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Hosohedral nodal-line superconductivity in
hexagonal ABC Dirac semimetals
Hong-Guk Min 1, Churlhi Lyi 1, Moon Jip Park 2,3✉ & Youngkuk Kim 1✉

The recently identified hexagonal non-polar phase of KZnBi, an archetypal topological

semimetal, has been found to cohost superconductivity on the surface. We propose that

KZnBi can realize an unconventional topological superconductor featuring the hosohedral

formation of nodal lines and Bogoliubov Fermi surface emerging under a magnetic field. Our

density functional theory (DFT)-based low-energy model shows that the nonsymmorphic

band degeneracy of the Dirac bands generically triggers topological nodal line super-

conductivity fostered by inter-band Coulomb interaction. In particular, the nodal lines of the

gap resemble a hexagonal hosohedron with the Schläfli symbol of {2, 6}. Remarkably, the

holohedral nodal line superconductor defines the topological phase boundary of the Bogo-

liubov Fermi surface in the limit where time-reversal symmetry is restored. Our results

demonstrate that line nodes readily inflate to the Bogoliubov Fermi surface under an external

magnetic field. We provide an experimentally verifiable explanation for the observed

superconductivity and suggest a feasible platform for observing topological superconductivity

in the hexagonal ABC ternary systems class.
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Realization of topological superconductivity in a controllable
platform holds a promise for the potential applications in
quantum information science1–12. Diverse Majorana plat-

forms have been suggested, ranging from archetypal approaches
that utilize topological superconductors13–20 to more recent
approaches that benefit the proximity of superconductivity in
heterostructures21–23. These platforms have yielded convincing
experimental evidence of the Majorana states24–32. Nonetheless,
searching for more scalable and controllable platforms is a
pressing need for future developments. Encouragingly, routes to
topological superconductivity are diversified, including more
exotic classes that harbor gapless excitations such as the nodal
plane Bogoliubov Fermi surface (BFS) superconductor33,34.

The pioneering idea of proximity effect-induced super-
conductivity of topological surface states17,21 has subsequently
generalized to simpler devices in wider varieties. For example, a
doped topological insulator or a topological semimetal facilitates
a single-material setting by driving bulk superconductivity35–37

with the advantage of the intrinsic surface and interband super-
conducting coherence in the momentum space. Conversely,
known superconductors have been identified as topologically
nontrivial38–40. Furthermore, opportunities have been dilated
beyond topological surface states, including the Shockley normal
states41 with strong Rashba splitting, which drives Majorana zero
modes under an external magnetic field42–44.

A more exotic realization is a recently discovered surface
superconductor that coexists with the bulk Dirac semimetal45–47.
A hexagonal nonpolar layered material KZnBi is a paradigmatic
example whose bulk state hosts a topological Dirac semimetal in
three dimensions. The onset of superconductivity is driven on the
surface of KZnBi at Tc = 0.85 K45. This peculiar situation pro-
vides a unique platform for intrinsic superconductivity of the
three-dimensional massless Dirac fermions, dominated by the
surface superconducting condensation. However, the character of
the bulk superconducting state in this class of materials has
remained unexplored.

In this Letter, we present a density functional theory (DFT)-
based low-energy model that sheds light on the possible super-
conducting states of KZnBi. Our theory proposes a general sce-
nario in which the nonsymmorphic band degeneracy of Dirac
semimetals leads to stable nodal line superconductivity fostered
by multiband interactions. To complement the experimental
observations in KZnBi, we explicitly calculate the quasiparticle
density of states and specific heat, which are in excellent agree-
ment with the observed results. In particular, the nodal lines form
a hexagonal hosohedron, which easily inflates to the BFS super-
conductors when time-reversal symmetry is broken, as we
demonstrate by applying an external magnetic field. Our results
suggest the emergence of an unconventional topological super-
conductor in KZnBi, offering a feasible route to finding smoking
gun evidence of the Bogoliubov Fermi surface in the existing
topological Dirac semimetal KZnBi.

Results and discussion
HNL superconductor in KZnBi. The present numerical study
shows that KZnBi hosts a nodal superconductor with the hex-
agonal hosohedron formation of the nodal lines shown in Fig. 1b,
which we refer to as the hosohedral nodal line (HNL) super-
conductor. The hosohedron refers to a geometric structure in
which the tessellation of lunes on a spherical surface forms, such
that each lune shares the same two polar opposite vertices. Fig. 1a
delineates examples of the n-gonal hosohedrons (n= 3, 4, and 6),
represented by the schläfli symbol {2, n}. A characteristic of the
HNL superconductor is the superconducting gap highly sup-
pressed near the polar vertices. More remarkably, the HNL

superconductor features the phase boundary of the BFS super-
conductors induced by time-reversal breaking perturbations, such
as a magnetic field. Fig. 1b exemplifies the phase boundary of the
BFS at zero magnetic fields. In the presence of the TR-breaking
magnetic field, the HNL is immediately inflated to the BFS. We
demonstrate this process in the KZnBi system.

KZnBi in hexagonal ABC crystals. We first clarify the crystalline
symmetries of KZnBi. Fig. 2a shows the atomic structure of
KZnBi as the representative case of the hexagonal non-polar ABC
family. The unit cell comprises two formula units with six atoms
(2Zn, 2Bi, 2K atoms). A layered structure is formed with two K
layers (A-sublattice), which are intercalated by the two additional
Zn-Bi layers with alternating Zn-Bi positions. The crystal struc-
ture preserves the symmetries of the non-symmorphic and cen-
trosymmetric space group P63/mmc (# 194), generated by
inversion P, sixfold screw S6z ¼ fC6zj00 1

2g, and two-fold rotation
C2x operations. Important symmetries include two mirrors mz

and a mirror mx, protecting the Dirac crossings in the normal
states bands with time-reversal symmetry T . Similarly, the
inversion P and glide mirror Gy ¼ fmyj00 1

2g play a crucial role in
protecting the nodal line superconducting phase.

Dirac semimetal in KZnBi. In good agreement with the previous
study in Ref. 45, our density functional theory (DFT) calculations
reproduce the Dirac bands. Fig. 2c shows the calculated DFT
bands along the high-symmetry momenta shown in Fig. 2b. The
magnified view of the band crossing in the inset clearly shows that
a linear band crossing, referred to as the Dirac point (DP),
appears along the high-symmetry Γ-A line in otherwise all gapped
momentum space. Our calculation further reveals that the irre-
ducible representations of the conduction and valance Dirac
bands at A correspond to the A6 and A4⊕ A5 representations,
respectively as indicated in Fig. 2c. The fourfold degeneracy at A
is enforced by the mx and PT symmetries (See Supplementary
Note 1 for the detailed symmetry analysis).

We construct a k ⋅ p minimal Hamiltonian that faithfully
distills the Dirac bands of KZnBi. We propose the minimal eight-
band model to capture the nonsymmorphic band degeneracy.
The model Hamiltonian HAðkÞ harbors the two four-fold
degenerate states at A4⊕ A5 and A6, such that it respects the
symmetry constraints of the little group of A

HAðkÞ ¼ gHðD�1
g kÞg�1: ð1Þ

Here Dg is a symmetry operator defined in the momentum space,
and g is the corresponding symmetry operator acting on the
Bloch wave functions. The symmetry operators, g, are explicitly

represented by P ¼ �σx , C2x ¼ ið�
ffiffi
3

p
2 sx þ 1

2 syÞτþ � iszτ�,

S6z ¼ �i
ffiffi
3

p
2 szτþσz � 1

2 τ�σz þ 1
2 τzσz , and T ¼ isyK. Here,

τ±= (1 ± τz)/2 and τz= ± 1 (σz= ± 1) denote A6 and A4⊕ A5

(A±
6 ) states, respectively. Similarly, sz= ± 1 describes spin, and K

is the complex conjugation. The detailed derivation of our model
Hamiltonian is in Supplementary Note 1. In result, the explicit
form of HA is given as follows;

HA ¼ mþ
k τþ þm�

k τ� þ μk1ðk21 � 3k22Þσy
þ λ1 k1ðsy þ szÞτy þ k2ðτx þ sxτyÞ

h i
σy

þ λ2kz l1sxτ� þ l2syτ� þ l3szτþ
h i

σz

þ λ3 ðk21 � k22Þðτx � sxτyÞ þ 2k1k2ðszτy � syτyÞ
h i

;

ð2Þ

k1 � 1
2 kx þ

ffiffi
3

p
2 ky , k2 �

ffiffi
3

p
2 kx � 1

2 ky , and m±
k � m±

0 þm±
k ðk21 þ

k22Þþ m±
z k

2
z . The parameters m±

0 , m
±
k , m

±
z , λi, μ, and li (i = 1, 2, 3)

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01501-9

2 COMMUNICATIONS PHYSICS |            (2024) 7:11 | https://doi.org/10.1038/s42005-023-01501-9 | www.nature.com/commsphys

www.nature.com/commsphys


are determined to reproduce the DFT bands of KZnBi near the Fermi
energy (See Supplementary Note 1 for the full Hamiltonian and the
parameters that reproduce the DFT bands of KZnBi).

Superconducting phases. We determine the possible parings
of the hole-doped bulk KZnBi superconductor, observed at
EF=− 50 meV45. We first classify the paring functions based on
the symmetries of D6h, which admits the total twenty-eight dis-
tinct superconducting channels. The complete list of twenty-eight
pairing functions can be found in Supplementary Note 2. Out of

these, three stable superconducting phases are found when the
density-density type interactions are considered,

HI ¼ U ∑
i
n2i þ 2V∑

i≠j
ninj; ð3Þ

where U (V) represents the intra-(inter-)band interaction
strength, and ni(j) is a density operator for the electrons in the i(j)-
th orbital. (See Table 1 for the specific irreps and the corre-
sponding gap structure).

{2,3} {2,4} {2,6}

(a) C3z C4z C6z
z z z

B ≠ 0B = 0

HNL BFS

(b)

Fig. 1 Schematic figure of the hosohedral nodal lines (HNLs) and the Bogoliubov Fermi surface (BFS). a Illustration of Cnz-symmetric n-gonal HNLs with
the Schläfli symbol of {2, n} for n = 3, 4, 6. The blue lines and orange spheroidal surfaces delineate the nodal lines and the Fermi surface, respectively. The
top view of the nodal lines near the polar vertex of the hosohedron is shown with the nodal lines (blue) and the corresponding inflated BFS (red surface). in
the gray plane. b Phase diagram in magnetic field B space. The HNL superconductors occur at the B= 0 phase boundary of the BFS superconductors,
represented by a blue dashed line. The red surface illustrates BFS.
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Fig. 2 Atomic and electronic structures of KZnBi. a Crystal structure of KZnBi. The solid black lines show the primitive unit cell. b Brillouin zone (BZ).
High-symmetry momenta are colored red. Green solid circles indicate the position of the Dirac points (DPs). c Density functional theory (DFT) band
structure of KZnBi. The inset shows the magnified view of the band crossing in the boxed region. The irreducible representations at the high-symmetry A
point are provided, which are obtained for the DFT calculations.
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Fig. 3a shows an exemplary phase diagram comprising stable
channels for given sets of relative interaction strengths between V
and U and the spin-orbit couplings λ1 in a unit of the hopping
parameter (mþ

k ). It is readily manifested from the phase diagram
that U < 0 (V < 0) enhances the stability of ΔA1g (ΔB2g and ΔB2u)
phases. Furthermore, when the strong inter-band interaction
regime, a strong SOC (λ1=m

þ
k >0:364 ½a�1�) induces the HNL

superconducting phase (ΔB2g). The k ⋅ p parameters that repro-
duce the DFT bands satisfy the strong SOC criterion with
λ1=m

þ
k � 0:577 ½a�1�, supporting the HNL phase in KZnBi.

Fig. 3b shows the calculated energy spectra for ΔB2g, where the
nodal lines are captured by the gap closing on the high-symmetry
A-Γ line. Since each branch is doubly degenerate, enforced by the
PT symmetry, the band crossings give rise to four-fold
degeneracy. A close inspection of the zero nodes in the entire
BZ leads to the hexagonal HNLs, where the nodal loop resides on
the Gy invariant planes, including ky= 0 and their C3z-related
planes (Fig. 3c).

Stability of the HNL. The symmetry analysis reveals that the
glide mirror Gy plays a crucial role in stabilizing the four-fold

degeneracy of the HNL phase. To see this, we define the unitary
chiral symmetry ~χ ¼ i ~T ~C where ~χ2 ¼ 1. The following mutual
commutation relation holds between the symmetry operators of
~Gy ¼ Gy ��Gy , ~χ and the Bogoliubov-de Gennes (BdG)
Hamiltonian HBdG of ΔB2g phase (See Supplementary Note 2 for
the detailed construction of the BdG Hamiltonian),

f~P ~T ; ~Gyg ¼ 0; f~χ; ~Gyg ¼ 0;

~P ~T ;HBdG

h i
¼ 0; ~χ;HBdG

� � ¼ 0:
ð4Þ

For a given zero-energy eigenstate ψE¼0

�� �
with

~Gy ψE¼0

�� � ¼ ψE¼0

�� �
, the symmetry relations Eq. (4) ensure four

mutually independent zero-energy states { ψE¼0

�� �
, ~χ ψE¼0

�� �
,

~P ~T ψE¼0

�� �
, ~P ~T ~χ ψE¼0

�� �
}. Thus, the presence of four-fold

degeneracy at E= 0 is compatible with the symmetries. The
proof of mutual independence of these zero modes is given in
Supplementary Note 2.

The HNL is topologically stable, protected by a non-zero
topological 2Z winding number. One-parameter families of
inversion, time-reversal, and chiral symmetric superconductors
(DIII+P class) can be characterized by a 2Z winding number
N 1D

48,49

N 1D ¼ 1
2πi

log P exp
I

C
dk � ∇kTr lnQk

� �	 

; ð5Þ

where P represents the path-ordering operator and Qk is a unitary
matrix obtained by flattening the positive energy spectrum of the
BdG Hamiltonian (See Supplementary Note 2 for the precise
definition of the Qk matrices). Any path C that encloses a nodal
line an odd number of times, as shown in Fig. 3c, generates the
non-trivial winding number N 1D ¼ 2, which topologically

Table 1 Symmetry classification of pairing functions.

Δ Interaction Node Irrep.

sxσy− sxτzσy V Point B2u
sy U Fully gapped A1g

syτzσx V Line B2g

Representative pairing functions and their dependence on the interaction are listed in the first
and second columns, respectively. (See Supplementary Table 2 for the full list of the pairing
functions.) The gap structure is listed in the third column. The last column shows the
corresponding irreducible representation (Irrep.) of the point group D6h.
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Fig. 3 Hosohedral nodal line (HNL) superconductor in ΔB2g Pairing. a Phase diagram of the bulk superconducting phases of KZnBi. The phase diagram is
calculated in terms of the V/U and λ1=m

þ
k parameter space, where V, U, λ1, and mþ

k are the inter-band Coulomb interaction, intra-band Coulomb interaction,
spin-orbit coupling (SOC), and hopping parameters, respectively. Here, V/U is unitless, and λ1=m

þ
k is represented in units of the inverse lattice parameter

a−1. The ΔA2u,ΔA1g, and ΔB2g orders dominate the blue, yellow, and red regions, respectively. b Bogolon quasiparticle energy spectra along the high-
symmetry Γ-A-Γ line for the pairing functions ΔB2g. c Nodal lines of ΔB2g in the Brillouin zone. The winding number is calculated along the path C delineated
by the green circle. The light orange surfaces represent the Fermi surfaces of the normal state.
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protects the nodal lines. While N 1D ¼ 2 explains the stability of
HNLs, hosting surface zero modes associated with the winding
number may be improbable due to the general breaking of spatial
inversion symmetry on the surface.

HNL state in KZnBi. The observed residual specific heat of
KZnBi can be explained by the contributions of the finite density
of states at the HNL phase45. Our calculations show that the order
parameter ∣ΔB2g∣ ~ 10−1 meV order leads to the largest super-
conducting gap on the spheroidal surface of 0.04 meV. Fig. 4a
shows the calculated DOS, which clearly shows that in stark
contrast to the fully gapped superconducting state, the HNL
phase exhibits a finite number of states. We also explicitly cal-
culate the corresponding superconducting specific heat Cs in
Fig. 4b as a function of normalized temperature T/Tc, where Cs is
calculated by50

CsðT;ΔÞ ¼
1
T
∑
n
∑
k

E2
nk þ βEnk

∂Δ

∂β

∂Enk

∂Δ

	 

� ∂f ðEnkÞ

∂Enk

� �
; ð6Þ

where β ¼ 1
kBT

, kB is the Boltzmann constant, and Enk is the n-th
quasiparticle energy at momentum k. Near zero temperature, the
Cs/T curve vanishes for the ΔA1g pairing, while finite residual
specific heat persists for the ΔB2g pairing. The experiment45 shows
that the linear Cs/T versus T2 plot yields a non-zero value near
T= 0 K, which implies that the constant Fermionic contribution
exists to the heat capacity even at the low temperature T < 0.8 K.

B-field induced BFS. We demonstrate that the HNL phase cor-
responds to the topological boundary of the BFS superconducting
phase. Consequently, the magnetic field response of KZnBi offers

further definitive experimental evidence for the HNL phase
through the inflation of HNLs into BFS. To demonstrate this, we
introduce the additional Zeeman term HZeeman ¼ �B � μ in the
original Hamiltonian HA (Eq. (2)), where B= (Bx, By, Bz) is the
magnetic field, and μ=− gμBα/ℏ is the magnetic moment. Here,
the α= (αx, αy, αz) is given by αx= sx(τ0+ τz)/2, αy=− sy(τ0+
τz)/2, and αz=− sz, where μB is the Bohr magneton and g is the
Landé g-factor, which can effectively account for the spin and
orbital effects51. We set the g= 2 and ℏ= 1 for simplicity. The
detailed derivation of the Zeeman Hamiltonian is in Supple-
mentary Note 3. Fig. 4c shows the superconducting nodal surface
calculated from the BdG Hamiltonian for Δ= ΔB2g in the pre-
sence of the z-directed magnetic field strength of Bz= 0.5 × 10−5

eV/μB. We judiciously chose a minimal magnetic field value to
demonstrate that BFS inflation occurs immediately upon applying
the magnetic field. (See Supplementary Note 3 for the super-
conducting energy spectra calculated at larger B-fields). The
nodes occur on a surface resembling the HNL shape.

We explicitly demonstrate the inflation of the nodal lint into a
BFS by directly calculating the evolution of the nodal structure as
a function of an applied magnetic field. Fig. 4c shows the change
of the nodal line at kx= 0 plane as we increase the z-directed
magnetic field strength B. We focus on the nodal structure near
the upper polar vertices. The magnified view shows the
intersection position between the nodal line and the kx= 0 plane
(solid blue dot), which occurs without a magnetic field. The red-
colored lines show the cross-sectional position of the inflated BFS
on the kx= 0 plane that we obtain as we increase the magnetic
field strength from zero to 0.5 × 10−5eV/μB. The zero-
dimensional point inflates to one-dimensional lines, which
demonstrates the inflation of the one-dimensional nodal lines
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Fig. 4 Unique characteristics of the hosohedral nodal line (HNL) superconductor. a Density of the quasiparticle states N in the unit of the density of the
normal states N0. b Temperature-divided specific heat of the superconducting state(Cs/T), normalized with the specific heat of the normal state at the
critical temperature(Cn/Tc). Red (black) Dots represent the data points for ΔB2g (ΔA1g). The line plot of the same color was generated by interpolating the
data points. c Inflation of an HNL to Bogoliubov Fermi surface (BFS) in momentum space. The green point and the light orange surface indicate the normal
state Dirac point (DP) and the Fermi surface, respectively. The grey-boxed section is magnified in the right inset, which shows the cross-sectional view of
the BFS in the kx= 0 plane. The blue dot represents the intersecting point of the HNL penetrating the kx= 0 plane. The red lines illustrate the inflated BFS.
The ω marked with the green arrows indicates the size of inflation along the kz axis.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01501-9 ARTICLE

COMMUNICATIONS PHYSICS |            (2024) 7:11 | https://doi.org/10.1038/s42005-023-01501-9 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


to the two-dimensional BFS. The size of inflation along the kz axis
(ω) is indicated by green arrows in Fig. 4c. The inflation width
along the polar axis at the upper polar vertice ω is given by (See
Supplementary Note 3 for the derivation.)

ω ¼ 2
gμBBz

_vF
; ð7Þ

where vF is the Fermi velocity along the out-of-plane z-direction.
The layered geometry of KZnBi suppresses vF into
0.61 × 106m s−1, which is ten times weaker than the in-plane
direction. Correspondingly, the BFS should be more prominent
and observable in KZnBi.

Topological characterization of BFS. To further demonstrate the
presence and stability of the BFS, we calculate the topological
invariant associated with the nodal surface. The TR-broken
superconductor with particle-hole symmetry belongs to the D
symmetry class. In the three-dimensional momentum space, the
nodal surfaces of the D class are protected by the Z2 invariant
defined by a Pfaffian of the anti-symmetrized BdG Hamiltonian33.
Topological stability is attained when the Pfaffian at the nodal
surface is zero, while the Pfaffian in momentum space separated by
the nodal surface has a different sign. Accordingly, our calculations
result in the negative (positive) sign of the Pfaffian in the interior
(exterior) of the nodal surface. (See Supplementary Note 3 for the
detailed calculation). Therefore, our explicit calculation demon-
strates the magnetic field induces the topological BFS in the HNL
superconducting. Thus, the observation of the BFS may be allowed
in KZnBi under the magnetic field.

More ABC compounds. Our first-principles calculations predict
more materials should realize the HNL superconductor from the
family of ABC ternary compounds. Encouragingly, we have tested
known non-polar hexagonal ABC materials obtained from the
inorganic crystal structure database52 and found eight and four
compounds from the I-XII-V and I-II-V groups that harbor the
k ⋅ p effective model. The complete list of the candidate com-
pounds is given in Supplementary Note 4. For example, the
AZnBi (A = Na and Li) and KMgBi are found to be a Dirac
semimetal from I-XII-V and I-II-V groups, respectively. More-
over, NaZnBi(1−x)Sbx should provide a tunable platform for
engineering the band gap and topological properties as in the case
of NaZnSb(1−x)Bix in a tetragonal phase53.

Conclusion
In summary, we have studied the HNL superconducting phase in
hexagonal ABC compounds based on the mean-field calculation
using the k ⋅ p Hamiltonian. We find that the BFS can be achieved
from the HNLs, by applying a time-reversal symmetry-breaking
magnetic field. Furthermore, we attribute the microscopic
mechanism of the superconductivity observed in Dirac semimetal
KZnBi to the HNL superconductor. In this regard, the recent
discovery of topological Dirac semimetal in KZnBi should pro-
vide an exciting opportunity for further study45. Our theoretical
prediction applies to the family of hexagonal ABC compounds,
providing a catalog of candidate materials to realize the BFS.

Methods
Density functional theory calculations. The first-principles cal-
culations based on the density functional theory were performed
using the VASP package54. The modified Becke-Johnson (mBJ)
meta-generalized gradient approximation(GGA)55 was used to
describe the exchange-correlation energy, with the corresponding
mBJ parameter CMBJ= 1.2865. The non-colinear spin-orbit cou-
pling was included, and the plane-wave energy cutoff of 278 eV was

given throughout the calculations. The lattice constants of KZnBi
were set to be a= 4.68 Å and c= 10.65 Å, adapting the results of
the previous work45. The self-consistent charge density was
obtained on a uniformly sampled 12 × 12 × 4 momentum grid, and
the total energy successfully converged below 10−7eV criterion.

Mean-field calculations. To calculate the superconducting phase
diagram, we first fixed the hopping parameter mþ

k and varied the
SOC parameter λ1. For a given λ1, we determined the intra-band
interaction strength U that yields ∣ΔA1g∣= 5 meV. This strength
ranged from− 4.93 eV to− 5.32 eV. With this fixed value of U as
a reference, we varied the magnitude of the inter-band interaction
V and solved the gap equation to identify the energetically
favored gap function. To solve the multi-band gap equation and
determine the magnitude of the superconducting order para-
meter, we used the methods described by Kim et al.56.

Data availability
The authors ensure the availability of the data supporting the findings of the current
study in both the article and its Supplementary Materials. Additional information can be
provided upon request.
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