulators. If one tries to close the
gap by creating massive Dirac cones at the band-inversion points,
the minimal low-energy Dirac Hamiltonian with mirror sym-
metry representation σz⊗ I can be expressed as

Hðk; rÞ ¼ kxΓx þ kyΓy þmðrÞσz � I; ð7Þ
where the three matrices Γx, Γy, σz⊗ I anticommute with each
other, and m(r) is a position-dependent mass term. Since m(r) < 0
inside the bulk, gapless edge states appear as the domain walls
between the bulk and the vacuum withm(r) > 026,27. In the two-
band models, the band-inversion points are exactly associated
with the skyrmion centers in Fig. 2.

It is worth emphasizing a fundamental difference between the
Chern insulators and the CDIs. In a Chern insulator with C ¼ 1,
we have only one band-inversion point inside the BZ. Thus, the
chiral gapless edge states appear due to the domain walls between
the bulk and the vacuum. However, for CDIs with Cn ¼ 1, we
have 2n band-inversion points with opposite-sign reduced Chern
numbers. Therefore, we expect the edge states with opposite
velocities in the edge spectrum. Following ref. 11, we can derive
the bulk-boundary correspondence

Cn ¼
1
n
∑
j
I

dEj

dk
> 0

� �
¼ 1

n
∑
j
I

dEj

dk
< 0

� �
: ð8Þ

Here I(x) is the indicator function counting the number of edge
states, and dEj/dk are the corresponding velocities. We have
chosen an arbitrary energy level E that passes through the edge
states, and the sum is over all the edge states. Since a positive
reduced Chern number corresponds to an edge state with positive
velocity (and vice versa), the bulk-boundary correspondence can
be established accordingly. In Fig. 4, we plot the nanoribbon band
structures for all the CDIs. Figure 4a represents the typical edge
spectrum for delicate TIs. It is easy to observe that the bulk-
boundary correspondence Eq. (8) is satisfied. Finally, the edge

1

1

1

−1

−1

−1

M'

MΓ

K'

Fig. 3 Type II n= 3 Chern dartboard insulator. a The quantized Chern
number inside the irreducible BZs. The regions with blue and red color have
reduced Chern number Cn ¼ 1;�1 respectively. The dashed lines indicate
the high-symmetry lines. The reciprocal lattice vectors G1 ¼ ð2π; 2π=

ffiffiffi
3

p
ÞT

and G2 ¼ ð0;4π=
ffiffiffi
3

p
ÞT form the rhombus-shape BZ, which is indicated by

the red dashed lines. The numbers denote the Chern numbers inside the
irreducible BZs, enclosed by the path Γ�M0 � K0 �M� Γ. b The
pseudospin texture of the Type II n= 3 Chern dartboard insulator. There
are in total 6 skyrmions and 3 antiskyrmions inside half of the BZ, which
add up to 3. The antiskyrmions are not clear in this figure since they are
very close to the skyrmions.

Fig. 4 Edge states of Chern dartboard insulators. The nanoribbon band
structures are shown in all subfigures. The doubly degenerate edge states
localized separately at the two opposite edges are highlighted by red color.
a Type I and II n= 1 Chern dartboard insulators with edges along the y-
direction in the flat-band limit. The edge states localized at the left (right)
edge are denoted by blue (black) color. b Type II n= 1 Chern dartboard
insulator with edges along the x-direction in the flat-band limit. c n= 2
Chern dartboard insulator with edges along the x-direction. d n= 4 Chern
dartboard insulator with edges along the x-direction. e Type I n= 3 Chern
dartboard insulator with edges along the x-direction, which correspond to
the flat edges. f Type II n= 3 Chern dartboard insulator with edges along
the y-direction, which correspond to the zigzag edges.
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states in Fig. 4c–f are doubly degenerate because of mirror
symmetry that relates the two boundaries.

Midgap corner states. By cutting the edges along the (1,1) and
(1,-1) directions of Type I CDI1, we obtain two protected midgap
corner states with quantized 1/2 charges. Notice that the unit cell
is preserved, and the upper and lower corners have two atoms
instead of one atom. Contrary to the 2D weak topological insu-
lators where there are plenties of midgap edge states, Type I CDI1
host two protected midgap corner states at the upper and lower
corners (Fig. 5). This is similar to the midgap corner states in a
model with quantized polarization28, where the corner states
appear along the polarization direction. Therefore, Type I CDI1
also serves as the simplest two-band models with protected
midgap corner states.

Möbius fermions. The edge states parallel to the x-axis in Type II
CDI1 show even more striking phenomenon. We expect two
chiral gapless edge states with opposite chirality near E= 0,
regardless of the edge terminations due to the band inversions
inside the irreducible BZ. In the flat-band limit, the edge
Hamiltonian describes the phase transition point of the four-band
SSH model, and the edge states form the Möbius fermions29 see
Fig. 4b and Supplementary Note 1. The energy of the two edge
states are E1ðkxÞ ¼ sinðkx=2Þ and E2ðkxÞ ¼ � sinðkx=2Þ. A Möbius
twist is clearly observed: The energies are only periodic in kx∈
[0, 4π], and a single edge Dirac cone appears at kx= 0. Since the
edge Dirac cone is protected by the quantized reduced Chern
number, the Dirac cone cannot disappear although the position
can shift from kx= 0. The eikx=2 dependence is also clearly shown
in the edge states. See Supplementary Note 1 for details. In
addition to Type II CDI1, the Möbius fermions also appear in
both types of CDI3s (Fig. 4e, f). See Supplementary note 2 for
details. Finally, we note that the Möbius fermions can only appear
with odd numbers of Dirac cones in the CDIs.

Discussion
We introduce the concept of sBZ topology that manifests itself in
different classes of CDIs. CDIs host gapless edge states in general
and can even develop nontrivial Möbius fermions or midgap
corner states in certain cases. Although here we only consider
specific examples of the sBZ topology, one can easily generalize
the same argument to systems in higher dimensions or with
different symmetries/constraints. The sBZ topology thus opens a
fertile area for new topological systems with nontrivial surface
responses. The different physical properties from the global

topology make the realization and classification of the sBZ
topology a new frontier of research in topological materials.

We note that the concept of local topology has been discussed
in the valley Hall effect and some attempts have been made to
classify the topology30,31. However, the valley Hall effect is not a
robust band topology as (i) the valley Chern number is not
exactly quantized (ii) the edge states can be trivialized by adia-
batically transforming the Hamiltonian without closing the band
gap. On the contrary, CDIs are systems with exactly quantized
Chern number inside the sBZ and robust band topology. Finally,
thanks to the recent advances in detecting local Berry curvature in
various systems32,33, and in realizing topological phases in
nanophotonic silicon ring resonators34, the realization and
observation of CDIs and their exotic edge states is expected in the
near future.

Methods
Conventions and definitions. With translational symmetry, the
second quantized tight-binding Hamiltonian can be written into
the Bloch form,

Ĥ ¼ ∑
k
cyi;k HðkÞ½ �ijcj;k; ð9Þ

where

cj;k ¼
1ffiffiffiffiffiffi
Nt

p ∑
R
eik�Rcj;R ð10Þ

is the electron annihilation operator. Here, j= 1, . . . , 2N labels
the basis orbitals and spins, R labels the unit cell position, and Nt

is the total number of the unit cells. We use the convention that
the Bloch Hamiltonian H(k) is periodic under a translation of a
reciprocal lattice vector G:

HðkÞ ¼ Hðk þ GÞ: ð11Þ
The intra-cell eigenstates are defined by:

HðkÞ ulðkÞ
�� � ¼ ElðkÞ ulðkÞ

�� �
; ð12Þ

where l= 1, . . . , 2N are the band indices and El(k) is the eigen-
energy. Note that one can generically choose a smooth and per-
iodic gauge for the eigenstates of CDIs since the total Chern
number is zero. Considering the half-filling band insulators, the
intra-cell states can be decomposed into the valence states ulv

�� �
and the conduction states ulc

�� �
, where l= 1, . . . ,N. The Bloch

state is given by ψlðkÞ
�� � ¼ eik�R ulðkÞ

�� �
.

The non-Abelian Berry connection for the valence bands is
defined as:

AlmðkÞ ¼ i ulvðkÞ
� ��∇ umv ðkÞ

�� �
; ð13Þ

and the non-Abelian Berry curvature in two dimensions is:

Fxy;lm ¼ ∂xAy;lm � ∂yAx;lm � i Ax;Ay

h i
lm
: ð14Þ

Mathematical formulation of Chern dartboard insulators.
Consider n mirror symmetries M1;M2; :::;Mn with the same
mirror symmetry representation M1; :::;Mn ¼ σz � I:

MiHðkÞM�1
i ¼ HðRikÞ; ð15Þ

where Ri represent mirror reflections in k space. Using Stokes
theorem:

� 1
2π

I
TrA � dk ¼ � 1

2π

Z
irBZ

d2kTr Fxy ¼ Cn; ð16Þ

where A and Fxy are the non-Abelian Berry connection and
curvature, and Cn is the reduced Chern number of the n-th order
CDIs. The loop integral encloses the irreducible BZ. On the HSLs,

Fig. 5 Midgap corner states in Type I n= 1 Chern dartboard insulator.
a The nanoflake energy spectrum. b The probability distribution of the two
corner states. In the flat-band limit, the left and right corners of the
nanoflake also host midgap corner states, but they are not robust. Here for
clarity, we set m= 0.2 and add the nearest-neighbor coupling 0:3 cos kxσz
to Eq. (3).
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the valence states are eigenstates of the Hamiltonian due to Eq.
(15). Next, we consider the models where all the occupied states
at the high-symmetry lines have the same mirror representations.
As a result, the valence states are spanned by the basis orbitals:

uivðk 2 HSLsÞ
�� � ¼ ∑

N

j¼1
Uijðk 2 HSLsÞ bj

�� �
; ð17Þ

where bj
�� �

with j= 1, . . . ,N are the basis orbitals that have the
same mirror symmetry representation with the occupied states

ujvðk 2 HSLsÞ
��� E

. Here, the basis orbitals are chosen into the basis

such that the mirror symmetry representation is diagonal. Since
the total Chern number is zero, Uij(k) can be chosen to a smooth
and periodic U(N) gauge transformation. The key point is that the
rank of the occupied states is equal to the rank of the basis states
bj
�� �

such that Uij(k) is a well-defined U(N) gauge transformation.
By plugging Eq. (17) into Eq. (16), it follows that,

i
2π

Z
Tr½Uy

π∇Uπ � Uy
0∇U0� � dk ¼ C1; ð18Þ

where Uπ and U0 denote the gauge transformation at the two
different HSLs, and

� i
2π

I
TrUy∇U � dk ¼ Cn; ð19Þ

for n > 1. The reduced Chern number is thus quantized to inte-
gers. Note that the k-dependent U(1) phase is crucial to obtain the
nonzero reduced Chern number.

Skyrmion number. The topology of two-band CDIs can be
visualized using the psudospin textures. We first expand the
Bloch Hamiltonian into the Pauli matrices:

HðkÞ ¼ ∑
i
diðkÞσ i; ð20Þ

where σi with i= x, y, z are the Pauli matrices. The reduced Chern
number can be defined as the degree of the map from the irre-
ducible BZ to S2:

Cn ¼ � 1
4π

R
irBZd

2kn � ∂n
∂kx

´ ∂n
∂ky

� 	
ð21Þ

where n(k)= d(k)/∣d(k)∣ are the unit vectors that define the space
of S2. The reduced Chern number measures how many times the
irreducible BZ wraps around S2.

The peudospin textures of CDIs are plotted in Fig. 2. The first
Chern number can be calculated as the sum of the indices around
either n0= (0, 0, 1) or n0= (0, 0,−1) inside the BZ, with a sign
difference35. Note that this choice is just for convenience as one
can easily do an arbitrary unitary transformation. The reduced
Chern number is

Cn ¼ ∑
i
Si; ð22Þ

where Si is the index around the south pole n0= (0, 0,−1) with
the blue center in the plot, and i denotes the different skyrmions
inside the BZ. Since the irreducible BZ is a two-dimensional
manifold, the indices can be calculated simply as the winding
numbers of the vectors around the south pole. Notice that the
Poincaré-Hopf theorem constrains the total indices including
those around the north pole n0= (0, 0, 1) are summed to zero.
This is consistent with Eq. (21) since a nonzero Chern number
implies the north pole and the south pole must be wrapped
around nontrivially.

Tight-binding models. Here we list the two-band spinless tight-
binding models used to construct the figures in the main text for
CDIs. The n= 1, 2, 4 CDIs are built in the simple square lattice

with primitive lattice vectors a1= (1, 0) and a2= (0, 1) in the unit
of a lattice constant. The CDI3 is built in the triangular lattice
with primitive lattice vectors a1= (1, 0) and a2 ¼ ð1=2; ffiffiffi

3
p

=2Þ in
the unit of a lattice constant. The basis orbitals are all placed on
the atoms. The numerical results of the midgap corner states and
the nanoribbon band structures are performed using the PYTHTB
package36.

Type I CDI1:

HI
1ðkÞ ¼ cos kx sin kyσx þ sin kx sin kyσy

þ ðmþ cos kyÞσz;
ð23Þ

where m is a parameter. The basis orbital consists of a s orbital
and a py orbital. The Hamiltonian has the mirror symmetry
My ¼ σz . For− 1 <m < 1, this model has a quantized reduced
Chern number C1 ¼ 1 inside the upper half BZ, see Fig. 1. The
system has a flat-band limit when m= 0.

Type II CDI1:

HII
1 ðkÞ ¼ cos kx sin 2kyσx þ sin kx sin kyσy

þ ðmþ cos 2ky � cos kxÞσz;
ð24Þ

where m is a parameter. The basis orbital consists of a s orbital
and a py orbital. The Hamiltonian has the mirror symmetry
My ¼ σz . For 0 <m < 2, this model has a quantized reduced
Chern number C1 ¼ 1 inside the upper half BZ, see Fig. 1. The
system has a flat-band limit in the following form:

HIIc
1 ðkÞ ¼ 1

2
ð1þ cos kxÞ sin 2kyσx þ sin kx sin kyσy

þ 1
2
½ð1þ cos kxÞðcos 2ky � 1Þ þ 2�σz:

ð25Þ

CDI2:

H2ðkÞ ¼ � sin kx sin 2kyσx þ sin 2kx sin kyσy

þ ðmþ cos 2kx þ cos 2kyÞσz:
ð26Þ

where m is a parameter. The basis orbital consists of a s orbital
and a dxy orbital. The Hamiltonian has two mirror symmetries
Mx ¼ My ¼ σz . For 0 <m < 2, this model has a quantized
reduced Chern number C2 ¼ 1 inside the upper right quarter of
the BZ, see Fig. 1. We set m= 1.0 for all the figures.

CDI4:

H4ðkÞ ¼ � sin kx sin 4ky þ sin 4kx sin ky
� 	

σx

þ sin 2kx sin 4ky � sin 4kx sin 2ky
� 	

σy

þ mþ cos 2kx þ cos 2ky þ cos 4kx
h

þ cos 4ky þ 4 cos kx cos ky
i
σz;

ð27Þ

where m is a parameter. The basis orbital consists of a s orbital
and a second orbital that is odd under four mirror symmetries.
The Hamiltonian has four mirror symmetries
Mx ¼ My ¼ Mxþy ¼ Mx�y ¼ σz . For 2 <m < 4, this model
has a quantized reduced Chern number C4 ¼ 1 inside the
irreducible BZ, see Fig. 1. We set m= 3.0 for all the figures.
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Type I CDI3:

H3ðkÞ ¼ sin
5
2
kx sin

ffiffiffi
3

p

2
ky � sin 2kx sin

ffiffiffi
3

p
ky




þ sin
1
2
kx sin

3
ffiffiffi
3

p

2
ky

�
σx

þ � cos
5
2
kx sin

ffiffiffi
3

p

2
ky � cos 2kx sin

ffiffiffi
3

p
ky




þ cos
1
2
kx sin

3
ffiffiffi
3

p

2
ky

�
σy

þ mþ ∑
6

a¼1
eit2ðaÞ�k þ 1

2
e2it2ðaÞ�k

� �
 �
σz;

ð28Þ

where m is a parameter and t2ðaÞ ¼
ffiffiffi
3

p ½cosðπa=3� π=6Þ;
sinðπa=3� π=6Þ�T . The basis orbitals consist of a s orbital and
a f yð3x2�y2Þ orbital. The Hamiltonian has three mirror symmetries

My ¼ C3MyC
�1
3 ¼ C2

3MyC
�2
3 ¼ σz . The σz term contains the

hoppings with range a1+ a2, 2(a1+ a2), and also the ones
generated by all the C6 rotations. The σx and σy terms contain the
hoppings with range a1+ 2a2 and the ones generated by three
mirror symmetries. For 0 <m < 4.5, this model has a quantized
reduced Chern number C3 ¼ 1 inside the irreducible BZ, see
Fig. 1. We set m= 2.0 for all the figures.

Type II CDI3:

HII
3 ðkÞ ¼ sin

5
2
kx sin

ffiffiffi
3

p

2
ky � sin 2kx sin

ffiffiffi
3

p
ky




þ sin
1
2
kx sin

3
ffiffiffi
3

p

2
ky

�
σx

þ sin
5
2
kx cos

ffiffiffi
3

p

2
ky � sin 2kx cos

ffiffiffi
3

p
ky




� sin
1
2
kx cos

3
ffiffiffi
3

p

2
ky

�
σy

þ mþ ∑
6

a¼1
eit1ðaÞ�k þ e2it1ðaÞ
� 
 �

σz;

ð29Þ

where m is a parameter and t1ðaÞ ¼ ½cosðπa=3Þ; sinðπa=3Þ�T . The
basis orbitals consist of a s orbital and a f xðx2�3y2Þ orbital. The
Hamiltonian has three mirror symmetries Mx ¼ C3MxC

�1
3

¼ C2
3MxC

�2
3 ¼ σz . The σz term contains the hoppings with

range a1, 2a1, and also the ones generated by all the C6 rotations.
The σx and σy contains the hoppings with range 2a1+ a2 and the
ones generated by three mirror symmetries. The system has a
quantized reduced Chern number C3 ¼ 1 if 0.5 <m < 2.5, see
Fig. 3. We set m= 1.5 for all the figures.

Data availability
The data for all the figures are open at this website: https://github.com/clock871225/
Chern_dartboard_insulator.
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